메뉴 건너뛰기




Volumn 114, Issue , 2016, Pages 75-88

Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm

Author keywords

Artificial neural network; Crisscross optimization algorithm; Short term wind speed forecasting; Wavelet packet decomposition

Indexed keywords

ALGORITHMS; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; DATA HANDLING; FORECASTING; NEURAL NETWORKS; OPTIMIZATION; PARTICLE SWARM OPTIMIZATION (PSO); SPEED; WAVELET ANALYSIS; WAVELET DECOMPOSITION; WIND POWER;

EID: 84958154004     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2016.02.013     Document Type: Article
Times cited : (249)

References (33)
  • 1
    • 84946431138 scopus 로고    scopus 로고
    • A novel energy pattern factor method for wind speed distribution parameter estimation
    • S.A. Akda, and N. Güler A novel energy pattern factor method for wind speed distribution parameter estimation Energy Convers Manage 106 2015 1124 1133
    • (2015) Energy Convers Manage , vol.106 , pp. 1124-1133
    • Akda, S.A.1    Güler, N.2
  • 2
    • 84867024492 scopus 로고    scopus 로고
    • A mean flow acoustic engine capable of wind energy harvesting
    • D. Sun, Y. Xu, H. Chen, K. Wu, K. Liu, and Y. Yu A mean flow acoustic engine capable of wind energy harvesting Energy Convers Manage 63 2012 101 105
    • (2012) Energy Convers Manage , vol.63 , pp. 101-105
    • Sun, D.1    Xu, Y.2    Chen, H.3    Wu, K.4    Liu, K.5    Yu, Y.6
  • 3
    • 85027922175 scopus 로고    scopus 로고
    • Sustainable development of energy systems
    • N. Duic, and M.A. Rosen Sustainable development of energy systems Energy Convers Manage 87 2014 1057 1062
    • (2014) Energy Convers Manage , vol.87 , pp. 1057-1062
    • Duic, N.1    Rosen, M.A.2
  • 4
    • 84893650940 scopus 로고    scopus 로고
    • Short-term wind speed forecasting based on a hybrid model
    • W. Zhang, J. Wang, J. Wang, Z. Zhao, and M. Tian Short-term wind speed forecasting based on a hybrid model Appl Soft Comput 13 2013 3225 3233
    • (2013) Appl Soft Comput , vol.13 , pp. 3225-3233
    • Zhang, W.1    Wang, J.2    Wang, J.3    Zhao, Z.4    Tian, M.5
  • 5
    • 84892441792 scopus 로고    scopus 로고
    • Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
    • C. Ren, N. An, J. Wang, L. Li, B. Hu, and D. Shang Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting Knowl-Based Syst 56 2014 226 239
    • (2014) Knowl-Based Syst , vol.56 , pp. 226-239
    • Ren, C.1    An, N.2    Wang, J.3    Li, L.4    Hu, B.5    Shang, D.6
  • 6
    • 84897459902 scopus 로고    scopus 로고
    • A review of combined approaches for prediction of short-term wind speed and power
    • A. Tascikaraoglu, and M. Uzunoglu A review of combined approaches for prediction of short-term wind speed and power Renew Sustain Energy Rev 34 2014 243 254
    • (2014) Renew Sustain Energy Rev , vol.34 , pp. 243-254
    • Tascikaraoglu, A.1    Uzunoglu, M.2
  • 7
    • 0029294334 scopus 로고
    • Use of time-series analysis to model and forecast wind speed
    • Z. Huang, and Z.S. Chalabi Use of time-series analysis to model and forecast wind speed J Wind Eng Ind Aerodyn 56 1995 311 322
    • (1995) J Wind Eng Ind Aerodyn , vol.56 , pp. 311-322
    • Huang, Z.1    Chalabi, Z.S.2
  • 8
    • 78650562310 scopus 로고    scopus 로고
    • ARMA based approaches for forecasting the tuple of wind speed and direction
    • E. Erdem, and J. Shi ARMA based approaches for forecasting the tuple of wind speed and direction Appl Energy 88 2011 1405 1414
    • (2011) Appl Energy , vol.88 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 9
    • 84903179521 scopus 로고    scopus 로고
    • A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
    • Z. Su, J. Wang, H. Lu, and G. Zhao A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting Energy Convers Manage 85 2014 443 452
    • (2014) Energy Convers Manage , vol.85 , pp. 443-452
    • Su, Z.1    Wang, J.2    Lu, H.3    Zhao, G.4
  • 10
    • 84954424030 scopus 로고    scopus 로고
    • Linear and non-linear autoregressive models for short-term wind speed forecasting
    • M. Lydia, S. Suresh Kumar, A. Immanuel Selvakumar, and G. Edwin Prem Kumar Linear and non-linear autoregressive models for short-term wind speed forecasting Energy Convers Manage 2016 10.1016/j.enconman.2016.01.007
    • (2016) Energy Convers Manage
    • Lydia, M.1    Kumar, S.S.2    Selvakumar, A.I.3    Kumar, G.E.P.4
  • 11
    • 78049513565 scopus 로고    scopus 로고
    • Very short-term wind speed prediction: a new artificial neural network-Markov chain model
    • S.A. Pourmousavi Kani, and M.M. Ardehali Very short-term wind speed prediction: a new artificial neural network-Markov chain model Energy Convers Manage 52 2011 738 745
    • (2011) Energy Convers Manage , vol.52 , pp. 738-745
    • Kani, S.A.P.1    Ardehali, M.M.2
  • 12
    • 51849142610 scopus 로고    scopus 로고
    • Short term wind speed forecasting in la Venta, Oaxaca, Mexico, using artificial neural networks
    • E. Cadenas, and W. Rivera Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks Renew Energy 34 2009 274 278
    • (2009) Renew Energy , vol.34 , pp. 274-278
    • Cadenas, E.1    Rivera, W.2
  • 13
    • 84944909341 scopus 로고    scopus 로고
    • Short-term wind speed and power forecasting using an ensemble of mixture density neural networks
    • Z. Men, E. Yee, F.S. Lien, D. Wen, and Y. Chen Short-term wind speed and power forecasting using an ensemble of mixture density neural networks Renew Energy 2016 10.1016/j.renene.2015.10.014
    • (2016) Renew Energy
    • Men, Z.1    Yee, E.2    Lien, F.S.3    Wen, D.4    Chen, Y.5
  • 14
    • 84938206905 scopus 로고    scopus 로고
    • Wind speed prediction using reduced support vector machines with feature selection
    • X. Kong, X. Liu, R. Shi, and K. Lee Wind speed prediction using reduced support vector machines with feature selection Neurocomputing 169 2015 449 456
    • (2015) Neurocomputing , vol.169 , pp. 449-456
    • Kong, X.1    Liu, X.2    Shi, R.3    Lee, K.4
  • 15
    • 0022471098 scopus 로고
    • Learning representations by back propagating errors
    • D.E. Rumelhart, G.E. Hintont, and R.J. Williams Learning representations by back propagating errors Nature 323 1986 533 536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hintont, G.E.2    Williams, R.J.3
  • 16
    • 44649202790 scopus 로고    scopus 로고
    • A new sub-pixel mapping algorithm based on a BP neural network with an observation model
    • L. Zhang, K. Wu, Y. Zhong, and P. Li A new sub-pixel mapping algorithm based on a BP neural network with an observation model Neurocomputing 71 2008 2046 2054
    • (2008) Neurocomputing , vol.71 , pp. 2046-2054
    • Zhang, L.1    Wu, K.2    Zhong, Y.3    Li, P.4
  • 17
    • 84906483194 scopus 로고    scopus 로고
    • A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
    • F. Yu, and X. Xu A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network Appl Energy 134 2014 102 113
    • (2014) Appl Energy , vol.134 , pp. 102-113
    • Yu, F.1    Xu, X.2
  • 18
    • 78049524148 scopus 로고    scopus 로고
    • A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal
    • H.M.I. Pousinho, V.M.F. Mendes, and O.J.P.S. Catal A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal Energy Convers Manage 52 2011 397 402
    • (2011) Energy Convers Manage , vol.52 , pp. 397-402
    • Pousinho, H.M.I.1    Mendes, V.M.F.2    Catal, O.J.P.S.3
  • 19
    • 84887255451 scopus 로고    scopus 로고
    • Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting
    • R. Rahmani, R. Yusof, M. Seyedmahmoudian, and S. Mekhilef Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting J Wind Eng Ind Aerodyn 123 2013 163 170
    • (2013) J Wind Eng Ind Aerodyn , vol.123 , pp. 163-170
    • Rahmani, R.1    Yusof, R.2    Seyedmahmoudian, M.3    Mekhilef, S.4
  • 20
    • 84908425965 scopus 로고    scopus 로고
    • Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
    • H. Chitsaz, N. Amjady, and H. Zareipour Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm Energy Convers Manage 89 2015 588 598
    • (2015) Energy Convers Manage , vol.89 , pp. 588-598
    • Chitsaz, H.1    Amjady, N.2    Zareipour, H.3
  • 21
    • 84941892493 scopus 로고    scopus 로고
    • Crisscross optimization algorithm for solving combined heat and power economic dispatch problem
    • A. Meng, P. Mei, H. Yin, X. Peng, and Z. Guo Crisscross optimization algorithm for solving combined heat and power economic dispatch problem Energy Convers Manage 105 2015 1303 1317
    • (2015) Energy Convers Manage , vol.105 , pp. 1303-1317
    • Meng, A.1    Mei, P.2    Yin, H.3    Peng, X.4    Guo, Z.5
  • 22
    • 84958205705 scopus 로고    scopus 로고
    • Crisscross optimization algorithm for large-scale dynamic economic dispatch problem with valve-point effects
    • A. Meng, H. Hu, H. Yin, X. Peng, and Z. Guo Crisscross optimization algorithm for large-scale dynamic economic dispatch problem with valve-point effects Energy 93 2015 2175 2190
    • (2015) Energy , vol.93 , pp. 2175-2190
    • Meng, A.1    Hu, H.2    Yin, H.3    Peng, X.4    Guo, Z.5
  • 23
    • 84905494402 scopus 로고    scopus 로고
    • Forecasting wind speed using empirical mode decomposition and Elman neural network
    • J. Wang, W. Zhang, Y. Li, J. Wang, and Z. Dang Forecasting wind speed using empirical mode decomposition and Elman neural network Appl Soft Comput 23 2014 452 459
    • (2014) Appl Soft Comput , vol.23 , pp. 452-459
    • Wang, J.1    Zhang, W.2    Li, Y.3    Wang, J.4    Dang, Z.5
  • 24
    • 84884126948 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
    • D. Liu, D. Niu, H. Wang, and L. Fan Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm Renew Energy 62 2014 592 597
    • (2014) Renew Energy , vol.62 , pp. 592-597
    • Liu, D.1    Niu, D.2    Wang, H.3    Fan, L.4
  • 25
    • 84878854403 scopus 로고    scopus 로고
    • A hybrid forecasting approach applied to wind speed time series
    • J. Hu, J. Wang, and G. Zeng A hybrid forecasting approach applied to wind speed time series Renew Energy 60 2013 185 194
    • (2013) Renew Energy , vol.60 , pp. 185-194
    • Hu, J.1    Wang, J.2    Zeng, G.3
  • 26
    • 84863508830 scopus 로고    scopus 로고
    • A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
    • H. Liu, C. Chen, H. Tian, and Y. Li A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks Renew Energy 48 2012 545 556
    • (2012) Renew Energy , vol.48 , pp. 545-556
    • Liu, H.1    Chen, C.2    Tian, H.3    Li, Y.4
  • 27
    • 84875115854 scopus 로고    scopus 로고
    • Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks
    • H. Liu, H. Tian, D. Pan, and Y. Li Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks Appl Energy 107 2013 191 208
    • (2013) Appl Energy , vol.107 , pp. 191-208
    • Liu, H.1    Tian, H.2    Pan, D.3    Li, Y.4
  • 28
    • 84929146225 scopus 로고    scopus 로고
    • Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
    • H. Liu, H. Tian, and Y. Li Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms Energy Convers Manage 100 2015 16 22
    • (2015) Energy Convers Manage , vol.100 , pp. 16-22
    • Liu, H.1    Tian, H.2    Li, Y.3
  • 30
    • 84920167958 scopus 로고    scopus 로고
    • Comparison of four Adaboost algorithm based artificial neural works in wind speed predictions
    • H. Liu, H. Tian, Y. Li, and L. Zhang Comparison of four Adaboost algorithm based artificial neural works in wind speed predictions Energy Convers Manage 92 2015 67 81
    • (2015) Energy Convers Manage , vol.92 , pp. 67-81
    • Liu, H.1    Tian, H.2    Li, Y.3    Zhang, L.4
  • 31
    • 84904722162 scopus 로고    scopus 로고
    • Crisscross optimization algorithm and its application
    • A. Meng, Y. Chen, H. Yin, and S. Chen Crisscross optimization algorithm and its application Knowl-Based Syst 67 2014 218 229
    • (2014) Knowl-Based Syst , vol.67 , pp. 218-229
    • Meng, A.1    Chen, Y.2    Yin, H.3    Chen, S.4
  • 32
    • 0024700097 scopus 로고
    • A theory for multi-resolution signal decomposition: the wavelet representation
    • S.G. Mallat A theory for multi-resolution signal decomposition: the wavelet representation IEEE Trans Pattern Anal Mach Intell 11 1989 674 693
    • (1989) IEEE Trans Pattern Anal Mach Intell , vol.11 , pp. 674-693
    • Mallat, S.G.1
  • 33
    • 84876731436 scopus 로고    scopus 로고
    • An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization
    • H. Liu, H. Tian, C. Chen, and Y. Li An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization Int J Electr Power Energy Syst 52 2013 161 173
    • (2013) Int J Electr Power Energy Syst , vol.52 , pp. 161-173
    • Liu, H.1    Tian, H.2    Chen, C.3    Li, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.