-
2
-
-
34548763692
-
A study of wind farms output power prediction techniques
-
T. H. M. El-Fouly, E. F. El-Saadany, and M. M. A. Salama, "A study of wind farms output power prediction techniques," in Proc. North Amer. Power Symp., 2004, pp. 249-254.
-
(2004)
Proc. North Amer. Power Symp.
, pp. 249-254
-
-
El-Fouly, T.H.M.1
El-Saadany, E.F.2
Salama, M.M.A.3
-
3
-
-
0034286972
-
A comparison of various forecasting techniques applied to mean hourly wind speed time series
-
A. Sfetsos, "A comparison of various forecasting techniques applied to mean hourly wind speed time series," Renew. Energy, vol. 21, pp. 23-35, 2000.
-
(2000)
Renew. Energy
, vol.21
, pp. 23-35
-
-
Sfetsos, A.1
-
4
-
-
60049084645
-
A review on the forecasting of wind speed and generated power
-
L.Ma, S. Y. Luan, C.W. Jiang, H. L. Liu, and Y. Zhang, "A review on the forecasting of wind speed and generated power," Renew. Sustain. Energy Rev., vol. 13, pp. 915-920, 2009.
-
(2009)
Renew. Sustain. Energy Rev.
, vol.13
, pp. 915-920
-
-
Ma, L.1
Luan, S.Y.2
Jiang, C.W.3
Liu, H.L.4
Zhang, Y.5
-
5
-
-
67349211771
-
Forecasting the wind generation using a two-stage network based on meteorological information
-
Jun.
-
S. Fan et al., "Forecasting the wind generation using a two-stage network based on meteorological information," IEEE Trans. Energy Convers., vol. 24, no. 2, pp. 474-482, Jun. 2009.
-
(2009)
IEEE Trans. Energy Convers.
, vol.24
, Issue.2
, pp. 474-482
-
-
Fan, S.1
-
6
-
-
84883355288
-
Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
-
K. Chen and J. Yu, "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Appl. Energy, vol. 113, pp. 690-705, 2014.
-
(2014)
Appl. Energy
, vol.113
, pp. 690-705
-
-
Chen, K.1
Yu, J.2
-
7
-
-
84871712040
-
Kernel ridge regression with active learning for wind speed prediction
-
F. Douak, F. Melgani, and N. Benoudjit, "Kernel ridge regression with active learning for wind speed prediction," Appl. Energy, vol. 103, pp. 328-340, 2013.
-
(2013)
Appl. Energy
, vol.103
, pp. 328-340
-
-
Douak, F.1
Melgani, F.2
Benoudjit, N.3
-
8
-
-
84893641491
-
Short-term load and wind power forecasting using neural network-based prediction intervals
-
Feb.
-
H. Quan, D. Srinivasan, and A. Khosravi, "Short-term load and wind power forecasting using neural network-based prediction intervals," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 2, pp. 303-315, Feb. 2014.
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.25
, Issue.2
, pp. 303-315
-
-
Quan, H.1
Srinivasan, D.2
Khosravi, A.3
-
9
-
-
60049089772
-
Innovative short-term wind generation prediction techniques
-
M. Negnevitsky and C.W. Potter, "Innovative short-term wind generation prediction techniques," in Proc. Power Syst. Conf. Expo., 2006, pp. 60-65.
-
(2006)
Proc. Power Syst. Conf. Expo.
, pp. 60-65
-
-
Negnevitsky, M.1
Potter, C.W.2
-
10
-
-
0036504289
-
Short-term prediction of the aggregated power output of wind farms: A statistical analysis of the reduction of the prediction error by spatial smoothing effects
-
U. Focken,M. Lange, K.Monnich, H. P.Waldl, B. H. Georg, and A. Luig, "Short-term prediction of the aggregated power output of wind farms: A statistical analysis of the reduction of the prediction error by spatial smoothing effects," J. Wind Eng. Ind. Aerodyn., vol. 90, pp. 231-246, 2002.
-
(2002)
J. Wind Eng. Ind. Aerodyn.
, vol.90
, pp. 231-246
-
-
Focken, U.1
Lange, M.2
Monnich, K.3
Waldl, H.P.4
Georg, B.H.5
Luig, A.6
-
11
-
-
33847369874
-
A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
-
T. G. Barbounis and J. B. Theocharis, "A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation," Neurocomputing, vol. 70, pp. 1525-1542, 2007.
-
(2007)
Neurocomputing
, vol.70
, pp. 1525-1542
-
-
Barbounis, T.G.1
Theocharis, J.B.2
-
12
-
-
79952183962
-
A corrected hybrid approach for wind speed prediction in Hexi Corridor of China
-
Z. H. J. Zhao et al., "A corrected hybrid approach for wind speed prediction in Hexi Corridor of China," Energy, vol. 36, pp. 1668-1679, 2011.
-
(2011)
Energy
, vol.36
, pp. 1668-1679
-
-
Zhao, Z.H.J.1
-
13
-
-
20444437286
-
Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
-
J. L. Torres, A. Garcia, M. De Blas, and A. De Francisco, "Forecast of hourly average wind speed with ARMA models in Navarre (Spain)," Solar Energy, vol. 79, no. 1, pp. 65-77, 2005.
-
(2005)
Solar Energy
, vol.79
, Issue.1
, pp. 65-77
-
-
Torres, J.L.1
Garcia, A.2
De Blas, M.3
De Francisco, A.4
-
14
-
-
58949103845
-
Day-ahead wind speed forecasting using f-ARIMA models
-
R. G. Kavasseri and K. Seetharaman, "Day-ahead wind speed forecasting using f-ARIMA models," Renew. Energy, vol. 34, no. 5, pp. 1388-1393, 2009.
-
(2009)
Renew. Energy
, vol.34
, Issue.5
, pp. 1388-1393
-
-
Kavasseri, R.G.1
Seetharaman, K.2
-
15
-
-
77953137822
-
On comparing three artificial neural networks for wind speed forecasting
-
G. Li and J. Shi, "On comparing three artificial neural networks for wind speed forecasting," Appl. Energy, vol. 87, no. 7, pp. 2313-2320, 2010.
-
(2010)
Appl. Energy
, vol.87
, Issue.7
, pp. 2313-2320
-
-
Li, G.1
Shi, J.2
-
16
-
-
0442296729
-
Support vector machines for wind speed prediction
-
M. A. Mohandes et al., "Support vector machines for wind speed prediction," Renew. Energy, vol. 29, no. 6, pp. 939-947, 2004.
-
(2004)
Renew. Energy
, vol.29
, Issue.6
, pp. 939-947
-
-
Mohandes, M.A.1
-
17
-
-
78650698653
-
Short term wind speed prediction based on evolutionary support vector regression algorithms
-
S. S. Sancho et al., "Short term wind speed prediction based on evolutionary support vector regression algorithms," Expert Syst. Appl., vol. 38, pp. 4052-4057, 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 4052-4057
-
-
Sancho, S.S.1
-
18
-
-
78650944534
-
Fine tuning support vector machines for short-term wind speed forecasting
-
J. Y. Zhou, J. Shi, and G. Li, "Fine tuning support vector machines for short-term wind speed forecasting," Energy Convers. Manage., vol. 52, pp. 1990-1998, 2011.
-
(2011)
Energy Convers. Manage.
, vol.52
, pp. 1990-1998
-
-
Zhou, J.Y.1
Shi, J.2
Li, G.3
-
19
-
-
78649450621
-
Short-term wind power forecasting in Portugal by neural networks and wavelet transform
-
J. Catalao, H. Pousinho, and V. Mendes, "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renew. Energy, vol. 36, no. 4, pp. 1245-1251, 2011.
-
(2011)
Renew. Energy
, vol.36
, Issue.4
, pp. 1245-1251
-
-
Catalao, J.1
Pousinho, H.2
Mendes, V.3
-
20
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik, "Support vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995.
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
21
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
USA: MIT Press, Cambridge, MA
-
V. Vapnik, S. E. Golowich, and A. Smola, "Support vector method for function approximation, regression estimation, and signal processing," in Advances in Neural Information Processings Systems 9. Cambridge,MA, USA: MIT Press, 1996, pp. 281-287.
-
(1996)
Advances in Neural Information Processings Systems 9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.E.2
Smola, A.3
-
22
-
-
0346881149
-
Experimentally optimal v in support vector regression for different noise models and parameter settings
-
A. Chalimourda, B. Schölkopf, and A. J. Smola, "Experimentally optimal v in support vector regression for different noise models and parameter settings," Neural Netw., vol. 17, no. 1, pp. 127-141, 2004.
-
(2004)
Neural Netw.
, vol.17
, Issue.1
, pp. 127-141
-
-
Chalimourda, A.1
Schölkopf, B.2
Smola, A.J.3
-
23
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Mar.
-
M. Klaus-Robert and M. Sebastian, "An introduction to kernel-based learning algorithms," IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 181-202, Mar. 2001.
-
(2001)
IEEE Trans. Neural Netw.
, vol.12
, Issue.2
, pp. 181-202
-
-
Klaus-Robert, M.1
Sebastian, M.2
-
24
-
-
0033684572
-
Sparse approximation using least square vector machines
-
Genvea, Switzerland
-
J. A. K. Suykens, L. Lukas, and J. Vandewalle, "Sparse approximation using least square vector machines," in Proc. IEEE Int. Symp. Circuits Syst., Genvea, Switzerland, 2000, pp. 757-760.
-
(2000)
Proc. IEEE Int. Symp. Circuits Syst.
, pp. 757-760
-
-
Suykens, J.A.K.1
Lukas, L.2
Vandewalle, J.3
-
25
-
-
78049530444
-
The forecasting model based on modified SVRM and PSO penalizing Gaussian noise
-
Q. Wu and R. Law, "The forecasting model based on modified SVRM and PSO penalizing Gaussian noise," Expert Syst. Appl., vol. 38, no. 3, pp. 1887-1894, 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.3
, pp. 1887-1894
-
-
Wu, Q.1
Law, R.2
-
26
-
-
84901427227
-
Noise model based-support vector regression with its application to short-term wind speed forecasting
-
Q. H. Hu, S. G. Zhang, Z. X. Xie, J. S. Mi, and J. Wan, "Noise model based-support vector regression with its application to short-term wind speed forecasting," Neural Netw., vol. 57, pp. 1-11, 2014.
-
(2014)
Neural Netw.
, vol.57
, pp. 1-11
-
-
Hu, Q.H.1
Zhang, S.G.2
Xie, Z.X.3
Mi, J.S.4
Wan, J.5
-
27
-
-
1242331293
-
Bayesian support vector regression using a unified loss function
-
Jan.
-
W. Chu, S. Keerthi, and C. J. Ong, "Bayesian support vector regression using a unified loss function," IEEE Trans. Neural Netw., vol. 22, no. 1, pp. 29-44, Jan. 2004.
-
(2004)
IEEE Trans. Neural Netw.
, vol.22
, Issue.1
, pp. 29-44
-
-
Chu, W.1
Keerthi, S.2
Ong, C.J.3
-
28
-
-
34250427726
-
The multiplier method of Hestenes and Powell applied to convex programming
-
R. T. Rockafellar, "The multiplier method of Hestenes and Powell applied to convex programming," J. Optim. Theory Appl., vol. 12, no. 6, pp. 555-562, 1973.
-
(1973)
J. Optim. Theory Appl.
, vol.12
, Issue.6
, pp. 555-562
-
-
Rockafellar, R.T.1
-
29
-
-
0003451149
-
-
SIAM, Philadelphia, PA, USA: Society or Industrial and Applied Mathematics, First published in by Research Analysis Corporation
-
A. V. Fiacco and G. P. McCormick, Nonlinear Programming. Sequential Unconstrained Minimization Techniques. SIAM, Philadelphia, PA, USA: Society or Industrial and Applied Mathematics, 1990, First published in 1968 by Research Analysis Corporation.
-
(1968)
Nonlinear Programming. Sequential Unconstrained Minimization Techniques
-
-
Fiacco, A.V.1
McCormick, G.P.2
-
30
-
-
0004055894
-
-
Cambridge, U.K.: Cambridge Univ. Press
-
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004, pp. 521-620.
-
(2004)
Convex Optimization
, pp. 521-620
-
-
Boyd, S.1
Vandenberghe, L.2
-
31
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
Sep.
-
S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy, "Improvements to the SMO algorithm for SVM regression," IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1188-1193, Sep. 2000.
-
(2000)
IEEE Trans. Neural Netw.
, vol.11
, Issue.5
, pp. 1188-1193
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
32
-
-
68949096711
-
SGD-QN: Careful quasi Newton stochastic gradient descent
-
A. Bordes, L. Bottou, and P. Gallinari, "SGD-QN: Careful quasi Newton stochastic gradient descent," J. Mach. Learn. Res., vol. 10, pp. 1737-1754, 2009.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 1737-1754
-
-
Bordes, A.1
Bottou, L.2
Gallinari, P.3
-
33
-
-
84904119228
-
A statistical description of the error on wind power forecasts for probabilistic reserve sizing
-
Jul.
-
K. Bruninx and E. Delarue, "A statistical description of the error on wind power forecasts for probabilistic reserve sizing," IEEE Trans. Sustain. Energy, vol. 3, no. 3, pp. 995-1002, Jul. 2014.
-
(2014)
IEEE Trans. Sustain. Energy
, vol.3
, Issue.3
, pp. 995-1002
-
-
Bruninx, K.1
Delarue, E.2
-
34
-
-
0030882917
-
Development and experimental identification of dynamic models for wind turbines
-
E. Welfonder, R. Neifer, and M. Spanner, "Development and experimental identification of dynamic models for wind turbines," Control Eng. Pract., vol. 5, no. 1, pp. 63-73, 1997.
-
(1997)
Control Eng. Pract.
, vol.5
, Issue.1
, pp. 63-73
-
-
Welfonder, E.1
Neifer, R.2
Spanner, M.3
-
35
-
-
44649129329
-
A learning rule for very simple universal approximators consisting of a single layer of perceptrons (PDF)
-
A. Peter, H. Burgsteiner, and W. Maass, "A learning rule for very simple universal approximators consisting of a single layer of perceptrons (PDF)," Neural Netw., vol. 21, no. 5, p. 786C795, 2008, doi: 10.1016/j.neunet.2007.12.036.
-
(2008)
Neural Netw.
, vol.21
, Issue.5
, pp. 786C795
-
-
Peter, A.1
Burgsteiner, H.2
Maass, W.3
-
36
-
-
64849110608
-
A novel connectionist system for improved unconstrained handwriting recognition
-
May
-
A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber, "A novel connectionist system for improved unconstrained handwriting recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 5, pp. 855-868, May 2009.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.5
, pp. 855-868
-
-
Graves, A.1
Liwicki, M.2
Fernandez, S.3
Bertolami, R.4
Bunke, H.5
Schmidhuber, J.6
-
37
-
-
84904459530
-
A nonlinear least squares quasi-Newton strategy for LP-SVR hyper-parameters selection
-
P. Rivas-Perea, J. Cota-Ruiz, and J.-G. Rosiles, "A nonlinear least squares quasi-Newton strategy for LP-SVR hyper-parameters selection," Int. J. Mach. Learn. Cybern., vol. 5, no. 4, pp. 579-597, 2014.
-
(2014)
Int. J. Mach. Learn. Cybern.
, vol.5
, Issue.4
, pp. 579-597
-
-
Rivas-Perea, P.1
Cota-Ruiz, J.2
Rosiles, J.-G.3
-
38
-
-
84921052011
-
A fast algorithm for training support vector regression via smoothed primal function minimization
-
S. Zheng, "A fast algorithm for training support vector regression via smoothed primal function minimization," Int. J. Mach. Learn. Cybern., vol. 6, no. 1, pp. 155-166, 2015.
-
(2015)
Int. J. Mach. Learn. Cybern.
, vol.6
, Issue.1
, pp. 155-166
-
-
Zheng, S.1
|