메뉴 건너뛰기




Volumn 7, Issue 3, 2015, Pages 263-278

What are Extreme Learning Machines? Filling the Gap Between Frank Rosenblatt’s Dream and John von Neumann’s Puzzle

Author keywords

Extreme learning machine; Feedforward neural network; QuickNet; Radial basis function network; Random vector functional link; Randomness

Indexed keywords

ARTIFICIAL INTELLIGENCE; FEEDFORWARD NEURAL NETWORKS; FOURIER SERIES; ITERATIVE METHODS; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; NETWORK LAYERS; NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS;

EID: 84929711432     PISSN: 18669956     EISSN: 18669964     Source Type: Journal    
DOI: 10.1007/s12559-015-9333-0     Document Type: Article
Times cited : (439)

References (64)
  • 2
    • 0028420218 scopus 로고
    • Learning and generalization characteristics of the random vector functional-link net
    • Pao Y-H, Park G-H, Sobajic DJ. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing. 1994;6:163–80.
    • (1994) Neurocomputing , vol.6 , pp. 163-180
    • Pao, Y.-H.1    Park, G.-H.2    Sobajic, D.J.3
  • 3
    • 49649105493 scopus 로고    scopus 로고
    • Reply to comments on ‘the extreme learning machine’
    • Huang G-B. Reply to comments on ‘the extreme learning machine’. IEEE Trans Neural Netw. 2008;19(8):1495–6.
    • (2008) IEEE Trans Neural Netw , vol.19 , Issue.8 , pp. 1495-1496
    • Huang, G.-B.1
  • 4
    • 38649131505 scopus 로고    scopus 로고
    • Incremental extreme learning machine with fully complex hidden nodes
    • Huang G-B, Li M-B, Chen L, Siew C-K. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing. 2008;71:576–83.
    • (2008) Neurocomputing , vol.71 , pp. 576-583
    • Huang, G.-B.1    Li, M.-B.2    Chen, L.3    Siew, C.-K.4
  • 5
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G-B, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing. 2008;71:3460–8.
    • (2008) Neurocomputing , vol.71 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 6
    • 84906948723 scopus 로고    scopus 로고
    • An insight into extreme learning machines: random neurons, random features and kernels
    • Huang G-B. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput. 2014;6(3):376–90.
    • (2014) Cogn Comput , vol.6 , Issue.3 , pp. 376-390
    • Huang, G.-B.1
  • 7
    • 84911944987 scopus 로고    scopus 로고
    • Semi-supervised and unsupervised extreme learning machines
    • PID: 25415946
    • Huang G, Song S, Gupta JND, Wu C. Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern. 2014;44(12):2405–17.
    • (2014) IEEE Trans Cybern , vol.44 , Issue.12 , pp. 2405-2417
    • Huang, G.1    Song, S.2    Gupta, J.N.D.3    Wu, C.4
  • 9
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • COI: 1:STN:280:DyaG1M%2FjtFCmtw%3D%3D, PID: 13602029
    • Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386–408.
    • (1958) Psychol Rev , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 13
    • 84870473129 scopus 로고    scopus 로고
    • The no-prop algorithm: a new learning algorithm for multilayer neural networks
    • PID: 23140797
    • Widrow B, Greenblatt A, Kim Y, Park D. The no-prop algorithm: a new learning algorithm for multilayer neural networks. Neural Netw. 2013;37:182–8.
    • (2013) Neural Netw , vol.37 , pp. 182-188
    • Widrow, B.1    Greenblatt, A.2    Kim, Y.3    Park, D.4
  • 14
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
    • Bartlett PL. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inform Theory. 1998;44(2):525–36.
    • (1998) IEEE Trans Inform Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 15
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik V. Support vector networks. Mach Learn. 1995;20(3):273–97.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 16
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens JAK, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett. 1999;9(3):293–300.
    • (1999) Neural Process Lett , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 19
    • 0003133883 scopus 로고
    • Probabilistic logics and the synthesis of reliable organisms from unreliable components
    • Shannon CE, McCarthy J, (eds), Princeton University Press, Princeton
    • von Neumann J. Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Shannon CE, McCarthy J, editors. Automata studies. Princeton: Princeton University Press; 1956. p. 43–98.
    • (1956) Automata studies , pp. 43-98
    • von Neumann, J.1
  • 20
    • 0013059825 scopus 로고
    • The general and logical theory of automata
    • Jeffress LA, (ed), Wiley, New York
    • von Neumann J. The general and logical theory of automata. In: Jeffress LA, editor. Cerebral mechanisms in behavior. New York: Wiley; 1951. p. 1–41.
    • (1951) Cerebral mechanisms in behavior
    • von Neumann, J.1
  • 21
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • Park J, Sandberg IW. Universal approximation using radial-basis-function networks. Neural Comput. 1991;3:246–57.
    • (1991) Neural Comput , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 22
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • Leshno M, Lin VY, Pinkus A, Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 1993;6:861–7.
    • (1993) Neural Netw , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3    Schocken, S.4
  • 23
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Huang G-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B. 2012;42(2):513–29.
    • (2012) IEEE Trans Syst Man Cybern B , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.-B.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 25
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • PID: 16856652
    • Huang G-B, Chen L, Siew C-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4):879–92.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 26
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G-B, Chen L. Convex incremental extreme learning machine. Neurocomputing. 2007;70:3056–62.
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 27
    • 79954619539 scopus 로고    scopus 로고
    • Distinct representations of olfactory information in different cortical centres
    • COI: 1:CAS:528:DC%2BC3MXjvFOntro%3D, PID: 21451525
    • Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR. Distinct representations of olfactory information in different cortical centres. Nature. 2011;472:213–6.
    • (2011) Nature , vol.472 , pp. 213-216
    • Sosulski, D.L.1    Bloom, M.L.2    Cutforth, T.3    Axel, R.4    Datta, S.R.5
  • 29
    • 84874626374 scopus 로고    scopus 로고
    • The sparseness of mixed selectivity neurons controls the generalization–discrimination trade-off
    • COI: 1:CAS:528:DC%2BC3sXhtlyjtLjO, PID: 23447596
    • Barak O, Rigotti M, Fusi S. The sparseness of mixed selectivity neurons controls the generalization–discrimination trade-off. J Neurosci. 2013;33(9):3844–56.
    • (2013) J Neurosci , vol.33 , Issue.9 , pp. 3844-3856
    • Barak, O.1    Rigotti, M.2    Fusi, S.3
  • 30
    • 84878390558 scopus 로고    scopus 로고
    • The importance of mixed selectivity in complex cognitive tasks
    • COI: 1:CAS:528:DC%2BC3sXotFSltbc%3D, PID: 23685452
    • Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND, Miller EK, Fusi S. The importance of mixed selectivity in complex cognitive tasks. Nature. 2013;497:585–90.
    • (2013) Nature , vol.497 , pp. 585-590
    • Rigotti, M.1    Barak, O.2    Warden, M.R.3    Wang, X.-J.4    Daw, N.D.5    Miller, E.K.6    Fusi, S.7
  • 31
    • 0001632845 scopus 로고
    • On the capabilities of multilayer perceptrons
    • Baum E. On the capabilities of multilayer perceptrons. J Complex. 1988;4:193–215.
    • (1988) J Complex , vol.4 , pp. 193-215
    • Baum, E.1
  • 32
    • 0029403793 scopus 로고
    • Stochastic choice of basis functions in adaptive function approximation and the functional-link net
    • COI: 1:STN:280:DC%2BD1c7gsFeltA%3D%3D, PID: 18263425
    • Igelnik B, Pao Y-H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans Neural Netw. 1995;6(6):1320–9.
    • (1995) IEEE Trans Neural Netw , vol.6 , Issue.6 , pp. 1320-1329
    • Igelnik, B.1    Pao, Y.-H.2
  • 33
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feedforward neural network: four layers versus three
    • COI: 1:STN:280:DC%2BD1c%2FpvVaksQ%3D%3D, PID: 18255629
    • Tamura S, Tateishi M. Capabilities of a four-layered feedforward neural network: four layers versus three. IEEE Trans Neural Netw. 1997;8(2):251–5.
    • (1997) IEEE Trans Neural Netw , vol.8 , Issue.2 , pp. 251-255
    • Tamura, S.1    Tateishi, M.2
  • 34
    • 84928043061 scopus 로고    scopus 로고
    • Universal approximation with convex optimization: gimmick or reality?
    • Principle J, Chen B. Universal approximation with convex optimization: gimmick or reality? IEEE Comput Intell Mag. 2015;10(2):68–77.
    • (2015) IEEE Comput Intell Mag , vol.10 , Issue.2 , pp. 68-77
    • Principle, J.1    Chen, B.2
  • 39
    • 84904092315 scopus 로고    scopus 로고
    • Representational learning with extreme learning machine for big data
    • Kasun LLC, Zhou H, Huang G-B, Vong CM. Representational learning with extreme learning machine for big data. IEEE Intell Syst. 2013;28(6):31–4.
    • (2013) IEEE Intell Syst , vol.28 , Issue.6 , pp. 31-34
    • Kasun, L.L.C.1    Zhou, H.2    Huang, G.-B.3    Vong, C.M.4
  • 47
    • 84990575058 scopus 로고
    • Orthonormal bases of compactly supported wavelets
    • Daubechies I. Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math. 1988;41:909–96.
    • (1988) Commun Pure Appl Math , vol.41 , pp. 909-996
    • Daubechies, I.1
  • 48
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inform Theory. 1990;36(5):961–1005.
    • (1990) IEEE Trans Inform Theory , vol.36 , Issue.5 , pp. 961-1005
    • Daubechies, I.1
  • 50
    • 0038159963 scopus 로고    scopus 로고
    • Approximation by fully complex multilayer perceptrons
    • PID: 12816570
    • Kim T, Adali T. Approximation by fully complex multilayer perceptrons. Neural Comput. 2003;15:1641–66.
    • (2003) Neural Comput , vol.15 , pp. 1641-1666
    • Kim, T.1    Adali, T.2
  • 51
    • 0030242096 scopus 로고    scopus 로고
    • A rapid supervised learning neural network for function interpolation and approximation
    • COI: 1:STN:280:DC%2BD1c7gsFCmtQ%3D%3D, PID: 18263516
    • Chen CLP. A rapid supervised learning neural network for function interpolation and approximation. IEEE Trans Neural Netw. 1996;7(5):1220–30.
    • (1996) IEEE Trans Neural Netw , vol.7 , Issue.5 , pp. 1220-1230
    • Chen, C.L.P.1
  • 52
    • 0033078284 scopus 로고    scopus 로고
    • A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the applications to time-series prediction
    • COI: 1:STN:280:DC%2BD1c%2FpsVOktg%3D%3D, PID: 18252280
    • Chen CLP, Wan JZ. A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the applications to time-series prediction. IEEE Trans Syst Man Cybern B Cybern. 1999;29(1):62–72.
    • (1999) IEEE Trans Syst Man Cybern B Cybern , vol.29 , Issue.1 , pp. 62-72
    • Chen, C.L.P.1    Wan, J.Z.2
  • 53
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing. 2006;70:489–501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 54
    • 0024944645 scopus 로고
    • An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks
    • White H. An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks. In: Proceedings of the international conference on neural networks, p. 451–455, 1989.
    • (1989) Proceedings of the international conference on neural networks , pp. 451-455
    • White, H.1
  • 57
    • 84897026988 scopus 로고    scopus 로고
    • Sparse bayesian extreme learning machine for multi-classification
    • PID: 24807961
    • Luo J, Vong C-M, Wong P-K. Sparse bayesian extreme learning machine for multi-classification. IEEE Trans Neural Netw Learn Syst. 2014;25(4):836–43.
    • (2014) IEEE Trans Neural Netw Learn Syst , vol.25 , Issue.4 , pp. 836-843
    • Luo, J.1    Vong, C.-M.2    Wong, P.-K.3
  • 58
    • 84865355028 scopus 로고    scopus 로고
    • Efficient digital implementation of extreme learning machines for classification
    • Decherchi S, Gastaldo P, Leoncini A, Zunino R. Efficient digital implementation of extreme learning machines for classification. IEEE Trans Circuits Syst II. 2012;59(8):496–500.
    • (2012) IEEE Trans Circuits Syst II , vol.59 , Issue.8 , pp. 496-500
    • Decherchi, S.1    Gastaldo, P.2    Leoncini, A.3    Zunino, R.4
  • 59
    • 84907219786 scopus 로고    scopus 로고
    • Sparse extreme learning machine for classification
    • PID: 25222727
    • Bai Z, Huang G-B, Wang D, Wang H, Westover MB. Sparse extreme learning machine for classification. IEEE Trans Cybern. 2014;44(10):1858–70.
    • (2014) IEEE Trans Cybern , vol.44 , Issue.10 , pp. 1858-1870
    • Bai, Z.1    Huang, G.-B.2    Wang, D.3    Wang, H.4    Westover, M.B.5
  • 61
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead DS, Lowe D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988;2:321–55.
    • (1988) Complex Syst , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 62
    • 13844255524 scopus 로고    scopus 로고
    • Smooth function approximation using neural networks
    • PID: 15732387
    • Ferrari S, Stengel RF. Smooth function approximation using neural networks. IEEE Trans Neural Netw. 2005;16(1):24–38.
    • (2005) IEEE Trans Neural Netw , vol.16 , Issue.1 , pp. 24-38
    • Ferrari, S.1    Stengel, R.F.2
  • 63
    • 49649084441 scopus 로고    scopus 로고
    • Comments on ’the extreme learning machine’
    • PID: 18701376
    • Wang LP, Wan CR. Comments on ‘the extreme learning machine’. IEEE Trans Neural Netw. 2008;19(8):1494–5.
    • (2008) IEEE Trans Neural Netw , vol.19 , Issue.8 , pp. 1494-1495
    • Wang, L.P.1    Wan, C.R.2
  • 64
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • COI: 1:STN:280:DC%2BD1c7hslOrtw%3D%3D, PID: 18276384
    • Chen S, Cowan CFN, Grant PM. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw. 1991;2(2):302–9.
    • (1991) IEEE Trans Neural Netw , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.