메뉴 건너뛰기




Volumn 87, Issue , 2016, Pages 903-910

A multiobjective framework for wind speed prediction interval forecasts

Author keywords

Differential evolution; Multi objective; Prediction interval; Renewable energy; Support vector machines; Wind speed

Indexed keywords

ARTIFICIAL INTELLIGENCE; ELECTRIC UTILITIES; EVOLUTIONARY ALGORITHMS; LEARNING SYSTEMS; OPTIMIZATION; PARETO PRINCIPLE; RENEWABLE ENERGY RESOURCES; SUPPORT VECTOR MACHINES; WIND; WIND POWER;

EID: 84940704970     PISSN: 09601481     EISSN: 18790682     Source Type: Journal    
DOI: 10.1016/j.renene.2015.08.038     Document Type: Article
Times cited : (79)

References (35)
  • 1
    • 36649003320 scopus 로고    scopus 로고
    • Global warming and renewable energy sources for sustainable development: a case study in Turkey
    • Bilgen S., Keles S., Kaygusuz A., Sari A., Kaygusuz K. Global warming and renewable energy sources for sustainable development: a case study in Turkey. Renew. Sustain. Energy Rev. 2008, 12(2):372-396.
    • (2008) Renew. Sustain. Energy Rev. , vol.12 , Issue.2 , pp. 372-396
    • Bilgen, S.1    Keles, S.2    Kaygusuz, A.3    Sari, A.4    Kaygusuz, K.5
  • 2
    • 84892950515 scopus 로고    scopus 로고
    • Efficient heuristic-based approach for multi-objective capacitor allocation in radial distribution networks
    • Jan.
    • El-Fergany A., Abdelaziz A. Efficient heuristic-based approach for multi-objective capacitor allocation in radial distribution networks. IET Gener. Transm. Distrib. Jan 2014, 8:70-80.
    • (2014) IET Gener. Transm. Distrib. , vol.8 , pp. 70-80
    • El-Fergany, A.1    Abdelaziz, A.2
  • 3
    • 84919905288 scopus 로고    scopus 로고
    • A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
    • Jan
    • Ren Y., Suganthan P., Srikanth N. A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods. IEEE Trans. Sustain. Energy Jan 2015, 6:236-244.
    • (2015) IEEE Trans. Sustain. Energy , vol.6 , pp. 236-244
    • Ren, Y.1    Suganthan, P.2    Srikanth, N.3
  • 4
    • 0032029065 scopus 로고    scopus 로고
    • A neural networks approach for wind speed prediction
    • Mohandes M., Halawani T., Rehman S., Hussain A.A. A neural networks approach for wind speed prediction. Renew. Energy 1998, 13(3):345-354.
    • (1998) Renew. Energy , vol.13 , Issue.3 , pp. 345-354
    • Mohandes, M.1    Halawani, T.2    Rehman, S.3    Hussain, A.A.4
  • 5
    • 33847369874 scopus 로고    scopus 로고
    • A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
    • Mohandes M., Halawani T., Rehman S., Hussain A.A. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neurocomputing 2007, 70(79):1525-1542.
    • (2007) Neurocomputing , vol.70 , Issue.79 , pp. 1525-1542
    • Mohandes, M.1    Halawani, T.2    Rehman, S.3    Hussain, A.A.4
  • 6
  • 7
    • 77949570119 scopus 로고    scopus 로고
    • A hybrid statistical method to predict wind speed and wind power
    • Liu H., Tian H.-Q., Chen C., Li Y.fei A hybrid statistical method to predict wind speed and wind power. Renew. Energy 2010, 35(8):1857-1861.
    • (2010) Renew. Energy , vol.35 , Issue.8 , pp. 1857-1861
    • Liu, H.1    Tian, H.-Q.2    Chen, C.3    Li, Y.F.4
  • 8
    • 84863508830 scopus 로고    scopus 로고
    • A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
    • Liu H., Chen C., Tian H.qi, Li Y.fei A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew. Energy 2012, 48(0):545-556.
    • (2012) Renew. Energy , vol.48 , pp. 545-556
    • Liu, H.1    Chen, C.2    Tian, H.Q.3    Li, Y.F.4
  • 9
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • Sfetsos A. A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renew. Energy 2000, 21(1):23-35.
    • (2000) Renew. Energy , vol.21 , Issue.1 , pp. 23-35
    • Sfetsos, A.1
  • 10
    • 84871765209 scopus 로고    scopus 로고
    • A neural network-GARCH-based method for construction of prediction intervals
    • Khosravi A., Nahavandi S., Creighton D. A neural network-GARCH-based method for construction of prediction intervals. Electr. Power Syst. Res. 2013, 96(0):185-193.
    • (2013) Electr. Power Syst. Res. , vol.96 , pp. 185-193
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 11
    • 34548156412 scopus 로고    scopus 로고
    • Non-parametric probabilistic forecasts of wind power: required properties and evaluation
    • Pinson P., Nielsen H.A., Mller J.K., Madsen H., Kariniotakis G.N. Non-parametric probabilistic forecasts of wind power: required properties and evaluation. Wind Energy 2007, 10(6):497-516.
    • (2007) Wind Energy , vol.10 , Issue.6 , pp. 497-516
    • Pinson, P.1    Nielsen, H.A.2    Mller, J.K.3    Madsen, H.4    Kariniotakis, G.N.5
  • 14
    • 14344255817 scopus 로고    scopus 로고
    • Probabilistic wind power forecasts using local quantile regression
    • Bremnes J.B. Probabilistic wind power forecasts using local quantile regression. Wind Energy 2004, 7(1):47-54.
    • (2004) Wind Energy , vol.7 , Issue.1 , pp. 47-54
    • Bremnes, J.B.1
  • 15
    • 84880255073 scopus 로고    scopus 로고
    • Prediction intervals for short-term wind farm power generation forecasts
    • July
    • Khosravi A., Nahavandi S., Creighton D. Prediction intervals for short-term wind farm power generation forecasts. IEEE Trans. Sustain. Energy July 2013, 4:602-610.
    • (2013) IEEE Trans. Sustain. Energy , vol.4 , pp. 602-610
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 16
    • 80052409097 scopus 로고    scopus 로고
    • Comprehensive review of neural network-based prediction intervals and new advances
    • Khosravi A., Nahavandi S., Creighton D., Atiya A. Comprehensive review of neural network-based prediction intervals and new advances. IEEE Trans. Neural Netw. 2011, 22(9):1341-1356.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.9 , pp. 1341-1356
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3    Atiya, A.4
  • 18
    • 0003866267 scopus 로고    scopus 로고
    • Multi-objective Optimization Using Evolutionary Algorithms
    • John Wiley and Sons, Chichester
    • Deb K. Multi-objective Optimization Using Evolutionary Algorithms. Wiley-interscience Series in Systems and Optimization 2001, John Wiley and Sons, Chichester.
    • (2001) Wiley-interscience Series in Systems and Optimization
    • Deb, K.1
  • 19
    • 84926338496 scopus 로고    scopus 로고
    • Prediction interval estimations for electricity demands and prices: a multi-objective approach
    • Shrivastava N.A., Panigrahi B.K. Prediction interval estimations for electricity demands and prices: a multi-objective approach. IET Gener. Transm. Distrib. 2015, 9(5):494-502.
    • (2015) IET Gener. Transm. Distrib. , vol.9 , Issue.5 , pp. 494-502
    • Shrivastava, N.A.1    Panigrahi, B.K.2
  • 21
    • 84879800748 scopus 로고    scopus 로고
    • Quantifying uncertainties of neural network-based electricity price forecasts
    • Khosravi A., Nahavandi S., Creighton D. Quantifying uncertainties of neural network-based electricity price forecasts. Appl. Energy 2013, 112(0):120-129.
    • (2013) Appl. Energy , vol.112 , pp. 120-129
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 23
    • 0040428297 scopus 로고    scopus 로고
    • Prediction intervals for artificial neural networks
    • Hwang J.T.G., Ding A.A. Prediction intervals for artificial neural networks. J. Am. Stat. Assoc. 1997, 92(438):748-757.
    • (1997) J. Am. Stat. Assoc. , vol.92 , Issue.438 , pp. 748-757
    • Hwang, J.T.G.1    Ding, A.A.2
  • 25
    • 84926435343 scopus 로고    scopus 로고
    • Prediction interval estimation of electricity prices using PSO tuned support vector machines
    • 1-1.
    • Shrivastava N., Khosravi A., Panigrahi B. Prediction interval estimation of electricity prices using PSO tuned support vector machines. IEEE Trans. Ind. Inf. 2015, (99). 1-1.
    • (2015) IEEE Trans. Ind. Inf. , Issue.99
    • Shrivastava, N.1    Khosravi, A.2    Panigrahi, B.3
  • 26
    • 84903128295 scopus 로고
    • A decision-theoretic approach to interval estimation
    • Winkler R.L. A decision-theoretic approach to interval estimation. J. Am. Stat. Assoc. 1972, 67(337):187-191.
    • (1972) J. Am. Stat. Assoc. , vol.67 , Issue.337 , pp. 187-191
    • Winkler, R.L.1
  • 27
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces
    • Storn R., Price K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11(4):341-359.
    • (1997) J. Glob. Optim. , vol.11 , Issue.4 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 29
    • 24344460395 scopus 로고    scopus 로고
    • DEMO: differential evolution for multiobjective optimization
    • Springer, Berlin Heidelberg, C. Coello Coello, A. Hernndez Aguirre, E. Zitzler (Eds.) Evolutionary Multi-criterion Optimization
    • Robic T., Filipic B. DEMO: differential evolution for multiobjective optimization. Lecture Notes in Computer Science 2005, vol. 3410:520-533. Springer, Berlin Heidelberg. C. Coello Coello, A. Hernndez Aguirre, E. Zitzler (Eds.).
    • (2005) Lecture Notes in Computer Science , vol.3410 , pp. 520-533
    • Robic, T.1    Filipic, B.2
  • 30
    • 0344395549 scopus 로고    scopus 로고
    • Environmental/economic power dispatch using multiobjective evolutionary algorithms
    • Nov
    • Abido M. Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans. Power Syst. Nov 2003, 18:1529-1537.
    • (2003) IEEE Trans. Power Syst. , vol.18 , pp. 1529-1537
    • Abido, M.1
  • 32
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • Huang C.-L., Wang C.-J. A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 2006, 31(2):231-240.
    • (2006) Expert Syst. Appl. , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.-L.1    Wang, C.-J.2
  • 33
    • 84964477244 scopus 로고    scopus 로고
    • atONLINE, Feb.
    • N. R. E. Laboratory, " atONLINE," Feb. 2015. http://www.nrel.gov/wind/.
    • (2015)
  • 34
    • 84859094795 scopus 로고    scopus 로고
    • Short-term wind power prediction using a wavelet support vector machine
    • April
    • Zeng J., Qiao W. Short-term wind power prediction using a wavelet support vector machine. IEEE Trans. Sustain. Energy April 2012, 3:255-264.
    • (2012) IEEE Trans. Sustain. Energy , vol.3 , pp. 255-264
    • Zeng, J.1    Qiao, W.2
  • 35
    • 79952186591 scopus 로고    scopus 로고
    • Lower upper bound estimation method for construction of neural network-based prediction intervals
    • Khosravi A., Nahavandi S., Creighton D., Atiya A. Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans. Neural Netw. 2011, 22(3):337-346.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.3 , pp. 337-346
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3    Atiya, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.