-
1
-
-
78149294352
-
Clifford support vector machines for classification, regression, and recurrence
-
Bayro-Corrochano E.J., Arana-Daniel N. Clifford support vector machines for classification, regression, and recurrence. IEEE Transactions on Neural Networks 2010, 21(11):1731-1746.
-
(2010)
IEEE Transactions on Neural Networks
, vol.21
, Issue.11
, pp. 1731-1746
-
-
Bayro-Corrochano, E.J.1
Arana-Daniel, N.2
-
4
-
-
84901458749
-
-
Qualification of wind power forecasts. In Proc. global wind power conf., Paris, France.
-
Bofinger, S., Luig, A., & Beyer, H. G. (2002). Qualification of wind power forecasts. In Proc. global wind power conf., Paris, France.
-
(2002)
-
-
Bofinger, S.1
Luig, A.2
Beyer, H.G.3
-
5
-
-
84904136037
-
Large-scale machine learning with stochastic gradient descent
-
Springer, Paris, France, Y. Lechevallier, G. Saporta (Eds.) Bottou Léon
-
Bottou Léon Large-scale machine learning with stochastic gradient descent. Proceedings of the 19th international conference on computational statistics 2010, 177-187. Springer, Paris, France. Y. Lechevallier, G. Saporta (Eds.).
-
(2010)
Proceedings of the 19th international conference on computational statistics
, pp. 177-187
-
-
-
8
-
-
0346881149
-
Experimentally optimal ν in support vector regression for different noise models and parameter settings
-
Chalimourda A., Schölkopf B., Smola A.J. Experimentally optimal ν in support vector regression for different noise models and parameter settings. Neural Networks 2004, 17(1):127-141.
-
(2004)
Neural Networks
, vol.17
, Issue.1
, pp. 127-141
-
-
Chalimourda, A.1
Schölkopf, B.2
Smola, A.J.3
-
9
-
-
0028428006
-
A robust backpropagation learning algorithm for function approximation
-
Chen D.S., Jian R.C. A robust backpropagation learning algorithm for function approximation. IEEE Transactions on Neural Networks 1994, 5(3):467-479.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.3
, pp. 467-479
-
-
Chen, D.S.1
Jian, R.C.2
-
10
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 2004, 17:113-126.
-
(2004)
Neural Networks
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
11
-
-
0038895405
-
Training v-support vector regression: theory and algorithms
-
Chih-Chung C., Chih-Jen L. Training v-support vector regression: theory and algorithms. Neural Computation 2002, 14:1959-1977.
-
(2002)
Neural Computation
, vol.14
, pp. 1959-1977
-
-
Chih-Chung, C.1
Chih-Jen, L.2
-
13
-
-
34249753618
-
Support vector networks
-
Cortes C., Vapnik V. Support vector networks. Machine Learning 1995, 20(3):273-297.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
18
-
-
24944575302
-
Assessment ofthe cost associated with wind generation prediction errors in a liberalized electricity market
-
Fabbri A., Román T.G.S., Abbad J.R., Quezada V.H.M. Assessment ofthe cost associated with wind generation prediction errors in a liberalized electricity market. IEEE Transactions on Power Systems 2005, 20(3):1440-1446.
-
(2005)
IEEE Transactions on Power Systems
, vol.20
, Issue.3
, pp. 1440-1446
-
-
Fabbri, A.1
Román, T.G.S.2
Abbad, J.R.3
Quezada, V.H.M.4
-
19
-
-
67349211771
-
Forecasting the wind generation using a two-stage network based on meteorological information
-
Fan S., Liao J.R., et al. Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Transactions on Energy Conversion 2009, 24(2):474-482.
-
(2009)
IEEE Transactions on Energy Conversion
, vol.24
, Issue.2
, pp. 474-482
-
-
Fan, S.1
Liao, J.R.2
-
21
-
-
84901451529
-
-
Models of noise and robust estimates. A.I. memo 1287, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
-
Girosi, F. (1991). Models of noise and robust estimates. A.I. memo 1287, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
-
(1991)
-
-
Girosi, F.1
-
22
-
-
79952183962
-
A corrected hybrid approach for wind speed prediction in Hexi Corridor of China
-
Guo Z.H., Zhao J., Zhang W.Y., Wang J.Z. A corrected hybrid approach for wind speed prediction in Hexi Corridor of China. Energy 2011, 36:1668-1679.
-
(2011)
Energy
, vol.36
, pp. 1668-1679
-
-
Guo, Z.H.1
Zhao, J.2
Zhang, W.Y.3
Wang, J.Z.4
-
23
-
-
0003684449
-
-
Springer, New York
-
Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: data mining, inference, and prediction 2009, Springer, New York.
-
(2009)
The elements of statistical learning: data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
24
-
-
84876925191
-
Robust support vector regression for uncertain input and output data
-
Huang G., Song S.J., Wu C., You K.Y. Robust support vector regression for uncertain input and output data. IEEE Transactions on Neural Networks and Learning Systems 2012, 23(11):1690-1700.
-
(2012)
IEEE Transactions on Neural Networks and Learning Systems
, vol.23
, Issue.11
, pp. 1690-1700
-
-
Huang, G.1
Song, S.J.2
Wu, C.3
You, K.Y.4
-
25
-
-
0003157339
-
Robust estimation of a location parameter
-
Huber P.J. Robust estimation of a location parameter. The Annals of Mathematical Statistics 1964, 35(1):73-101.
-
(1964)
The Annals of Mathematical Statistics
, vol.35
, Issue.1
, pp. 73-101
-
-
Huber, P.J.1
-
28
-
-
0037844881
-
Linear dependency between and the input noise in ε-support vector regression
-
Kwok J.T., Tsang I.W. Linear dependency between and the input noise in ε-support vector regression. IEEE Transactions on Neural Networks 2003, 14(3):544-553.
-
(2003)
IEEE Transactions on Neural Networks
, vol.14
, Issue.3
, pp. 544-553
-
-
Kwok, J.T.1
Tsang, I.W.2
-
32
-
-
33645816664
-
Modeling nonlinear dependencies in natural images using mixture of Laplacian distribution
-
MIT Press, Cambridge, MA
-
Park H.J., Lee T.W. Modeling nonlinear dependencies in natural images using mixture of Laplacian distribution. Advances in neural information processing systems, Vol. 17 2005, MIT Press, Cambridge, MA.
-
(2005)
Advances in neural information processing systems, Vol. 17
-
-
Park, H.J.1
Lee, T.W.2
-
33
-
-
84901437221
-
-
On the noise model of support vector machines regression. A.I. memo 1651, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
-
Pontil, M., Mukherjee, S., & Girosi, F. (1998). On the noise model of support vector machines regression. A.I. memo 1651, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
-
(1998)
-
-
Pontil, M.1
Mukherjee, S.2
Girosi, F.3
-
34
-
-
68949202035
-
Direction of arrival estimation based on support vector regression: experimental validation and comparison with music
-
Randazzo A., Abou-Khousa M.A., Pastorino M., Zoughi R. Direction of arrival estimation based on support vector regression: experimental validation and comparison with music. IEEE Antennas and Wireless Propagation Letters 2007, 6:379-382.
-
(2007)
IEEE Antennas and Wireless Propagation Letters
, vol.6
, pp. 379-382
-
-
Randazzo, A.1
Abou-Khousa, M.A.2
Pastorino, M.3
Zoughi, R.4
-
35
-
-
34250427726
-
The multiplier method of Hestenes and Powell applied to convex programming
-
Rockafellar R.T. The multiplier method of Hestenes and Powell applied to convex programming. Journal of Optimization Theory and Applications 1973, 12(6):555-562.
-
(1973)
Journal of Optimization Theory and Applications
, vol.12
, Issue.6
, pp. 555-562
-
-
Rockafellar, R.T.1
-
36
-
-
0016059769
-
Augmented Lagrange multiplier functions and duality in nonconvex programming
-
Rockafellar R.T. Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM Journal on Control 1974, 12(2):268-285.
-
(1974)
SIAM Journal on Control
, vol.12
, Issue.2
, pp. 268-285
-
-
Rockafellar, R.T.1
-
37
-
-
0003408420
-
-
MIT Press, Cambridge, MA
-
Schölkopf B., Smola A.J. Learning with kernels: support vector machines, regularization, optimization, and beyond 2002, MIT Press, Cambridge, MA.
-
(2002)
Learning with kernels: support vector machines, regularization, optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
38
-
-
17444438778
-
New support vector algorithms
-
Schölkopf B., Smola A.J., Williamson R.C., Bartlett P.L. New support vector algorithms. Neural Computation 2000, 12:1207-1245.
-
(2000)
Neural Computation
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.J.2
Williamson, R.C.3
Bartlett, P.L.4
-
39
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
Shevade S.K., Keerthi S.S., Bhattacharyya C., Murthy K.R.K. Improvements to the SMO algorithm for SVM regression. IEEE Transactions on Neural Networks 2000, 11(5):1188-1193.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, Issue.5
, pp. 1188-1193
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
40
-
-
4043137356
-
A tutorial on support vector regression
-
Smola A., Schölkopf B. A tutorial on support vector regression. Statistics and Computing 2004, 14(3):199-222.
-
(2004)
Statistics and Computing
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.1
Schölkopf, B.2
-
41
-
-
0025206332
-
Probabilistic neural networks
-
Spech D.F. Probabilistic neural networks. Neural Networks 1990, 3:109-118.
-
(1990)
Neural Networks
, vol.3
, pp. 109-118
-
-
Spech, D.F.1
-
42
-
-
0033684572
-
-
Sparse approximation using least square vector machines. In IEEE International symposium on circuits and systems, Genvea, Switzerland
-
Suykens, J.A.K., Lukas, L., & Vandewalle, J. (2000). Sparse approximation using least square vector machines. In IEEE International symposium on circuits and systems, Genvea, Switzerland (pp. 757-760).
-
(2000)
, pp. 757-760
-
-
Suykens, J.A.K.1
Lukas, L.2
Vandewalle, J.3
-
45
-
-
0032594959
-
An overview of statistical learning theory
-
Vapnik V. An overview of statistical learning theory. IEEE Transactions on Neural Networks 1999, 10(5):988-999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.1
-
46
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
The MIT Press, Cambridge, MA
-
Vapnik V., Golowich S.E., Smola A. Support vector method for function approximation, regression estimation, and signal processing. Advances in neural information processings systems, Vol. 9 1996, 281-287. The MIT Press, Cambridge, MA.
-
(1996)
Advances in neural information processings systems, Vol. 9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.E.2
Smola, A.3
-
47
-
-
70449523013
-
A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization
-
Wu Q. A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization. Expert Systems with Applications 2010, 37:2388-2394.
-
(2010)
Expert Systems with Applications
, vol.37
, pp. 2388-2394
-
-
Wu, Q.1
-
48
-
-
78049530444
-
The forecasting model based on modified SVRM and PSO penalizing Gaussian noise
-
Wu Q., Law R. The forecasting model based on modified SVRM and PSO penalizing Gaussian noise. Expert Systems with Applications 2011, 38(3):1887-1894.
-
(2011)
Expert Systems with Applications
, vol.38
, Issue.3
, pp. 1887-1894
-
-
Wu, Q.1
Law, R.2
-
49
-
-
79957992972
-
Feature selection using probabilistic prediction of support vector regression
-
Yang J.B., Ong C.J. Feature selection using probabilistic prediction of support vector regression. IEEE Transactions on Neural Networks 2011, 22(6):954-962.
-
(2011)
IEEE Transactions on Neural Networks
, vol.22
, Issue.6
, pp. 954-962
-
-
Yang, J.B.1
Ong, C.J.2
-
50
-
-
36249028033
-
Support vector regression for basis selection in Laplacian noise environment
-
Zhang Y., Wan Q., Zhao H.P., Yang W.L. Support vector regression for basis selection in Laplacian noise environment. IEEE Signal Processing 2007, 14(11):871-874.
-
(2007)
IEEE Signal Processing
, vol.14
, Issue.11
, pp. 871-874
-
-
Zhang, Y.1
Wan, Q.2
Zhao, H.P.3
Yang, W.L.4
|