메뉴 건너뛰기




Volumn 7, Issue 1, 2016, Pages 241-249

Short-term wind speed or power forecasting with heteroscedastic support vector regression

Author keywords

Gaussian noise (GN); Heteroscedasticity; Support vector regression (SVR); Wind speed forecasting

Indexed keywords

FORECASTING; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); REGRESSION ANALYSIS; SPEED; STOCHASTIC MODELS; STOCHASTIC SYSTEMS; WEATHER FORECASTING; WIND EFFECTS; WIND POWER;

EID: 84958110177     PISSN: 19493029     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSTE.2015.2480245     Document Type: Article
Times cited : (144)

References (38)
  • 3
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • A. Sfetsos, "A comparison of various forecasting techniques applied to mean hourly wind speed time series," Renew. Energy, vol. 21, pp. 23-35, 2000.
    • (2000) Renew. Energy , vol.21 , pp. 23-35
    • Sfetsos, A.1
  • 5
    • 67349211771 scopus 로고    scopus 로고
    • Forecasting the wind generation using a two-stage network based on meteorological information
    • Jun.
    • S. Fan et al., "Forecasting the wind generation using a two-stage network based on meteorological information," IEEE Trans. Energy Convers., vol. 24, no. 2, pp. 474-482, Jun. 2009.
    • (2009) IEEE Trans. Energy Convers. , vol.24 , Issue.2 , pp. 474-482
    • Fan, S.1
  • 6
    • 84883355288 scopus 로고    scopus 로고
    • Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
    • K. Chen and J. Yu, "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Appl. Energy, vol. 113, pp. 690-705, 2014.
    • (2014) Appl. Energy , vol.113 , pp. 690-705
    • Chen, K.1    Yu, J.2
  • 7
    • 84871712040 scopus 로고    scopus 로고
    • Kernel ridge regression with active learning for wind speed prediction
    • F. Douak, F. Melgani, and N. Benoudjit, "Kernel ridge regression with active learning for wind speed prediction," Appl. Energy, vol. 103, pp. 328-340, 2013.
    • (2013) Appl. Energy , vol.103 , pp. 328-340
    • Douak, F.1    Melgani, F.2    Benoudjit, N.3
  • 8
    • 84893641491 scopus 로고    scopus 로고
    • Short-term load and wind power forecasting using neural network-based prediction intervals
    • Feb.
    • H. Quan, D. Srinivasan, and A. Khosravi, "Short-term load and wind power forecasting using neural network-based prediction intervals," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 2, pp. 303-315, Feb. 2014.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.2 , pp. 303-315
    • Quan, H.1    Srinivasan, D.2    Khosravi, A.3
  • 9
    • 60049089772 scopus 로고    scopus 로고
    • Innovative short-term wind generation prediction techniques
    • M. Negnevitsky and C.W. Potter, "Innovative short-term wind generation prediction techniques," in Proc. Power Syst. Conf. Expo., 2006, pp. 60-65.
    • (2006) Proc. Power Syst. Conf. Expo. , pp. 60-65
    • Negnevitsky, M.1    Potter, C.W.2
  • 10
    • 0036504289 scopus 로고    scopus 로고
    • Short-term prediction of the aggregated power output of wind farms: A statistical analysis of the reduction of the prediction error by spatial smoothing effects
    • U. Focken,M. Lange, K.Monnich, H. P.Waldl, B. H. Georg, and A. Luig, "Short-term prediction of the aggregated power output of wind farms: A statistical analysis of the reduction of the prediction error by spatial smoothing effects," J. Wind Eng. Ind. Aerodyn., vol. 90, pp. 231-246, 2002.
    • (2002) J. Wind Eng. Ind. Aerodyn. , vol.90 , pp. 231-246
    • Focken, U.1    Lange, M.2    Monnich, K.3    Waldl, H.P.4    Georg, B.H.5    Luig, A.6
  • 11
    • 33847369874 scopus 로고    scopus 로고
    • A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
    • T. G. Barbounis and J. B. Theocharis, "A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation," Neurocomputing, vol. 70, pp. 1525-1542, 2007.
    • (2007) Neurocomputing , vol.70 , pp. 1525-1542
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 12
    • 79952183962 scopus 로고    scopus 로고
    • A corrected hybrid approach for wind speed prediction in Hexi Corridor of China
    • Z. H. J. Zhao et al., "A corrected hybrid approach for wind speed prediction in Hexi Corridor of China," Energy, vol. 36, pp. 1668-1679, 2011.
    • (2011) Energy , vol.36 , pp. 1668-1679
    • Zhao, Z.H.J.1
  • 13
    • 20444437286 scopus 로고    scopus 로고
    • Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
    • J. L. Torres, A. Garcia, M. De Blas, and A. De Francisco, "Forecast of hourly average wind speed with ARMA models in Navarre (Spain)," Solar Energy, vol. 79, no. 1, pp. 65-77, 2005.
    • (2005) Solar Energy , vol.79 , Issue.1 , pp. 65-77
    • Torres, J.L.1    Garcia, A.2    De Blas, M.3    De Francisco, A.4
  • 14
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • R. G. Kavasseri and K. Seetharaman, "Day-ahead wind speed forecasting using f-ARIMA models," Renew. Energy, vol. 34, no. 5, pp. 1388-1393, 2009.
    • (2009) Renew. Energy , vol.34 , Issue.5 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 15
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • G. Li and J. Shi, "On comparing three artificial neural networks for wind speed forecasting," Appl. Energy, vol. 87, no. 7, pp. 2313-2320, 2010.
    • (2010) Appl. Energy , vol.87 , Issue.7 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 16
    • 0442296729 scopus 로고    scopus 로고
    • Support vector machines for wind speed prediction
    • M. A. Mohandes et al., "Support vector machines for wind speed prediction," Renew. Energy, vol. 29, no. 6, pp. 939-947, 2004.
    • (2004) Renew. Energy , vol.29 , Issue.6 , pp. 939-947
    • Mohandes, M.A.1
  • 17
    • 78650698653 scopus 로고    scopus 로고
    • Short term wind speed prediction based on evolutionary support vector regression algorithms
    • S. S. Sancho et al., "Short term wind speed prediction based on evolutionary support vector regression algorithms," Expert Syst. Appl., vol. 38, pp. 4052-4057, 2011.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 4052-4057
    • Sancho, S.S.1
  • 18
    • 78650944534 scopus 로고    scopus 로고
    • Fine tuning support vector machines for short-term wind speed forecasting
    • J. Y. Zhou, J. Shi, and G. Li, "Fine tuning support vector machines for short-term wind speed forecasting," Energy Convers. Manage., vol. 52, pp. 1990-1998, 2011.
    • (2011) Energy Convers. Manage. , vol.52 , pp. 1990-1998
    • Zhou, J.Y.1    Shi, J.2    Li, G.3
  • 19
    • 78649450621 scopus 로고    scopus 로고
    • Short-term wind power forecasting in Portugal by neural networks and wavelet transform
    • J. Catalao, H. Pousinho, and V. Mendes, "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renew. Energy, vol. 36, no. 4, pp. 1245-1251, 2011.
    • (2011) Renew. Energy , vol.36 , Issue.4 , pp. 1245-1251
    • Catalao, J.1    Pousinho, H.2    Mendes, V.3
  • 20
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, "Support vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 21
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • USA: MIT Press, Cambridge, MA
    • V. Vapnik, S. E. Golowich, and A. Smola, "Support vector method for function approximation, regression estimation, and signal processing," in Advances in Neural Information Processings Systems 9. Cambridge,MA, USA: MIT Press, 1996, pp. 281-287.
    • (1996) Advances in Neural Information Processings Systems 9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.E.2    Smola, A.3
  • 22
    • 0346881149 scopus 로고    scopus 로고
    • Experimentally optimal v in support vector regression for different noise models and parameter settings
    • A. Chalimourda, B. Schölkopf, and A. J. Smola, "Experimentally optimal v in support vector regression for different noise models and parameter settings," Neural Netw., vol. 17, no. 1, pp. 127-141, 2004.
    • (2004) Neural Netw. , vol.17 , Issue.1 , pp. 127-141
    • Chalimourda, A.1    Schölkopf, B.2    Smola, A.J.3
  • 23
    • 0035272287 scopus 로고    scopus 로고
    • An introduction to kernel-based learning algorithms
    • Mar.
    • M. Klaus-Robert and M. Sebastian, "An introduction to kernel-based learning algorithms," IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 181-202, Mar. 2001.
    • (2001) IEEE Trans. Neural Netw. , vol.12 , Issue.2 , pp. 181-202
    • Klaus-Robert, M.1    Sebastian, M.2
  • 24
  • 25
    • 78049530444 scopus 로고    scopus 로고
    • The forecasting model based on modified SVRM and PSO penalizing Gaussian noise
    • Q. Wu and R. Law, "The forecasting model based on modified SVRM and PSO penalizing Gaussian noise," Expert Syst. Appl., vol. 38, no. 3, pp. 1887-1894, 2011.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.3 , pp. 1887-1894
    • Wu, Q.1    Law, R.2
  • 26
    • 84901427227 scopus 로고    scopus 로고
    • Noise model based-support vector regression with its application to short-term wind speed forecasting
    • Q. H. Hu, S. G. Zhang, Z. X. Xie, J. S. Mi, and J. Wan, "Noise model based-support vector regression with its application to short-term wind speed forecasting," Neural Netw., vol. 57, pp. 1-11, 2014.
    • (2014) Neural Netw. , vol.57 , pp. 1-11
    • Hu, Q.H.1    Zhang, S.G.2    Xie, Z.X.3    Mi, J.S.4    Wan, J.5
  • 27
    • 1242331293 scopus 로고    scopus 로고
    • Bayesian support vector regression using a unified loss function
    • Jan.
    • W. Chu, S. Keerthi, and C. J. Ong, "Bayesian support vector regression using a unified loss function," IEEE Trans. Neural Netw., vol. 22, no. 1, pp. 29-44, Jan. 2004.
    • (2004) IEEE Trans. Neural Netw. , vol.22 , Issue.1 , pp. 29-44
    • Chu, W.1    Keerthi, S.2    Ong, C.J.3
  • 28
    • 34250427726 scopus 로고
    • The multiplier method of Hestenes and Powell applied to convex programming
    • R. T. Rockafellar, "The multiplier method of Hestenes and Powell applied to convex programming," J. Optim. Theory Appl., vol. 12, no. 6, pp. 555-562, 1973.
    • (1973) J. Optim. Theory Appl. , vol.12 , Issue.6 , pp. 555-562
    • Rockafellar, R.T.1
  • 29
  • 30
    • 0004055894 scopus 로고    scopus 로고
    • Cambridge, U.K.: Cambridge Univ. Press
    • S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004, pp. 521-620.
    • (2004) Convex Optimization , pp. 521-620
    • Boyd, S.1    Vandenberghe, L.2
  • 32
    • 68949096711 scopus 로고    scopus 로고
    • SGD-QN: Careful quasi Newton stochastic gradient descent
    • A. Bordes, L. Bottou, and P. Gallinari, "SGD-QN: Careful quasi Newton stochastic gradient descent," J. Mach. Learn. Res., vol. 10, pp. 1737-1754, 2009.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1737-1754
    • Bordes, A.1    Bottou, L.2    Gallinari, P.3
  • 33
    • 84904119228 scopus 로고    scopus 로고
    • A statistical description of the error on wind power forecasts for probabilistic reserve sizing
    • Jul.
    • K. Bruninx and E. Delarue, "A statistical description of the error on wind power forecasts for probabilistic reserve sizing," IEEE Trans. Sustain. Energy, vol. 3, no. 3, pp. 995-1002, Jul. 2014.
    • (2014) IEEE Trans. Sustain. Energy , vol.3 , Issue.3 , pp. 995-1002
    • Bruninx, K.1    Delarue, E.2
  • 34
    • 0030882917 scopus 로고    scopus 로고
    • Development and experimental identification of dynamic models for wind turbines
    • E. Welfonder, R. Neifer, and M. Spanner, "Development and experimental identification of dynamic models for wind turbines," Control Eng. Pract., vol. 5, no. 1, pp. 63-73, 1997.
    • (1997) Control Eng. Pract. , vol.5 , Issue.1 , pp. 63-73
    • Welfonder, E.1    Neifer, R.2    Spanner, M.3
  • 35
    • 44649129329 scopus 로고    scopus 로고
    • A learning rule for very simple universal approximators consisting of a single layer of perceptrons (PDF)
    • A. Peter, H. Burgsteiner, and W. Maass, "A learning rule for very simple universal approximators consisting of a single layer of perceptrons (PDF)," Neural Netw., vol. 21, no. 5, p. 786C795, 2008, doi: 10.1016/j.neunet.2007.12.036.
    • (2008) Neural Netw. , vol.21 , Issue.5 , pp. 786C795
    • Peter, A.1    Burgsteiner, H.2    Maass, W.3
  • 37
    • 84904459530 scopus 로고    scopus 로고
    • A nonlinear least squares quasi-Newton strategy for LP-SVR hyper-parameters selection
    • P. Rivas-Perea, J. Cota-Ruiz, and J.-G. Rosiles, "A nonlinear least squares quasi-Newton strategy for LP-SVR hyper-parameters selection," Int. J. Mach. Learn. Cybern., vol. 5, no. 4, pp. 579-597, 2014.
    • (2014) Int. J. Mach. Learn. Cybern. , vol.5 , Issue.4 , pp. 579-597
    • Rivas-Perea, P.1    Cota-Ruiz, J.2    Rosiles, J.-G.3
  • 38
    • 84921052011 scopus 로고    scopus 로고
    • A fast algorithm for training support vector regression via smoothed primal function minimization
    • S. Zheng, "A fast algorithm for training support vector regression via smoothed primal function minimization," Int. J. Mach. Learn. Cybern., vol. 6, no. 1, pp. 155-166, 2015.
    • (2015) Int. J. Mach. Learn. Cybern. , vol.6 , Issue.1 , pp. 155-166
    • Zheng, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.