메뉴 건너뛰기




Volumn 120, Issue , 2016, Pages 509-521

Filter bank property of variational mode decomposition and its applications

Author keywords

Detrending; Filter banks; Fractional Gaussian noise; Impacts; Variational mode decomposition

Indexed keywords

FILTER BANKS; SAMPLING; SIGNAL PROCESSING; SPECTRUM ANALYSIS;

EID: 84946569715     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2015.09.041     Document Type: Article
Times cited : (213)

References (25)
  • 2
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis
    • N.E. Huang, Z. Shen, and S.R. Long The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis Proc. R. Soc. Lond., Ser. A 454 1998 903 995
    • (1998) Proc. R. Soc. Lond., Ser. A , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 4
    • 78751584911 scopus 로고    scopus 로고
    • Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool
    • I. Daubechies, J. Lu, and H.-T. Wu Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool Appl. Comput. Harmon. Anal. 30 2011 243 261
    • (2011) Appl. Comput. Harmon. Anal. , vol.30 , pp. 243-261
    • Daubechies, I.1    Lu, J.2    Wu, H.-T.3
  • 5
    • 84871772255 scopus 로고    scopus 로고
    • The synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications
    • G. Thakur, E. Brevdo, N.S. Fuckar, and et al. The synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications Signal Process. 93 May 2013 1079 1094
    • (2013) Signal Process. , vol.93 , Issue.MAY , pp. 1079-1094
    • Thakur, G.1    Brevdo, E.2    Fuckar, N.S.3
  • 6
    • 80052641966 scopus 로고    scopus 로고
    • Adaptive data analysis via sparse time-frequency representation
    • T.Y. Hou, and Z. Shi Adaptive data analysis via sparse time-frequency representation Adv. Adapt. Data Anal. 03 1-2 2011 1 28
    • (2011) Adv. Adapt. Data Anal. , vol.3 , Issue.1-2 , pp. 1-28
    • Hou, T.Y.1    Shi, Z.2
  • 7
    • 84880891329 scopus 로고    scopus 로고
    • Empirical wavelet transform
    • J. Gilles Empirical wavelet transform IEEE Trans. Signal Process. 61 16 2013 3999 4010
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.16 , pp. 3999-4010
    • Gilles, J.1
  • 8
    • 0014604308 scopus 로고
    • Multiplier and gradient methods
    • M.R. Hestenes Multiplier and gradient methods J. Optim. Theory Appl. 4 November 1969 303 320
    • (1969) J. Optim. Theory Appl. , vol.4 , Issue.NOVEMBER , pp. 303-320
    • Hestenes, M.R.1
  • 9
    • 0035570177 scopus 로고    scopus 로고
    • Nonuniform sampling and reconstruction in shift-invariant spaces
    • A. Aldroubi, and K. Gröchenig Nonuniform sampling and reconstruction in shift-invariant spaces SIAM Rev. 43 December 2001 585 620
    • (2001) SIAM Rev. , vol.43 , Issue.DECEMBER , pp. 585-620
    • Aldroubi, A.1    Gröchenig, K.2
  • 10
    • 71049127992 scopus 로고    scopus 로고
    • Sampling effects on the empirical mode decomposition
    • G. Rilling, and P. Flandrin Sampling effects on the empirical mode decomposition Adv. Adapt. Data Anal. 1 2009 43 59
    • (2009) Adv. Adapt. Data Anal. , vol.1 , pp. 43-59
    • Rilling, G.1    Flandrin, P.2
  • 11
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise-assisted data analysis method
    • Z. Wu, and N.E. Huang Ensemble empirical mode decomposition: a noise-assisted data analysis method Adv. Adapt. Data Anal. 1 2009 1 41
    • (2009) Adv. Adapt. Data Anal. , vol.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 13
    • 2542525254 scopus 로고    scopus 로고
    • A study of the characteristics of white noise using the empirical mode decomposition method
    • Z. Wu, and N.E. Huang A study of the characteristics of white noise using the empirical mode decomposition method Proc. R. Soc. Lond., Ser. A 460 2004 1597 1611
    • (2004) Proc. R. Soc. Lond., Ser. A , vol.460 , pp. 1597-1611
    • Wu, Z.1    Huang, N.E.2
  • 15
    • 0000501589 scopus 로고
    • Fractional Brownian motions fractional noises and applications
    • B.B. Mandelbr, and J.W. Van Ness Fractional Brownian motions fractional noises and applications SIAM Rev. 10 1968 422
    • (1968) SIAM Rev. , vol.10 , pp. 422
    • Mandelbr, B.B.1    Van Ness, J.W.2
  • 16
    • 77955239049 scopus 로고    scopus 로고
    • A comparative study on the local mean decomposition and empirical mode decomposition and their applications to rotating machinery health diagnosis
    • (10 p.)
    • Y. Wang, Z. He, and Y. Zi A comparative study on the local mean decomposition and empirical mode decomposition and their applications to rotating machinery health diagnosis J. Vib. Acoust. 132 2010 021010 (10 p.)
    • (2010) J. Vib. Acoust. , vol.132 , pp. 021010
    • Wang, Y.1    He, Z.2    Zi, Y.3
  • 17
    • 0031077325 scopus 로고    scopus 로고
    • Flexible tree-structured signal expansions using time-varying wavelet packets
    • Z.X. Xiong, K. Ramchandran, C. Herley, and et al. Flexible tree-structured signal expansions using time-varying wavelet packets IEEE Trans. Signal Process. 45 February 1997 333 345
    • (1997) IEEE Trans. Signal Process. , vol.45 , Issue.FEBRUARY , pp. 333-345
    • Xiong, Z.X.1    Ramchandran, K.2    Herley, C.3
  • 18
    • 85008018510 scopus 로고    scopus 로고
    • One or two frequencies? the empirical mode decomposition answers
    • G. Rilling, and P. Flandrin One or two frequencies? The empirical mode decomposition answers IEEE Trans. Signal Process. 56 2008 85 95
    • (2008) IEEE Trans. Signal Process. , vol.56 , pp. 85-95
    • Rilling, G.1    Flandrin, P.2
  • 19
    • 80052631685 scopus 로고    scopus 로고
    • One or two frequencies? the synchrosqueezing answers
    • W. Hau-tieng, P. Flandrin, and I. Daubechies One or two frequencies? The synchrosqueezing answers Adv. Adapt. Data Anal. 3 April 2011 29 39
    • (2011) Adv. Adapt. Data Anal. , vol.3 , Issue.APRIL , pp. 29-39
    • Hau-Tieng, W.1    Flandrin, P.2    Daubechies, I.3
  • 20
    • 84869090790 scopus 로고    scopus 로고
    • Trend filtering via empirical mode decompositions
    • A. Moghtaderi, P. Flandrin, and P. Borgnat Trend filtering via empirical mode decompositions Comput. Stat. Data Anal. 58 February 2013 114 126
    • (2013) Comput. Stat. Data Anal. , vol.58 , Issue.FEBRUARY , pp. 114-126
    • Moghtaderi, A.1    Flandrin, P.2    Borgnat, P.3
  • 21
    • 0032936744 scopus 로고    scopus 로고
    • Oscillatory brain theory: A new trend in neuroscience - The role of oscillatory processes in sensory and cognitive functions
    • E. Basar, C. Basar-Eroglu, S. Karakas, and et al. Oscillatory brain theory: a new trend in neuroscience - the role of oscillatory processes in sensory and cognitive functions IEEE Eng. Med. Biol. 18 May-June 1999 56 66
    • (1999) IEEE Eng. Med. Biol. , vol.18 , Issue.MAY , pp. 56-66
    • Basar, E.1    Basar-Eroglu, C.2    Karakas, S.3
  • 22
    • 79951574600 scopus 로고    scopus 로고
    • Hilbert transform in vibration analysis
    • M. Feldman Hilbert transform in vibration analysis Mech. Syst. Signal Process. 25 April 2011 735 802
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.APRIL , pp. 735-802
    • Feldman, M.1
  • 23
    • 70350712142 scopus 로고    scopus 로고
    • Nonstationary approaches to trend identification and denoising of measured power system oscillations
    • A. Roman Messina, V. Vittal, G.T. Heydt, and et al. Nonstationary approaches to trend identification and denoising of measured power system oscillations IEEE Trans. Power Syst. 24 November 2009 1798 1807
    • (2009) IEEE Trans. Power Syst. , vol.24 , Issue.NOVEMBER , pp. 1798-1807
    • Roman Messina, A.1    Vittal, V.2    Heydt, G.T.3
  • 24
    • 84903942705 scopus 로고    scopus 로고
    • Vibration signals denoising using minimum description length principle for detecting impulsive signatures
    • Y. Wang, J. Xiang, Z. Jiang, and et al. Vibration signals denoising using minimum description length principle for detecting impulsive signatures Proc. Inst. Mech. Eng. C-J. Mech. 228 July 2014 1818 1828
    • (2014) Proc. Inst. Mech. Eng. C-J. Mech. , vol.228 , Issue.JULY , pp. 1818-1828
    • Wang, Y.1    Xiang, J.2    Jiang, Z.3
  • 25
    • 84925956911 scopus 로고    scopus 로고
    • Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system
    • Y. Wang, R. Markert, X. Xiang, and et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system Mech. Syst. Signal Process. 60-61 October 2015 243 251
    • (2015) Mech. Syst. Signal Process. , vol.60-61 , Issue.OCTOBER , pp. 243-251
    • Wang, Y.1    Markert, R.2    Xiang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.