-
1
-
-
85051374302
-
Feed forward neural networks with random weights
-
Schmidt WF, Kraaijveld MA, Duin RPW. Feed forward neural networks with random weights. In: Proceedings of 11th IAPR international conference on pattern recognition methodology and systems, Hague, Netherlands, p. 1–4, 1992.
-
(1992)
Proceedings of 11th IAPR international conference on pattern recognition methodology and systems, Hague, Netherlands
-
-
Schmidt, W.F.1
Kraaijveld, M.A.2
Duin, R.P.W.3
-
2
-
-
0028420218
-
Learning and generalization characteristics of the random vector functional-link net
-
Pao Y-H, Park G-H, Sobajic DJ. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing. 1994;6:163–80.
-
(1994)
Neurocomputing
, vol.6
, pp. 163-180
-
-
Pao, Y.-H.1
Park, G.-H.2
Sobajic, D.J.3
-
3
-
-
49649105493
-
Reply to comments on ‘the extreme learning machine’
-
Huang G-B. Reply to comments on ‘the extreme learning machine’. IEEE Trans Neural Netw. 2008;19(8):1495–6.
-
(2008)
IEEE Trans Neural Netw
, vol.19
, Issue.8
, pp. 1495-1496
-
-
Huang, G.-B.1
-
4
-
-
38649131505
-
Incremental extreme learning machine with fully complex hidden nodes
-
Huang G-B, Li M-B, Chen L, Siew C-K. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing. 2008;71:576–83.
-
(2008)
Neurocomputing
, vol.71
, pp. 576-583
-
-
Huang, G.-B.1
Li, M.-B.2
Chen, L.3
Siew, C.-K.4
-
5
-
-
56549090053
-
Enhanced random search based incremental extreme learning machine
-
Huang G-B, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing. 2008;71:3460–8.
-
(2008)
Neurocomputing
, vol.71
, pp. 3460-3468
-
-
Huang, G.-B.1
Chen, L.2
-
6
-
-
84906948723
-
An insight into extreme learning machines: random neurons, random features and kernels
-
Huang G-B. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput. 2014;6(3):376–90.
-
(2014)
Cogn Comput
, vol.6
, Issue.3
, pp. 376-390
-
-
Huang, G.-B.1
-
7
-
-
84911944987
-
Semi-supervised and unsupervised extreme learning machines
-
PID: 25415946
-
Huang G, Song S, Gupta JND, Wu C. Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern. 2014;44(12):2405–17.
-
(2014)
IEEE Trans Cybern
, vol.44
, Issue.12
, pp. 2405-2417
-
-
Huang, G.1
Song, S.2
Gupta, J.N.D.3
Wu, C.4
-
8
-
-
84928106753
-
Local receptive fields based extreme learning machine
-
Huang G-B, Bai Z, Kasun LLC, Vong CM. Local receptive fields based extreme learning machine. IEEE Comput Intell Mag. 2015;10(2):18–29.
-
(2015)
IEEE Comput Intell Mag
, vol.10
, Issue.2
, pp. 18-29
-
-
Huang, G.-B.1
Bai, Z.2
Kasun, L.L.C.3
Vong, C.M.4
-
9
-
-
11144273669
-
The perceptron: a probabilistic model for information storage and organization in the brain
-
COI: 1:STN:280:DyaG1M%2FjtFCmtw%3D%3D, PID: 13602029
-
Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386–408.
-
(1958)
Psychol Rev
, vol.65
, Issue.6
, pp. 386-408
-
-
Rosenblatt, F.1
-
11
-
-
84898989411
-
Fastfood approximating kernel expansions in loglinear time
-
Le Q, Sarlós T, Smola A. Fastfood approximating kernel expansions in loglinear time. In: Proceedings of the 30th international conference on machine learning, Atlanta, USA, p. 16–21, June 2013.
-
(2013)
Proceedings of the 30th international conference on machine learning, Atlanta, USA
, pp. 16-21
-
-
Le, Q.1
Sarlós, T.2
Smola, A.3
-
12
-
-
84890480288
-
Random features for kernel deep convex network
-
Huang P-S, Deng L, Hasegawa-Johnson M, He X. Random features for kernel deep convex network. In: Proceedings of the 38th international conference on acoustics, speech, and signal processing (ICASSP 2013), Vancouver, Canada, p. 26–31, May 2013.
-
(2013)
Proceedings of the 38th international conference on acoustics, speech, and signal processing (ICASSP 2013), Vancouver, Canada
, pp. 26-31
-
-
Huang, P.-S.1
Deng, L.2
Hasegawa-Johnson, M.3
He, X.4
-
13
-
-
84870473129
-
The no-prop algorithm: a new learning algorithm for multilayer neural networks
-
PID: 23140797
-
Widrow B, Greenblatt A, Kim Y, Park D. The no-prop algorithm: a new learning algorithm for multilayer neural networks. Neural Netw. 2013;37:182–8.
-
(2013)
Neural Netw
, vol.37
, pp. 182-188
-
-
Widrow, B.1
Greenblatt, A.2
Kim, Y.3
Park, D.4
-
14
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
-
Bartlett PL. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inform Theory. 1998;44(2):525–36.
-
(1998)
IEEE Trans Inform Theory
, vol.44
, Issue.2
, pp. 525-536
-
-
Bartlett, P.L.1
-
15
-
-
34249753618
-
Support vector networks
-
Cortes C, Vapnik V. Support vector networks. Mach Learn. 1995;20(3):273–97.
-
(1995)
Mach Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
16
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens JAK, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett. 1999;9(3):293–300.
-
(1999)
Neural Process Lett
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
19
-
-
0003133883
-
Probabilistic logics and the synthesis of reliable organisms from unreliable components
-
Shannon CE, McCarthy J, (eds), Princeton University Press, Princeton
-
von Neumann J. Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Shannon CE, McCarthy J, editors. Automata studies. Princeton: Princeton University Press; 1956. p. 43–98.
-
(1956)
Automata studies
, pp. 43-98
-
-
von Neumann, J.1
-
20
-
-
0013059825
-
The general and logical theory of automata
-
Jeffress LA, (ed), Wiley, New York
-
von Neumann J. The general and logical theory of automata. In: Jeffress LA, editor. Cerebral mechanisms in behavior. New York: Wiley; 1951. p. 1–41.
-
(1951)
Cerebral mechanisms in behavior
-
-
von Neumann, J.1
-
21
-
-
0000106040
-
Universal approximation using radial-basis-function networks
-
Park J, Sandberg IW. Universal approximation using radial-basis-function networks. Neural Comput. 1991;3:246–57.
-
(1991)
Neural Comput
, vol.3
, pp. 246-257
-
-
Park, J.1
Sandberg, I.W.2
-
22
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
-
Leshno M, Lin VY, Pinkus A, Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 1993;6:861–7.
-
(1993)
Neural Netw
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.Y.2
Pinkus, A.3
Schocken, S.4
-
23
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
Huang G-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B. 2012;42(2):513–29.
-
(2012)
IEEE Trans Syst Man Cybern B
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
24
-
-
10944272650
-
Extreme learning machine: a new learning scheme of feedforward neural networks
-
Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of international joint conference on neural networks (IJCNN2004), vol. 2, Budapest, Hungary, p. 985–990, 25–29 July 2004.
-
(2004)
Proceedings of international joint conference on neural networks (IJCNN2004), vol. 2, Budapest, Hungary, p. 985–990
, pp. 25-29
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
25
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
PID: 16856652
-
Huang G-B, Chen L, Siew C-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4):879–92.
-
(2006)
IEEE Trans Neural Netw
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.-B.1
Chen, L.2
Siew, C.-K.3
-
26
-
-
34548158996
-
Convex incremental extreme learning machine
-
Huang G-B, Chen L. Convex incremental extreme learning machine. Neurocomputing. 2007;70:3056–62.
-
(2007)
Neurocomputing
, vol.70
, pp. 3056-3062
-
-
Huang, G.-B.1
Chen, L.2
-
27
-
-
79954619539
-
Distinct representations of olfactory information in different cortical centres
-
COI: 1:CAS:528:DC%2BC3MXjvFOntro%3D, PID: 21451525
-
Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR. Distinct representations of olfactory information in different cortical centres. Nature. 2011;472:213–6.
-
(2011)
Nature
, vol.472
, pp. 213-216
-
-
Sosulski, D.L.1
Bloom, M.L.2
Cutforth, T.3
Axel, R.4
Datta, S.R.5
-
28
-
-
84870209909
-
A large-scale model of the functioning brain
-
COI: 1:CAS:528:DC%2BC38Xhslans7nJ, PID: 23197532
-
Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, Rasmussen D. A large-scale model of the functioning brain. Science. 2012;338:1202–5.
-
(2012)
Science
, vol.338
, pp. 1202-1205
-
-
Eliasmith, C.1
Stewart, T.C.2
Choo, X.3
Bekolay, T.4
DeWolf, T.5
Tang, Y.6
Rasmussen, D.7
-
29
-
-
84874626374
-
The sparseness of mixed selectivity neurons controls the generalization–discrimination trade-off
-
COI: 1:CAS:528:DC%2BC3sXhtlyjtLjO, PID: 23447596
-
Barak O, Rigotti M, Fusi S. The sparseness of mixed selectivity neurons controls the generalization–discrimination trade-off. J Neurosci. 2013;33(9):3844–56.
-
(2013)
J Neurosci
, vol.33
, Issue.9
, pp. 3844-3856
-
-
Barak, O.1
Rigotti, M.2
Fusi, S.3
-
30
-
-
84878390558
-
The importance of mixed selectivity in complex cognitive tasks
-
COI: 1:CAS:528:DC%2BC3sXotFSltbc%3D, PID: 23685452
-
Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND, Miller EK, Fusi S. The importance of mixed selectivity in complex cognitive tasks. Nature. 2013;497:585–90.
-
(2013)
Nature
, vol.497
, pp. 585-590
-
-
Rigotti, M.1
Barak, O.2
Warden, M.R.3
Wang, X.-J.4
Daw, N.D.5
Miller, E.K.6
Fusi, S.7
-
31
-
-
0001632845
-
On the capabilities of multilayer perceptrons
-
Baum E. On the capabilities of multilayer perceptrons. J Complex. 1988;4:193–215.
-
(1988)
J Complex
, vol.4
, pp. 193-215
-
-
Baum, E.1
-
32
-
-
0029403793
-
Stochastic choice of basis functions in adaptive function approximation and the functional-link net
-
COI: 1:STN:280:DC%2BD1c7gsFeltA%3D%3D, PID: 18263425
-
Igelnik B, Pao Y-H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans Neural Netw. 1995;6(6):1320–9.
-
(1995)
IEEE Trans Neural Netw
, vol.6
, Issue.6
, pp. 1320-1329
-
-
Igelnik, B.1
Pao, Y.-H.2
-
33
-
-
0031100287
-
Capabilities of a four-layered feedforward neural network: four layers versus three
-
COI: 1:STN:280:DC%2BD1c%2FpvVaksQ%3D%3D, PID: 18255629
-
Tamura S, Tateishi M. Capabilities of a four-layered feedforward neural network: four layers versus three. IEEE Trans Neural Netw. 1997;8(2):251–5.
-
(1997)
IEEE Trans Neural Netw
, vol.8
, Issue.2
, pp. 251-255
-
-
Tamura, S.1
Tateishi, M.2
-
34
-
-
84928043061
-
Universal approximation with convex optimization: gimmick or reality?
-
Principle J, Chen B. Universal approximation with convex optimization: gimmick or reality? IEEE Comput Intell Mag. 2015;10(2):68–77.
-
(2015)
IEEE Comput Intell Mag
, vol.10
, Issue.2
, pp. 68-77
-
-
Principle, J.1
Chen, B.2
-
36
-
-
33645007988
-
Can threshold networks be trained directly?
-
Huang G-B, Zhu Q-Y, Mao KZ, Siew C-K, Saratchandran P, Sundararajan N. Can threshold networks be trained directly? IEEE Trans Circuits Syst II. 2006;53(3):187–91.
-
(2006)
IEEE Trans Circuits Syst II
, vol.53
, Issue.3
, pp. 187-191
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Mao, K.Z.3
Siew, C.-K.4
Saratchandran, P.5
Sundararajan, N.6
-
39
-
-
84904092315
-
Representational learning with extreme learning machine for big data
-
Kasun LLC, Zhou H, Huang G-B, Vong CM. Representational learning with extreme learning machine for big data. IEEE Intell Syst. 2013;28(6):31–4.
-
(2013)
IEEE Intell Syst
, vol.28
, Issue.6
, pp. 31-34
-
-
Kasun, L.L.C.1
Zhou, H.2
Huang, G.-B.3
Vong, C.M.4
-
40
-
-
77953183471
-
What is the best multi-stage architecture for object recognition
-
Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y. What is the best multi-stage architecture for object recognition. In: Proceedings of the 2009 IEEE 12th international conference on computer vision, Kyoto, Japan, 29 Sept–2 Oct 2009.
-
(2009)
Proceedings of the 2009 IEEE 12th international conference on computer vision, Kyoto, Japan, 29 Sept–2
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
41
-
-
80053448548
-
On random weights and unsupervised feature learning
-
Saxe AM, Koh PW, Chen Z, Bhand M, Suresh B, Ng AY. On random weights and unsupervised feature learning. In: Proceedings of the 28th international conference on machine learning, Bellevue, USA, 28 June–2 July 2011.
-
(2011)
Proceedings of the 28th international conference on machine learning, Bellevue, USA, 28 June–2
-
-
Saxe, A.M.1
Koh, P.W.2
Chen, Z.3
Bhand, M.4
Suresh, B.5
Ng, A.Y.6
-
44
-
-
84960407578
-
Traffic sign recognition using extreme learning classifier with deep convolutional features
-
Zeng Y, Xu X, Fang Y, Zhao K. Traffic sign recognition using extreme learning classifier with deep convolutional features. In: The 2015 international conference on intelligence science and big data engineering (IScIDE 2015), Suzhou, China, June 14–16, 2015.
-
(2015)
The 2015 international conference on intelligence science and big data engineering (IScIDE 2015), Suzhou, China, June
, pp. 14-16
-
-
Zeng, Y.1
Xu, X.2
Fang, Y.3
Zhao, K.4
-
45
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens JAK, Gestel TV, Brabanter JD, Moor BD, Vandewalle J. Least squares support vector machines. Singapore: World Scientific; 2002.
-
(2002)
Least squares support vector machines
-
-
Suykens, J.A.K.1
Gestel, T.V.2
Brabanter, J.D.3
Moor, B.D.4
Vandewalle, J.5
-
46
-
-
64549160240
-
Uniform approximation of functions with random bases
-
Rahimi A, Recht B. Uniform approximation of functions with random bases. In: Proceedings of the 2008 46th annual allerton conference on communication, control, and computing, p. 555–561, 23–26 Sept 2008
-
(2008)
Proceedings of the 2008 46th annual allerton conference on communication, control, and computing, p. 555–561
, pp. 23-26
-
-
Rahimi, A.1
Recht, B.2
-
47
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
Daubechies I. Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math. 1988;41:909–96.
-
(1988)
Commun Pure Appl Math
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
48
-
-
0025482241
-
The wavelet transform, time-frequency localization and signal analysis
-
Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inform Theory. 1990;36(5):961–1005.
-
(1990)
IEEE Trans Inform Theory
, vol.36
, Issue.5
, pp. 961-1005
-
-
Daubechies, I.1
-
49
-
-
73949154686
-
OP-ELM: optimally pruned extreme learning machine
-
PID: 20007026
-
Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A. OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw. 2010;21(1):158–62.
-
(2010)
IEEE Trans Neural Netw
, vol.21
, Issue.1
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
50
-
-
0038159963
-
Approximation by fully complex multilayer perceptrons
-
PID: 12816570
-
Kim T, Adali T. Approximation by fully complex multilayer perceptrons. Neural Comput. 2003;15:1641–66.
-
(2003)
Neural Comput
, vol.15
, pp. 1641-1666
-
-
Kim, T.1
Adali, T.2
-
51
-
-
0030242096
-
A rapid supervised learning neural network for function interpolation and approximation
-
COI: 1:STN:280:DC%2BD1c7gsFCmtQ%3D%3D, PID: 18263516
-
Chen CLP. A rapid supervised learning neural network for function interpolation and approximation. IEEE Trans Neural Netw. 1996;7(5):1220–30.
-
(1996)
IEEE Trans Neural Netw
, vol.7
, Issue.5
, pp. 1220-1230
-
-
Chen, C.L.P.1
-
52
-
-
0033078284
-
A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the applications to time-series prediction
-
COI: 1:STN:280:DC%2BD1c%2FpsVOktg%3D%3D, PID: 18252280
-
Chen CLP, Wan JZ. A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the applications to time-series prediction. IEEE Trans Syst Man Cybern B Cybern. 1999;29(1):62–72.
-
(1999)
IEEE Trans Syst Man Cybern B Cybern
, vol.29
, Issue.1
, pp. 62-72
-
-
Chen, C.L.P.1
Wan, J.Z.2
-
53
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing. 2006;70:489–501.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
54
-
-
0024944645
-
An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks
-
White H. An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks. In: Proceedings of the international conference on neural networks, p. 451–455, 1989.
-
(1989)
Proceedings of the international conference on neural networks
, pp. 451-455
-
-
White, H.1
-
55
-
-
84929707492
-
$$b$$b
-
Artificial Intelligence Laboratory: Massachusetts Institute of Technology
-
Poggio T, Mukherjee S, Rifkin R, Rakhlin A, Verri A. “$$b$$b”, A.I. Memo No. 2001–011, CBCL Memo 198, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 2001.
-
(2001)
A.I. Memo No. 2001–011, CBCL Memo
, vol.198
-
-
Poggio, T.1
Mukherjee, S.2
Rifkin, R.3
Rakhlin, A.4
Verri, A.5
-
57
-
-
84897026988
-
Sparse bayesian extreme learning machine for multi-classification
-
PID: 24807961
-
Luo J, Vong C-M, Wong P-K. Sparse bayesian extreme learning machine for multi-classification. IEEE Trans Neural Netw Learn Syst. 2014;25(4):836–43.
-
(2014)
IEEE Trans Neural Netw Learn Syst
, vol.25
, Issue.4
, pp. 836-843
-
-
Luo, J.1
Vong, C.-M.2
Wong, P.-K.3
-
58
-
-
84865355028
-
Efficient digital implementation of extreme learning machines for classification
-
Decherchi S, Gastaldo P, Leoncini A, Zunino R. Efficient digital implementation of extreme learning machines for classification. IEEE Trans Circuits Syst II. 2012;59(8):496–500.
-
(2012)
IEEE Trans Circuits Syst II
, vol.59
, Issue.8
, pp. 496-500
-
-
Decherchi, S.1
Gastaldo, P.2
Leoncini, A.3
Zunino, R.4
-
59
-
-
84907219786
-
Sparse extreme learning machine for classification
-
PID: 25222727
-
Bai Z, Huang G-B, Wang D, Wang H, Westover MB. Sparse extreme learning machine for classification. IEEE Trans Cybern. 2014;44(10):1858–70.
-
(2014)
IEEE Trans Cybern
, vol.44
, Issue.10
, pp. 1858-1870
-
-
Bai, Z.1
Huang, G.-B.2
Wang, D.3
Wang, H.4
Westover, M.B.5
-
60
-
-
84870253587
-
Feature selection for nonlinear models with extreme learning machines
-
Frénay B, van Heeswijk M, Miche Y, Verleysen M, Lendasse A. Feature selection for nonlinear models with extreme learning machines. Neurocomputing. 2013;102:111–24.
-
(2013)
Neurocomputing
, vol.102
, pp. 111-124
-
-
Frénay, B.1
van Heeswijk, M.2
Miche, Y.3
Verleysen, M.4
Lendasse, A.5
-
61
-
-
0000621802
-
Multivariable functional interpolation and adaptive networks
-
Broomhead DS, Lowe D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988;2:321–55.
-
(1988)
Complex Syst
, vol.2
, pp. 321-355
-
-
Broomhead, D.S.1
Lowe, D.2
-
62
-
-
13844255524
-
Smooth function approximation using neural networks
-
PID: 15732387
-
Ferrari S, Stengel RF. Smooth function approximation using neural networks. IEEE Trans Neural Netw. 2005;16(1):24–38.
-
(2005)
IEEE Trans Neural Netw
, vol.16
, Issue.1
, pp. 24-38
-
-
Ferrari, S.1
Stengel, R.F.2
-
63
-
-
49649084441
-
Comments on ’the extreme learning machine’
-
PID: 18701376
-
Wang LP, Wan CR. Comments on ‘the extreme learning machine’. IEEE Trans Neural Netw. 2008;19(8):1494–5.
-
(2008)
IEEE Trans Neural Netw
, vol.19
, Issue.8
, pp. 1494-1495
-
-
Wang, L.P.1
Wan, C.R.2
-
64
-
-
0026116468
-
Orthogonal least squares learning algorithm for radial basis function networks
-
COI: 1:STN:280:DC%2BD1c7hslOrtw%3D%3D, PID: 18276384
-
Chen S, Cowan CFN, Grant PM. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw. 1991;2(2):302–9.
-
(1991)
IEEE Trans Neural Netw
, vol.2
, Issue.2
, pp. 302-309
-
-
Chen, S.1
Cowan, C.F.N.2
Grant, P.M.3
|