메뉴 건너뛰기




Volumn 57, Issue , 2014, Pages 1-11

Noise model based ν-support vector regression with its application to short-term wind speed forecasting

Author keywords

Inequality constraints; Loss function; Noise model; Support vector regression; Wind speed forecasting

Indexed keywords

BAYESIAN NETWORKS; CONSTRAINT THEORY; FORECASTING; GAUSSIAN NOISE (ELECTRONIC); LAGRANGE MULTIPLIERS; VECTORS; WIND; WIND POWER;

EID: 84901427227     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2014.05.003     Document Type: Article
Times cited : (77)

References (50)
  • 1
    • 78149294352 scopus 로고    scopus 로고
    • Clifford support vector machines for classification, regression, and recurrence
    • Bayro-Corrochano E.J., Arana-Daniel N. Clifford support vector machines for classification, regression, and recurrence. IEEE Transactions on Neural Networks 2010, 21(11):1731-1746.
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.11 , pp. 1731-1746
    • Bayro-Corrochano, E.J.1    Arana-Daniel, N.2
  • 4
    • 84901458749 scopus 로고    scopus 로고
    • Qualification of wind power forecasts. In Proc. global wind power conf., Paris, France.
    • Bofinger, S., Luig, A., & Beyer, H. G. (2002). Qualification of wind power forecasts. In Proc. global wind power conf., Paris, France.
    • (2002)
    • Bofinger, S.1    Luig, A.2    Beyer, H.G.3
  • 5
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • Springer, Paris, France, Y. Lechevallier, G. Saporta (Eds.) Bottou Léon
    • Bottou Léon Large-scale machine learning with stochastic gradient descent. Proceedings of the 19th international conference on computational statistics 2010, 177-187. Springer, Paris, France. Y. Lechevallier, G. Saporta (Eds.).
    • (2010) Proceedings of the 19th international conference on computational statistics , pp. 177-187
  • 8
    • 0346881149 scopus 로고    scopus 로고
    • Experimentally optimal ν in support vector regression for different noise models and parameter settings
    • Chalimourda A., Schölkopf B., Smola A.J. Experimentally optimal ν in support vector regression for different noise models and parameter settings. Neural Networks 2004, 17(1):127-141.
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 127-141
    • Chalimourda, A.1    Schölkopf, B.2    Smola, A.J.3
  • 9
    • 0028428006 scopus 로고
    • A robust backpropagation learning algorithm for function approximation
    • Chen D.S., Jian R.C. A robust backpropagation learning algorithm for function approximation. IEEE Transactions on Neural Networks 1994, 5(3):467-479.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.3 , pp. 467-479
    • Chen, D.S.1    Jian, R.C.2
  • 10
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 2004, 17:113-126.
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 11
    • 0038895405 scopus 로고    scopus 로고
    • Training v-support vector regression: theory and algorithms
    • Chih-Chung C., Chih-Jen L. Training v-support vector regression: theory and algorithms. Neural Computation 2002, 14:1959-1977.
    • (2002) Neural Computation , vol.14 , pp. 1959-1977
    • Chih-Chung, C.1    Chih-Jen, L.2
  • 12
    • 1242331293 scopus 로고    scopus 로고
    • Bayesian support vector regression using a unified loss function
    • Chu W., Keerthi S.S., Ong C.J. Bayesian support vector regression using a unified loss function. IEEE Transactions on Neural Networks 2004, 22(1):29-44.
    • (2004) IEEE Transactions on Neural Networks , vol.22 , Issue.1 , pp. 29-44
    • Chu, W.1    Keerthi, S.S.2    Ong, C.J.3
  • 13
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C., Vapnik V. Support vector networks. Machine Learning 1995, 20(3):273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 18
    • 24944575302 scopus 로고    scopus 로고
    • Assessment ofthe cost associated with wind generation prediction errors in a liberalized electricity market
    • Fabbri A., Román T.G.S., Abbad J.R., Quezada V.H.M. Assessment ofthe cost associated with wind generation prediction errors in a liberalized electricity market. IEEE Transactions on Power Systems 2005, 20(3):1440-1446.
    • (2005) IEEE Transactions on Power Systems , vol.20 , Issue.3 , pp. 1440-1446
    • Fabbri, A.1    Román, T.G.S.2    Abbad, J.R.3    Quezada, V.H.M.4
  • 19
    • 67349211771 scopus 로고    scopus 로고
    • Forecasting the wind generation using a two-stage network based on meteorological information
    • Fan S., Liao J.R., et al. Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Transactions on Energy Conversion 2009, 24(2):474-482.
    • (2009) IEEE Transactions on Energy Conversion , vol.24 , Issue.2 , pp. 474-482
    • Fan, S.1    Liao, J.R.2
  • 21
    • 84901451529 scopus 로고
    • Models of noise and robust estimates. A.I. memo 1287, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
    • Girosi, F. (1991). Models of noise and robust estimates. A.I. memo 1287, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
    • (1991)
    • Girosi, F.1
  • 22
    • 79952183962 scopus 로고    scopus 로고
    • A corrected hybrid approach for wind speed prediction in Hexi Corridor of China
    • Guo Z.H., Zhao J., Zhang W.Y., Wang J.Z. A corrected hybrid approach for wind speed prediction in Hexi Corridor of China. Energy 2011, 36:1668-1679.
    • (2011) Energy , vol.36 , pp. 1668-1679
    • Guo, Z.H.1    Zhao, J.2    Zhang, W.Y.3    Wang, J.Z.4
  • 25
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • Huber P.J. Robust estimation of a location parameter. The Annals of Mathematical Statistics 1964, 35(1):73-101.
    • (1964) The Annals of Mathematical Statistics , vol.35 , Issue.1 , pp. 73-101
    • Huber, P.J.1
  • 28
    • 0037844881 scopus 로고    scopus 로고
    • Linear dependency between and the input noise in ε-support vector regression
    • Kwok J.T., Tsang I.W. Linear dependency between and the input noise in ε-support vector regression. IEEE Transactions on Neural Networks 2003, 14(3):544-553.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.3 , pp. 544-553
    • Kwok, J.T.1    Tsang, I.W.2
  • 32
    • 33645816664 scopus 로고    scopus 로고
    • Modeling nonlinear dependencies in natural images using mixture of Laplacian distribution
    • MIT Press, Cambridge, MA
    • Park H.J., Lee T.W. Modeling nonlinear dependencies in natural images using mixture of Laplacian distribution. Advances in neural information processing systems, Vol. 17 2005, MIT Press, Cambridge, MA.
    • (2005) Advances in neural information processing systems, Vol. 17
    • Park, H.J.1    Lee, T.W.2
  • 33
    • 84901437221 scopus 로고    scopus 로고
    • On the noise model of support vector machines regression. A.I. memo 1651, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
    • Pontil, M., Mukherjee, S., & Girosi, F. (1998). On the noise model of support vector machines regression. A.I. memo 1651, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
    • (1998)
    • Pontil, M.1    Mukherjee, S.2    Girosi, F.3
  • 34
    • 68949202035 scopus 로고    scopus 로고
    • Direction of arrival estimation based on support vector regression: experimental validation and comparison with music
    • Randazzo A., Abou-Khousa M.A., Pastorino M., Zoughi R. Direction of arrival estimation based on support vector regression: experimental validation and comparison with music. IEEE Antennas and Wireless Propagation Letters 2007, 6:379-382.
    • (2007) IEEE Antennas and Wireless Propagation Letters , vol.6 , pp. 379-382
    • Randazzo, A.1    Abou-Khousa, M.A.2    Pastorino, M.3    Zoughi, R.4
  • 35
    • 34250427726 scopus 로고
    • The multiplier method of Hestenes and Powell applied to convex programming
    • Rockafellar R.T. The multiplier method of Hestenes and Powell applied to convex programming. Journal of Optimization Theory and Applications 1973, 12(6):555-562.
    • (1973) Journal of Optimization Theory and Applications , vol.12 , Issue.6 , pp. 555-562
    • Rockafellar, R.T.1
  • 36
    • 0016059769 scopus 로고
    • Augmented Lagrange multiplier functions and duality in nonconvex programming
    • Rockafellar R.T. Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM Journal on Control 1974, 12(2):268-285.
    • (1974) SIAM Journal on Control , vol.12 , Issue.2 , pp. 268-285
    • Rockafellar, R.T.1
  • 40
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A., Schölkopf B. A tutorial on support vector regression. Statistics and Computing 2004, 14(3):199-222.
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.1    Schölkopf, B.2
  • 41
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Spech D.F. Probabilistic neural networks. Neural Networks 1990, 3:109-118.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Spech, D.F.1
  • 42
    • 0033684572 scopus 로고    scopus 로고
    • Sparse approximation using least square vector machines. In IEEE International symposium on circuits and systems, Genvea, Switzerland
    • Suykens, J.A.K., Lukas, L., & Vandewalle, J. (2000). Sparse approximation using least square vector machines. In IEEE International symposium on circuits and systems, Genvea, Switzerland (pp. 757-760).
    • (2000) , pp. 757-760
    • Suykens, J.A.K.1    Lukas, L.2    Vandewalle, J.3
  • 45
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik V. An overview of statistical learning theory. IEEE Transactions on Neural Networks 1999, 10(5):988-999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.1
  • 46
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • The MIT Press, Cambridge, MA
    • Vapnik V., Golowich S.E., Smola A. Support vector method for function approximation, regression estimation, and signal processing. Advances in neural information processings systems, Vol. 9 1996, 281-287. The MIT Press, Cambridge, MA.
    • (1996) Advances in neural information processings systems, Vol. 9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.E.2    Smola, A.3
  • 47
    • 70449523013 scopus 로고    scopus 로고
    • A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization
    • Wu Q. A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization. Expert Systems with Applications 2010, 37:2388-2394.
    • (2010) Expert Systems with Applications , vol.37 , pp. 2388-2394
    • Wu, Q.1
  • 48
    • 78049530444 scopus 로고    scopus 로고
    • The forecasting model based on modified SVRM and PSO penalizing Gaussian noise
    • Wu Q., Law R. The forecasting model based on modified SVRM and PSO penalizing Gaussian noise. Expert Systems with Applications 2011, 38(3):1887-1894.
    • (2011) Expert Systems with Applications , vol.38 , Issue.3 , pp. 1887-1894
    • Wu, Q.1    Law, R.2
  • 49
    • 79957992972 scopus 로고    scopus 로고
    • Feature selection using probabilistic prediction of support vector regression
    • Yang J.B., Ong C.J. Feature selection using probabilistic prediction of support vector regression. IEEE Transactions on Neural Networks 2011, 22(6):954-962.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.6 , pp. 954-962
    • Yang, J.B.1    Ong, C.J.2
  • 50
    • 36249028033 scopus 로고    scopus 로고
    • Support vector regression for basis selection in Laplacian noise environment
    • Zhang Y., Wan Q., Zhao H.P., Yang W.L. Support vector regression for basis selection in Laplacian noise environment. IEEE Signal Processing 2007, 14(11):871-874.
    • (2007) IEEE Signal Processing , vol.14 , Issue.11 , pp. 871-874
    • Zhang, Y.1    Wan, Q.2    Zhao, H.P.3    Yang, W.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.