메뉴 건너뛰기




Volumn 78, Issue , 2015, Pages 374-385

A self-adaptive hybrid approach for wind speed forecasting

Author keywords

Extreme learning machine; Hybrid forecasting; Wind speed

Indexed keywords

BACKPROPAGATION; ELECTRIC UTILITIES; FORECASTING; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; NEURAL NETWORKS; RENEWABLE ENERGY RESOURCES; SPEED; WIND EFFECTS; WIND POWER;

EID: 84921916753     PISSN: 09601481     EISSN: 18790682     Source Type: Journal    
DOI: 10.1016/j.renene.2014.12.074     Document Type: Article
Times cited : (103)

References (40)
  • 1
    • 84894469957 scopus 로고    scopus 로고
    • half-year
    • World Wind Energy Association World wind energy report 2013, half-year. http://www.wwindea.org/webimages/Half-year_report_2013.pdf.
    • (2013) World wind energy report
  • 3
    • 84876475892 scopus 로고    scopus 로고
    • Sparse online warped Gaussian process for wind power probabilistic forecasting
    • Kou Peng, Gao Feng, Guan Xiaohong Sparse online warped Gaussian process for wind power probabilistic forecasting. Appl Energy 2013, 108:410-428.
    • (2013) Appl Energy , vol.108 , pp. 410-428
    • Kou, P.1    Gao, F.2    Guan, X.3
  • 4
    • 79959375425 scopus 로고    scopus 로고
    • Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods
    • De Giorgi Maria Grazia, Ficarella Antonio, Tarantino Marco Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy 2011, 36:3968-3978.
    • (2011) Energy , vol.36 , pp. 3968-3978
    • De Giorgi, M.G.1    Ficarella, A.2    Tarantino, M.3
  • 5
    • 79959928609 scopus 로고    scopus 로고
    • Comparison of linear, Kalman filter and neural network downscaling of wind speeds from numerical weather prediction
    • 10th International Conference on
    • Watters Christophe Sibuet, Leahy Paul Comparison of linear, Kalman filter and neural network downscaling of wind speeds from numerical weather prediction. Environment and electrical engineering (EEEIC) 2011, 10th International Conference on.
    • (2011) Environment and electrical engineering (EEEIC)
    • Watters, C.S.1    Leahy, P.2
  • 6
    • 84864827118 scopus 로고    scopus 로고
    • Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output
    • Cassola Federico, Burlando Massimiliano Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Appl Energy 2012, 99:154-166.
    • (2012) Appl Energy , vol.99 , pp. 154-166
    • Cassola, F.1    Burlando, M.2
  • 7
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • Kavasseri R.G., Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy 2009, 34(5):1388-1393.
    • (2009) Renew Energy , vol.34 , Issue.5 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 8
    • 84902550714 scopus 로고    scopus 로고
    • An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)
    • Jeong Kwangbok, Koo Choongwan, Hong Taehoon An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network). Energy 2014, 71:71-79.
    • (2014) Energy , vol.71 , pp. 71-79
    • Jeong, K.1    Koo, C.2    Hong, T.3
  • 9
    • 84859416828 scopus 로고    scopus 로고
    • Evaluation of hybrid forecasting approaches for wind speed and power generation time series
    • Shi Jing, Guo Jinmei, Zheng Songtao Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew Sustain Energy Rev 2012, 16:3471-3480.
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 3471-3480
    • Shi, J.1    Guo, J.2    Zheng, S.3
  • 10
    • 78650562310 scopus 로고    scopus 로고
    • ARMA based approaches for forecasting the tuple of wind speed and direction
    • Erdem Ergin, Shi Jing ARMA based approaches for forecasting the tuple of wind speed and direction. Appl Energy 2011, 88:1405-1414.
    • (2011) Appl Energy , vol.88 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 11
    • 84904904452 scopus 로고    scopus 로고
    • Least absolute deviation estimation for general fractionally integrated autoregressive moving average time series models
    • Wu Rongning Least absolute deviation estimation for general fractionally integrated autoregressive moving average time series models. Stat Probab Lett 2014, 94:69-76.
    • (2014) Stat Probab Lett , vol.94 , pp. 69-76
    • Wu, R.1
  • 12
    • 84860473037 scopus 로고    scopus 로고
    • Estimation of monthly wind power outputs of WECS with limited record period using artificial neural networks
    • Tu Yi Long, Chang Tsang Jung, Chen Cheng Lung, Chang YuJung Estimation of monthly wind power outputs of WECS with limited record period using artificial neural networks. Energy Convers Manag 2012, 59:114-121.
    • (2012) Energy Convers Manag , vol.59 , pp. 114-121
    • Tu, Y.L.1    Chang, T.J.2    Chen, C.L.3    Chang, Y.4
  • 13
    • 84884203391 scopus 로고    scopus 로고
    • Neural network based hybrid computing model for wind speed prediction
    • Gnana Sheela K., Deepa S.N. Neural network based hybrid computing model for wind speed prediction. Neurocomputing 2013, 122:425-429.
    • (2013) Neurocomputing , vol.122 , pp. 425-429
    • Gnana Sheela, K.1    Deepa, S.N.2
  • 14
    • 84860255082 scopus 로고    scopus 로고
    • Forecasting wind speed with recurrent neural networks
    • Cao Qing, Ewing Bradley T., Thompson Mark A. Forecasting wind speed with recurrent neural networks. Eur J Oper Res 2012, 221:148-154.
    • (2012) Eur J Oper Res , vol.221 , pp. 148-154
    • Cao, Q.1    Ewing, B.T.2    Thompson, M.A.3
  • 15
    • 71849085127 scopus 로고    scopus 로고
    • The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria
    • Fadare D.A. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 2010, 87:934-942.
    • (2010) Appl Energy , vol.87 , pp. 934-942
    • Fadare, D.A.1
  • 16
    • 77952411547 scopus 로고    scopus 로고
    • Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network
    • Amjady N., Daraeepour A., Keynia F. Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network. IET Gener Transm Distrib 2010, 4(3):432-444.
    • (2010) IET Gener Transm Distrib , vol.4 , Issue.3 , pp. 432-444
    • Amjady, N.1    Daraeepour, A.2    Keynia, F.3
  • 17
    • 78650944534 scopus 로고    scopus 로고
    • Fine tuning support vector machines for short-term wind speed forecasting
    • Zhou J., Shi J., Li G. Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers Manage 2011, 52(4):1990-1998.
    • (2011) Energy Convers Manage , vol.52 , Issue.4 , pp. 1990-1998
    • Zhou, J.1    Shi, J.2    Li, G.3
  • 18
    • 84905243940 scopus 로고    scopus 로고
    • Fuzzy rough regression with application to wind speed prediction
    • An Shuang, Shi Hong, Hu Qinghua, Li Xiaoqi, Dang Jianwu Fuzzy rough regression with application to wind speed prediction. Inf Sci 2014, 282:388-400.
    • (2014) Inf Sci , vol.282 , pp. 388-400
    • An, S.1    Shi, H.2    Hu, Q.3    Li, X.4    Dang, J.5
  • 19
    • 79951841784 scopus 로고    scopus 로고
    • Short-term wind speed forecasting based on fuzzy ARTMAP
    • Haque A.U., Meng J. Short-term wind speed forecasting based on fuzzy ARTMAP. Int J Green Energy 2011, 8(1):65-80.
    • (2011) Int J Green Energy , vol.8 , Issue.1 , pp. 65-80
    • Haque, A.U.1    Meng, J.2
  • 20
    • 79959733948 scopus 로고    scopus 로고
    • Acase study on a hybrid wind speed forecasting method using BP neural network
    • Guo Zhenhai, Wu Jie, Lu Hai-yan, Wang Jian-zhou Acase study on a hybrid wind speed forecasting method using BP neural network. Knowl-Based Syst 2011, 24:1048-1056.
    • (2011) Knowl-Based Syst , vol.24 , pp. 1048-1056
    • Guo, Z.1    Wu, J.2    Lu, H.-Y.3    Wang, J.-Z.4
  • 21
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Guo Zhenhai, Zhao Weigang, Lu Haiyan, Wang Jianzhou Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew Energy 2012, 37:241-249.
    • (2012) Renew Energy , vol.37 , pp. 241-249
    • Guo, Z.1    Zhao, W.2    Lu, H.3    Wang, J.4
  • 22
    • 84863508830 scopus 로고    scopus 로고
    • Ahybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
    • Liu Hui, Chen Chao, Tian Hong-qi, Li Yan-fei Ahybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew Energy 2012, 48:545-556.
    • (2012) Renew Energy , vol.48 , pp. 545-556
    • Liu, H.1    Chen, C.2    Tian, H.-Q.3    Li, Y.-F.4
  • 23
    • 84878854403 scopus 로고    scopus 로고
    • Ahybrid forecasting approach applied to wind speed time series
    • Hu Jianming, Wang Jianzhou, Zeng Guowei Ahybrid forecasting approach applied to wind speed time series. Renew Energy 2013, 60:185-194.
    • (2013) Renew Energy , vol.60 , pp. 185-194
    • Hu, J.1    Wang, J.2    Zeng, G.3
  • 24
    • 84907974670 scopus 로고    scopus 로고
    • Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
    • Liu Hui, Tian Hong-qi, Li Yan-fei Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions. Energy Convers Manag 2015, 89:1-11.
    • (2015) Energy Convers Manag , vol.89 , pp. 1-11
    • Liu, H.1    Tian, H.-Q.2    Li, Y.-F.3
  • 25
    • 84884126948 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
    • Liu Da, Niu Dongxiao, Wang Hui, Fan Leilei Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew Energy 2014, 62:592-597.
    • (2014) Renew Energy , vol.62 , pp. 592-597
    • Liu, D.1    Niu, D.2    Wang, H.3    Fan, L.4
  • 26
    • 84905494402 scopus 로고    scopus 로고
    • Forecasting wind speed using empirical mode decomposition and Elman neural network
    • Wang Jujie, Zhang Wenyu, Li Yaning, Wang Jianzhou, Dang Zhangli Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl Soft Comput 2014, 23:452-459.
    • (2014) Appl Soft Comput , vol.23 , pp. 452-459
    • Wang, J.1    Zhang, W.2    Li, Y.3    Wang, J.4    Dang, Z.5
  • 27
    • 79751505649 scopus 로고    scopus 로고
    • Bayesian adaptive combination of short-term wind speed forecasts from neural network models
    • Li G., Shi J. Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renew Energy 2011, 36(1):352-359.
    • (2011) Renew Energy , vol.36 , Issue.1 , pp. 352-359
    • Li, G.1    Shi, J.2
  • 28
    • 74449091026 scopus 로고    scopus 로고
    • Application of Bayesian model averaging in modeling long-term wind speed distributions
    • Li G., Shi J. Application of Bayesian model averaging in modeling long-term wind speed distributions. Renew Energy 2010, 35(6):1192-1202.
    • (2010) Renew Energy , vol.35 , Issue.6 , pp. 1192-1202
    • Li, G.1    Shi, J.2
  • 29
    • 55349144840 scopus 로고    scopus 로고
    • Adaptive combination of forecasts with application to wind energy
    • Sánchez Ismael Adaptive combination of forecasts with application to wind energy. Int J Forecast 2008, 24:679-693.
    • (2008) Int J Forecast , vol.24 , pp. 679-693
    • Sánchez, I.1
  • 30
    • 84874685432 scopus 로고    scopus 로고
    • Short-term wind speed syntheses correcting forecasting model and its application
    • Nan Xiaoqiang, Qunzhan, Qiu Daqiang, Zhao Yuanzhe, Guo Xinxin Short-term wind speed syntheses correcting forecasting model and its application. Int J Elec Power 2013, 49:264-268.
    • (2013) Int J Elec Power , vol.49 , pp. 264-268
    • Nan, X.1    Qunzhan2    Qiu, D.3    Zhao, Y.4    Guo, X.5
  • 31
    • 44649152880 scopus 로고    scopus 로고
    • Asimulated-based neural network algorithm for forecasting electrical energy consumption in Iran
    • Azadeh A., Ghaderi S.F., Sohrabkhani S. Asimulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy 2008, 36:2637-2644.
    • (2008) Energy Policy , vol.36 , pp. 2637-2644
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 33
    • 77953324921 scopus 로고    scopus 로고
    • An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran
    • Azadeh A., Saberi M., Seraj O. An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran. Energy 2010, 35:2351-2366.
    • (2010) Energy , vol.35 , pp. 2351-2366
    • Azadeh, A.1    Saberi, M.2    Seraj, O.3
  • 34
    • 84921925307 scopus 로고    scopus 로고
    • Comparing the effectiveness of traditional vs. mechanized identification methods in post-sample forecasting for a macroeconomic Granger causality analysis
    • Int J Forecast (xx)-xxxx.
    • Ye Haichun, Ashley Richard, Guerard John. Comparing the effectiveness of traditional vs. mechanized identification methods in post-sample forecasting for a macroeconomic Granger causality analysis. Int J Forecast (xx)-xxxx.
    • Ye, H.1    Ashley, R.2    Guerard, J.3
  • 35
    • 79952183962 scopus 로고    scopus 로고
    • Acorrected hybrid approach for wind speed prediction in Hexi corridor of China
    • Guo Zhenhai, Zhao Jing, Zhang Wenyu, Wang Jianzhou Acorrected hybrid approach for wind speed prediction in Hexi corridor of China. Energy 2011, 36:1668-1679.
    • (2011) Energy , vol.36 , pp. 1668-1679
    • Guo, Z.1    Zhao, J.2    Zhang, W.3    Wang, J.4
  • 36
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico using a hybrid ARIMA-ANN model
    • Cadenas E., Rivera W. Wind speed forecasting in three different regions of Mexico using a hybrid ARIMA-ANN model. Renew Energy 2010, 35(12):2732-2738.
    • (2010) Renew Energy , vol.35 , Issue.12 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 37
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
    • Liu Hui, Tian Hong-qi, Li Yan-fei Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl Energy 2012, 98:415-424.
    • (2012) Appl Energy , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.-Q.2    Li, Y.-F.3
  • 38
    • 78149358777 scopus 로고    scopus 로고
    • Comprehensive evaluation of ARMA-GARCH (-M) approaches for modeling the mean and volatility of wind speed
    • Liu Heping, Erdem Ergin, Shi Jing Comprehensive evaluation of ARMA-GARCH (-M) approaches for modeling the mean and volatility of wind speed. Appl Energy 2011, 88:724-732.
    • (2011) Appl Energy , vol.88 , pp. 724-732
    • Liu, H.1    Erdem, E.2    Shi, J.3
  • 39
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Huang Guang-Bin, Zhou Hongming, Ding Xiaojian, Zhang Rui Extreme learning machine for regression and multiclass classification. IEEE Trans Syst 2012, 42(2):513-528.
    • (2012) IEEE Trans Syst , vol.42 , Issue.2 , pp. 513-528
    • Huang, G.-B.1    Zhou, H.2    Ding, X.3    Zhang, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.