메뉴 건너뛰기




Volumn 8, Issue 3, 2016, Pages

Research and application based on adaptive boosting strategy and modified CGFPA algorithm: A case study for wind speed forecasting

Author keywords

ABBP mode; CGFPA algorithm; Data preprocessing; Sustainable energy; Wind speed forecasting

Indexed keywords


EID: 84961923940     PISSN: None     EISSN: 20711050     Source Type: Journal    
DOI: 10.3390/su8030235     Document Type: Article
Times cited : (26)

References (54)
  • 1
    • 84920167958 scopus 로고    scopus 로고
    • Comparison of four adaboost algorithm based artificial neural networks in wind speed predictions
    • Hui, L.; Tian, H.Q.; Li, Y.F.; Lei, Z. Comparison of four adaboost algorithm based artificial neural networks in wind speed predictions. Energy Convers. Manag. 2015, 92, 67-81.
    • (2015) Energy Convers. Manag , vol.92 , pp. 67-81
    • Hui, L.1    Tian, H.Q.2    Li, Y.F.3    Lei, Z.4
  • 2
    • 84961892389 scopus 로고    scopus 로고
    • (accessed on 5 February 2015)
    • New Record in Worldwide Wind Installations. Available online: http://www.wwindea.org/new-record-in-worldwide-wind-installations/(accessedon 5 February 2015).
  • 5
    • 84922362244 scopus 로고    scopus 로고
    • The study and application of a novel hybrid forecasting model-A case study of wind speed forecasting in china
    • Wang, J.Z.; Wang, Y.; Jiang, P. The study and application of a novel hybrid forecasting model-A case study of wind speed forecasting in china. Appl. Energy 2015, 143, 472-488.
    • (2015) Appl. Energy , vol.143 , pp. 472-488
    • Wang, J.Z.1    Wang, Y.2    Jiang, P.3
  • 7
    • 84899903501 scopus 로고    scopus 로고
    • A novel hybrid approach for wind speed prediction
    • Wang, J.; Zhang, W.; Wang, J.; Han, T.; Kong, L. A novel hybrid approach for wind speed prediction. Inform. Sci. 2014, 273, 304-318.
    • (2014) Inform. Sci , vol.273 , pp. 304-318
    • Wang, J.1    Zhang, W.2    Wang, J.3    Han, T.4    Kong, L.5
  • 11
    • 58149468814 scopus 로고    scopus 로고
    • Improvement of Auto-Regressive Integrated Moving Average Models Using Fuzzy Logic and Artificial Neural Networks (ANNs)
    • Khashei, M.; Bijari, M.; Raissi-Ardali, G. Improvement of Auto-Regressive Integrated Moving Average Models Using Fuzzy Logic and Artificial Neural Networks (ANNs). Neurocomputing 2009, 72, 956-967.
    • (2009) Neurocomputing , vol.72 , pp. 956-967
    • Khashei, M.1    Bijari, M.2    Raissi-Ardali, G.3
  • 13
    • 78049513565 scopus 로고    scopus 로고
    • Very short-term wind speed prediction: A new artificial neural network-Markov chain model
    • Pourmousavi Kani, S.A.; Ardehali, M.M. Very short-term wind speed prediction: A new artificial neural network-Markov chain model. Energy Convers. Manag. 2011, 52, 738-745.
    • (2011) Energy Convers. Manag , vol.52 , pp. 738-745
    • Pourmousavi Kani, S.A.1    Ardehali, M.M.2
  • 14
    • 84893650940 scopus 로고    scopus 로고
    • Short-term wind speed forecasting based on a hybrid model
    • Zhang, W.;Wang, J.;Wang, J.; Zhao, Z.; Tian, M. Short-term wind speed forecasting based on a hybrid model. Appl. Soft Comput. 2013, 13, 3225-3233.
    • (2013) Appl. Soft Comput , vol.13 , pp. 3225-3233
    • Zhang, W.1    Wang, J.2    Wang, J.3    Zhao, Z.4    Tian, M.5
  • 15
    • 0033086885 scopus 로고    scopus 로고
    • Short-term prediction of the power production from wind farms
    • Landberg, L. Short-term prediction of the power production from wind farms. J. Wind Eng. Ind. Aerodyn. 1999, 80, 207-220.
    • (1999) J. Wind Eng. Ind. Aerodyn , vol.80 , pp. 207-220
    • Landberg, L.1
  • 17
  • 18
    • 60249084947 scopus 로고    scopus 로고
    • Wind speed prediction using statistical regression and neural network
    • Kulkarni, M.; Patil, S.; Rama, G.; Sen, P. Wind speed prediction using statistical regression and neural network. J. Earth Syst. Sci. 2008, 117, 457-463.
    • (2008) J. Earth Syst. Sci , vol.117 , pp. 457-463
    • Kulkarni, M.1    Patil, S.2    Rama, G.3    Sen, P.4
  • 19
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-arima models
    • Kavasseri, R.G.; Seetharaman, K. Day-ahead wind speed forecasting using f-arima models. Renew. Energy 2009, 34, 1388-1393.
    • (2009) Renew. Energy , vol.34 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 20
    • 33847369874 scopus 로고    scopus 로고
    • A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
    • Barbounis, T.G.; Theocharis, J.B. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neurocomputing 2007, 70, 1525-1542.
    • (2007) Neurocomputing , vol.70 , pp. 1525-1542
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 21
    • 0036504289 scopus 로고    scopus 로고
    • Short-term prediction of the aggregated power output of wind farms-astatistical analysis of the reduction of the prediction error by spatial smoothing effects
    • Focken, U.; Lange, M.; Moonnich, K.; Waldl, H.P.; Georg, B.H.; Luig, A. Short-term prediction of the aggregated power output of wind farms-astatistical analysis of the reduction of the prediction error by spatial smoothing effects. J. Wind Eng. Ind. Aerodyn. 2002, 90, 231-246.
    • (2002) J. Wind Eng. Ind. Aerodyn , vol.90 , pp. 231-246
    • Focken, U.1    Lange, M.2    Moonnich, K.3    Waldl, H.P.4    Georg, B.H.5    Luig, A.6
  • 22
    • 7444227472 scopus 로고    scopus 로고
    • Application of a control algorithm for wind speed prediction and active power generation
    • Flores, P.; Tapia, A.; Tapia, G. Application of a control algorithm for wind speed prediction and active power generation. Renew. Energy 2005, 30, 523-536.
    • (2005) Renew. Energy , vol.30 , pp. 523-536
    • Flores, P.1    Tapia, A.2    Tapia, G.3
  • 23
    • 38349108557 scopus 로고    scopus 로고
    • Analysis of wind power generation and prediction using ANN: A case study
    • Mabel, M.C.; Fernández, E. Analysis of wind power generation and prediction using ANN: A case study. Renew. Energy 2008, 33, 986-992.
    • (2008) Renew. Energy , vol.33 , pp. 986-992
    • Mabel, M.C.1    Fernández, E.2
  • 24
    • 54149110925 scopus 로고    scopus 로고
    • A new strategy for wind speed forecasting using artificial intelligent methods
    • Monfared, M.; Rastegar, H.; Kojabadi, H.M. A new strategy for wind speed forecasting using artificial intelligent methods. Renew. Energy 2009, 34, 845-848.
    • (2009) Renew. Energy , vol.34 , pp. 845-848
    • Monfared, M.1    Rastegar, H.2    Kojabadi, H.M.3
  • 25
    • 51849142610 scopus 로고    scopus 로고
    • Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks
    • Cadenas, E.; Rivera, W. Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks. Renew. Energy 2009, 34, 274-278.
    • (2009) Renew. Energy , vol.34 , pp. 274-278
    • Cadenas, E.1    Rivera, W.2
  • 26
    • 0036779031 scopus 로고    scopus 로고
    • A novel approach for the forecasting of mean hourly wind speed time series
    • Sfetsos, A. A novel approach for the forecasting of mean hourly wind speed time series. Renew. Energy 2002, 27, 163-174.
    • (2002) Renew. Energy , vol.27 , pp. 163-174
    • Sfetsos, A.1
  • 27
    • 84892441792 scopus 로고    scopus 로고
    • Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting
    • Ren, C.; An, N.; Wang, J.; Li, L.; Hu, B.; Shang, D. Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowl.-Based Syst. 2014, 56, 226-239.
    • (2014) Knowl.-Based Syst , vol.56 , pp. 226-239
    • Ren, C.1    An, N.2    Wang, J.3    Li, L.4    Hu, B.5    Shang, D.6
  • 28
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • Sfetsos, A. A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renew. Energy 2000, 21, 23-35.
    • (2000) Renew. Energy , vol.21 , pp. 23-35
    • Sfetsos, A.1
  • 30
    • 84904741064 scopus 로고    scopus 로고
    • Feature Selection in Wind Speed Prediction Systems based on a hybrid Coral Reefs Optimization-Extreme Learning Machine Approach
    • Salcedo-Sanz, S.; Pastor-Sánchez, A.; Blanco-Aguilera, A.; Prieto, L.; García-Herrera, R. Feature Selection in Wind Speed Prediction Systems based on a hybrid Coral Reefs Optimization-Extreme Learning Machine Approach. Energy Convers. Manag. 2014, 87, 10-18.
    • (2014) Energy Convers. Manag , vol.87 , pp. 10-18
    • Salcedo-Sanz, S.1    Pastor-Sánchez, A.2    Blanco-Aguilera, A.3    Prieto, L.4    García-Herrera, R.5
  • 31
    • 84908046994 scopus 로고    scopus 로고
    • A Coral Reefs Optimization algorithm with Harmony Search operators for accurate wind speed prediction
    • Salcedo-Sanz, S.; Pastor-Sánchez, A.; del Ser, J.; Prieto, L.; Geem, Z.W. A Coral Reefs Optimization algorithm with Harmony Search operators for accurate wind speed prediction. Renew. Energy 2015, 75, 93-101.
    • (2015) Renew. Energy , vol.75 , pp. 93-101
    • Salcedo-Sanz, S.1    Pastor-Sánchez, A.2    del Ser, J.3    Prieto, L.4    Geem, Z.W.5
  • 34
    • 84863508830 scopus 로고    scopus 로고
    • A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
    • Hui, L.; Chao, C.; Hong-qi, T.; Yan-fei, L. A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew. Energy 2012, 48, 545-556.
    • (2012) Renew. Energy , vol.48 , pp. 545-556
    • Hui, L.1    Chao, C.2    Hong-qi, T.3    Yan-fei, L.4
  • 35
    • 84893188504 scopus 로고    scopus 로고
    • A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network
    • Vancouver, BC, Canada, 21-25 July
    • Wang, Y.;Wang, S.; Zhang, N. A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network. In Proceedings of the 2013 IEEE Power and Energy Society General Meeting (PES), Vancouver, BC, Canada, 21-25 July 2013.
    • (2013) Proceedings of the 2013 IEEE Power and Energy Society General Meeting (PES)
    • Wang, Y.1    Wang, S.2    Zhang, N.3
  • 36
    • 84939789758 scopus 로고    scopus 로고
    • Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
    • Hui, L.; Hong-Qi, T.; Xi-Feng, L.; Yan-Fei, L. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Appl. Energy 2015, 157, 183-194.
    • (2015) Appl. Energy , vol.157 , pp. 183-194
    • Hui, L.1    Hong-Qi, T.2    Xi-Feng, L.3    Yan-Fei, L.4
  • 37
    • 79952183962 scopus 로고    scopus 로고
    • A corrected hybrid approach for wind speed prediction in Hexi Corridor of China
    • Guo, Z.; Zhao, J.; Zhang, W.; Wang, J. A corrected hybrid approach for wind speed prediction in Hexi Corridor of China. Energy 2011, 36, 1668-1679.
    • (2011) Energy , vol.36 , pp. 1668-1679
    • Guo, Z.1    Zhao, J.2    Zhang, W.3    Wang, J.4
  • 38
    • 84876731436 scopus 로고    scopus 로고
    • An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization
    • Liu, H.; Tian, H.; Chen, C.; Li, Y. An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization. Int. J. Electr. Power 2013, 52, 161-173.
    • (2013) Int. J. Electr. Power , vol.52 , pp. 161-173
    • Liu, H.1    Tian, H.2    Chen, C.3    Li, Y.4
  • 39
    • 84866704537 scopus 로고    scopus 로고
    • Flower Pollination Algorithm for Global Optimization
    • Yang, X. Flower Pollination Algorithm for Global Optimization. Lect. Notes Comput. Sci. 2013, 7445, 240-249.
    • (2013) Lect. Notes Comput. Sci , vol.7445 , pp. 240-249
    • Yang, X.1
  • 40
    • 84931275580 scopus 로고    scopus 로고
    • Flower pollination algorithm based solar PV parameter estimation
    • Alam, D.; Yousri, D.; Eteiba, M. Flower pollination algorithm based solar PV parameter estimation. Energy Convers. Manag. 2015, 101, 410-422.
    • (2015) Energy Convers. Manag , vol.101 , pp. 410-422
    • Alam, D.1    Yousri, D.2    Eteiba, M.3
  • 41
    • 84941140684 scopus 로고    scopus 로고
    • Sizing optimization of truss structures using flower pollination algorithm
    • Bekdas, G.; Nigdeli, S.; Yang, X. Sizing optimization of truss structures using flower pollination algorithm. Appl. Soft Comput. 2015, 37, 322-331.
    • (2015) Appl. Soft Comput , vol.37 , pp. 322-331
    • Bekdas, G.1    Nigdeli, S.2    Yang, X.3
  • 42
    • 84944736813 scopus 로고    scopus 로고
    • Optimization of PV/Wind/Battery stand-alone system, using hybrid FPA/SA algorithm and CFD simulation, case study: Tehran
    • Tahani, M.; Babayan, N.; Pouyaei, A. Optimization of PV/Wind/Battery stand-alone system, using hybrid FPA/SA algorithm and CFD simulation, case study: Tehran. Energy Convers. Manag. 2015, 106, 644-659.
    • (2015) Energy Convers. Manag , vol.106 , pp. 644-659
    • Tahani, M.1    Babayan, N.2    Pouyaei, A.3
  • 43
    • 84928691403 scopus 로고    scopus 로고
    • Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch
    • Dubey, H.; Pandit, M.; Panigrahi, B. Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch. Renew. Energy 2015, 83, 188-202.
    • (2015) Renew. Energy , vol.83 , pp. 188-202
    • Dubey, H.1    Pandit, M.2    Panigrahi, B.3
  • 45
    • 84930947539 scopus 로고    scopus 로고
    • New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks
    • Liu, H.; Tian, H.; Liang, X.; Li, Y. New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks. Renew. Energy 2015, 83, 1066-1075.
    • (2015) Renew. Energy , vol.83 , pp. 1066-1075
    • Liu, H.1    Tian, H.2    Liang, X.3    Li, Y.4
  • 46
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise-assisted data analysis method
    • Wu, Z.; Huang, N. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1-41.
    • (2009) Adv. Adapt. Data Anal , vol.1 , pp. 1-41
    • Wu, Z.1    Huang, N.2
  • 47
    • 84923249757 scopus 로고    scopus 로고
    • Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine
    • Ahmadi, M.; Ahmadi, M.A.; Mehrpooya, M.; Rosen, M. Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine. Sustainability 2015, 7, 2243-2255.
    • (2015) Sustainability , vol.7 , pp. 2243-2255
    • Ahmadi, M.1    Ahmadi, M.A.2    Mehrpooya, M.3    Rosen, M.4
  • 48
    • 84906232211 scopus 로고    scopus 로고
    • Building Behavior Simulation by Means of Artificial Neural Network in Summer Conditions
    • Buratti, C.; Lascaro, E.; Palladino, D.; Vergoni, M. Building Behavior Simulation by Means of Artificial Neural Network in Summer Conditions. Sustainability 2014, 6, 5339-5353.
    • (2014) Sustainability , vol.6 , pp. 5339-5353
    • Buratti, C.1    Lascaro, E.2    Palladino, D.3    Vergoni, M.4
  • 49
    • 79953722212 scopus 로고    scopus 로고
    • Adaboost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies
    • Sun, J.; Jia, M.; Li, H. Adaboost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies. Expert Syst. Appl. 2011, 38, 9305-9312.
    • (2011) Expert Syst. Appl , vol.38 , pp. 9305-9312
    • Sun, J.1    Jia, M.2    Li, H.3
  • 50
    • 84900836173 scopus 로고    scopus 로고
    • Flower pollination algorithm: A novel approach for multiobjective optimization
    • Yang, X. Flower pollination algorithm: A novel approach for multiobjective optimization. Eng. Optim. 2014, 46, 1222-1237.
    • (2014) Eng. Optim , vol.46 , pp. 1222-1237
    • Yang, X.1
  • 51
    • 84952629849 scopus 로고    scopus 로고
    • Forecasting exchange rate using deep belief networks and conjugate gradient method
    • Shen, F.; Chao, J.; Zhao, J. Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing 2015, 167, 243-253.
    • (2015) Neurocomputing , vol.167 , pp. 243-253
    • Shen, F.1    Chao, J.2    Zhao, J.3
  • 52
    • 2542547655 scopus 로고    scopus 로고
    • Research on superior combination forecasting model based on forecasting effective measure
    • (In Chinese)
    • Chen, H.; Hou, D. Research on superior combination forecasting model based on forecasting effective measure. J. Univ. Sci. Technol. China 2002, 2, 172-180. (In Chinese)
    • (2002) J. Univ. Sci. Technol. China , vol.2 , pp. 172-180
    • Chen, H.1    Hou, D.2
  • 53
    • 84926193230 scopus 로고    scopus 로고
    • A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
    • Xiao, L.; Wang, J.; Hou, R.; Wu, J. A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 2015, 82, 524-549.
    • (2015) Energy , vol.82 , pp. 524-549
    • Xiao, L.1    Wang, J.2    Hou, R.3    Wu, J.4
  • 54
    • 84921902331 scopus 로고    scopus 로고
    • Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests
    • Diebold, F. Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests. J. Bus. Econ. Stat. 2015, 33, 1.
    • (2015) J. Bus. Econ. Stat , vol.33 , pp. 1
    • Diebold, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.