-
2
-
-
21844477547
-
Wind speed and generated power forecasting in wind farm
-
Yang X.Y., Xiao Y., Chen S.Y. Wind speed and generated power forecasting in wind farm. Chin. Soc. Electr. Eng. 2005, 25(11):1.
-
(2005)
Chin. Soc. Electr. Eng.
, vol.25
, Issue.11
, pp. 1
-
-
Yang, X.Y.1
Xiao, Y.2
Chen, S.Y.3
-
4
-
-
84935019779
-
Using ensemble forecasting for wind power
-
Giebel G., Landberg L., Badger J., Sattler K., Feddersen H., Nielsen T.S., Nielsen H.A., Madsen H. Using ensemble forecasting for wind power. Proc. Conf. European Wind Energy Association, Madrid, Spain 2003.
-
(2003)
Proc. Conf. European Wind Energy Association, Madrid, Spain
-
-
Giebel, G.1
Landberg, L.2
Badger, J.3
Sattler, K.4
Feddersen, H.5
Nielsen, T.S.6
Nielsen, H.A.7
Madsen, H.8
-
5
-
-
85046239160
-
Cleverfarm-First results from an intelligent wind farm
-
Giebel G., Landberg L., Bjerge C., Donovan M., Juhl A., Gram Hansen K., Waldl H., Pahlke T., Giebhardt J., Rebbeck M., et al. Cleverfarm-First results from an intelligent wind farm. Proc. Conf. European Wind Energy Association, Madrid, Spain 2003.
-
(2003)
Proc. Conf. European Wind Energy Association, Madrid, Spain
-
-
Giebel, G.1
Landberg, L.2
Bjerge, C.3
Donovan, M.4
Juhl, A.5
Gram Hansen, K.6
Waldl, H.7
Pahlke, T.8
Giebhardt, J.9
Rebbeck, M.10
-
7
-
-
60049084645
-
Areview on the forecasting of wind speed and generated power
-
Lei M., Shiyan L., Chuanwen J., Hongling L., Yan Z. Areview on the forecasting of wind speed and generated power. Renew. Sustain. Energy Rev. 2009, 13(4):915-920.
-
(2009)
Renew. Sustain. Energy Rev.
, vol.13
, Issue.4
, pp. 915-920
-
-
Lei, M.1
Shiyan, L.2
Chuanwen, J.3
Hongling, L.4
Yan, Z.5
-
8
-
-
0033086885
-
Short-term prediction of the power production from wind farms
-
Landberg L. Short-term prediction of the power production from wind farms. Wind Eng. Industrial Aerodynamics 1999, 80(1):207-220.
-
(1999)
Wind Eng. Industrial Aerodynamics
, vol.80
, Issue.1
, pp. 207-220
-
-
Landberg, L.1
-
10
-
-
60049087500
-
Discussion about short-term forecast of wind speed on wind farm
-
Guoyang W., Yang X., Shasha W. Discussion about short-term forecast of wind speed on wind farm. Jilin Electr. Power 2005, 181(5):4-21.
-
(2005)
Jilin Electr. Power
, vol.181
, Issue.5
, pp. 4-21
-
-
Guoyang, W.1
Yang, X.2
Shasha, W.3
-
11
-
-
84860254202
-
Amethod for short-term wind power prediction with multiple observation points
-
Khalid M., Savkin A. Amethod for short-term wind power prediction with multiple observation points. IEEE Trans. Power Syst. 2012, 27(2):579-586.
-
(2012)
IEEE Trans. Power Syst.
, vol.27
, Issue.2
, pp. 579-586
-
-
Khalid, M.1
Savkin, A.2
-
12
-
-
34250762015
-
Application of artificial neural networks for the wind speed prediction of target station using reference stations data
-
Bilgili M., Sahin B., Yasar A. Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew. Energy 2007, 32(14):2350-2360.
-
(2007)
Renew. Energy
, vol.32
, Issue.14
, pp. 2350-2360
-
-
Bilgili, M.1
Sahin, B.2
Yasar, A.3
-
13
-
-
29444457388
-
Locally recurrent neural networks for long-term wind speed and power prediction
-
Barbounis T., Theocharis J. Locally recurrent neural networks for long-term wind speed and power prediction. Neurocomputing 2006, 69(4):466-496.
-
(2006)
Neurocomputing
, vol.69
, Issue.4
, pp. 466-496
-
-
Barbounis, T.1
Theocharis, J.2
-
14
-
-
38349108557
-
Analysis of wind power generation and prediction using ANN: a case study
-
Carolin Mabel M., Fernandez E. Analysis of wind power generation and prediction using ANN: a case study. Renew. Energy 2008, 33(5):986-992.
-
(2008)
Renew. Energy
, vol.33
, Issue.5
, pp. 986-992
-
-
Carolin Mabel, M.1
Fernandez, E.2
-
15
-
-
77953137822
-
On comparing three artificial neural networks for wind speed forecasting
-
Li G., Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87(7):2313-2320.
-
(2010)
Appl. Energy
, vol.87
, Issue.7
, pp. 2313-2320
-
-
Li, G.1
Shi, J.2
-
16
-
-
58149474856
-
Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks
-
Salcedo Sanz S., Perez Bellido A.M., Ortiz Garcia E.G., Portilla Figueras A., Prieto L., Correoso F. Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks. Neurocomputing 2009, 72(4):1336-1341.
-
(2009)
Neurocomputing
, vol.72
, Issue.4
, pp. 1336-1341
-
-
Salcedo Sanz, S.1
Perez Bellido, A.M.2
Ortiz Garcia, E.G.3
Portilla Figueras, A.4
Prieto, L.5
Correoso, F.6
-
17
-
-
79952601986
-
Short-term wind speed prediction in wind farms based on banks of support vector machines
-
Ortiz Garcia E.G., Salcedo Sanz S., Perez Bellido A.M., Gascon Moreno J., Portilla Figueras J.A., Prieto L. Short-term wind speed prediction in wind farms based on banks of support vector machines. Wind Energy 2011, 14(2):193-207.
-
(2011)
Wind Energy
, vol.14
, Issue.2
, pp. 193-207
-
-
Ortiz Garcia, E.G.1
Salcedo Sanz, S.2
Perez Bellido, A.M.3
Gascon Moreno, J.4
Portilla Figueras, J.A.5
Prieto, L.6
-
18
-
-
0442296729
-
Support vector machines for wind speed prediction
-
Mohandes M., Halawani T., Rehman S., Hussain A.A. Support vector machines for wind speed prediction. Renew. Energy 2004, 29(6):939-947.
-
(2004)
Renew. Energy
, vol.29
, Issue.6
, pp. 939-947
-
-
Mohandes, M.1
Halawani, T.2
Rehman, S.3
Hussain, A.A.4
-
19
-
-
78650698653
-
Short term wind speed prediction based on evolutionary support vector regression algorithms
-
Salcedo Sanz S., Perez Bellido A.M., Portilla Figueras A., Prieto L., et al. Short term wind speed prediction based on evolutionary support vector regression algorithms. Expert Syst. Appl. 2011, 38(4):4052-4057.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.4
, pp. 4052-4057
-
-
Salcedo Sanz, S.1
Perez Bellido, A.M.2
Portilla Figueras, A.3
Prieto, L.4
-
20
-
-
78650944534
-
Fine tuning support vector machines for short-term wind speed forecasting
-
Zhou J., Shi J., Li G. Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers. Manag. 2011, 52(4):1990-1998.
-
(2011)
Energy Convers. Manag.
, vol.52
, Issue.4
, pp. 1990-1998
-
-
Zhou, J.1
Shi, J.2
Li, G.3
-
21
-
-
79952183962
-
Acorrected hybrid approach for wind speed prediction in Hexi Corridor of China
-
Guo Z., Zhao J., Zhang W., Wang J. Acorrected hybrid approach for wind speed prediction in Hexi Corridor of China. Energy 2011, 36(3):1668-1679.
-
(2011)
Energy
, vol.36
, Issue.3
, pp. 1668-1679
-
-
Guo, Z.1
Zhao, J.2
Zhang, W.3
Wang, J.4
-
22
-
-
77954315872
-
Wind speed forecasting in three different regions of mexico, using a hybrid ARI-MACANN model
-
Cadenas E., Rivera W. Wind speed forecasting in three different regions of mexico, using a hybrid ARI-MACANN model. Rnewable Energy 2010, 35(12):2732-2738.
-
(2010)
Rnewable Energy
, vol.35
, Issue.12
, pp. 2732-2738
-
-
Cadenas, E.1
Rivera, W.2
-
23
-
-
84897656346
-
Wind power forecasts using Gaussian processes and numerical weather prediction
-
Chen N., Qian Z., Nabney I., Meng X. Wind power forecasts using Gaussian processes and numerical weather prediction. IEEE Trans. Power Syst. 2014, 29(2):656-665.
-
(2014)
IEEE Trans. Power Syst.
, vol.29
, Issue.2
, pp. 656-665
-
-
Chen, N.1
Qian, Z.2
Nabney, I.3
Meng, X.4
-
24
-
-
84903119035
-
Ahybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting
-
Haque A., Nehrir M., Mandal P. Ahybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting. IEEE Trans. Power Syst. 2014, 29(4):1663-1672.
-
(2014)
IEEE Trans. Power Syst.
, vol.29
, Issue.4
, pp. 1663-1672
-
-
Haque, A.1
Nehrir, M.2
Mandal, P.3
-
26
-
-
80053443013
-
Domain adaptation for large-scale sentiment classification: A deep learning approach
-
Glorot X., Bordes A., Bengio Y. Domain adaptation for large-scale sentiment classification: A deep learning approach. Proc. 28th Int. Conf. Machine Learning 2011, 513-520.
-
(2011)
Proc. 28th Int. Conf. Machine Learning
, pp. 513-520
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
29
-
-
84890527497
-
Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers
-
Huang J.T., Li J., Yu D., Deng L., Gong Y. Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing 2013, 7304-7308.
-
(2013)
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing
, pp. 7304-7308
-
-
Huang, J.T.1
Li, J.2
Yu, D.3
Deng, L.4
Gong, Y.5
-
30
-
-
84890539009
-
Multilingual acoustic models using distributed deep neural networks
-
Heigold G., Vanhoucke V., Senior A., Nguyen P., Ranzato M., Devin M., Dean J. Multilingual acoustic models using distributed deep neural networks. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing 2013, 8619-8623.
-
(2013)
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing
, pp. 8619-8623
-
-
Heigold, G.1
Vanhoucke, V.2
Senior, A.3
Nguyen, P.4
Ranzato, M.5
Devin, M.6
Dean, J.7
-
31
-
-
84905223329
-
Multilingual deep neural network based acoustic modeling for rapid language adaptation
-
Vu N.T., Imseng D., Povey D., Motlicek P., Schultz T., Bourlard H. Multilingual deep neural network based acoustic modeling for rapid language adaptation. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing 2014, 7639-7643.
-
(2014)
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing
, pp. 7639-7643
-
-
Vu, N.T.1
Imseng, D.2
Povey, D.3
Motlicek, P.4
Schultz, T.5
Bourlard, H.6
-
32
-
-
77953358593
-
Anovel wind speed modeling approach using atmospheric pressure observations and hidden Markov models
-
Hocaoglu F.O., Gerek O.N., Kurban M. Anovel wind speed modeling approach using atmospheric pressure observations and hidden Markov models. Wind Eng. Industrial Aerodynamics 2010, 98(8):472-481.
-
(2010)
Wind Eng. Industrial Aerodynamics
, vol.98
, Issue.8
, pp. 472-481
-
-
Hocaoglu, F.O.1
Gerek, O.N.2
Kurban, M.3
-
34
-
-
84908679502
-
Transfer learning using rotated image data to improve deep neural network performance
-
Springer
-
Amaral T., Silva L., Alexandre L.A., Marques J., Santos J. Transfer learning using rotated image data to improve deep neural network performance. Image Analysis and Recognition 2014, 290-300. Springer.
-
(2014)
Image Analysis and Recognition
, pp. 290-300
-
-
Amaral, T.1
Silva, L.2
Alexandre, L.A.3
Marques, J.4
Santos, J.5
-
36
-
-
84906491858
-
Unsupervised and transfer learning challenge: a deep learning approach
-
Mesnil G., Dauphin Y., Glorot X., Rifai S., Bengio Y., Goodfellow I.J., Lavoie E., Muller X., Desjardins G., Warde Farley D., et al. Unsupervised and transfer learning challenge: a deep learning approach. Proc. ICML Unsupervised and Transfer Learning 2012, 97-110.
-
(2012)
Proc. ICML Unsupervised and Transfer Learning
, pp. 97-110
-
-
Mesnil, G.1
Dauphin, Y.2
Glorot, X.3
Rifai, S.4
Bengio, Y.5
Goodfellow, I.J.6
Lavoie, E.7
Muller, X.8
Desjardins, G.9
Warde Farley, D.10
-
38
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2(1). 1-127.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
39
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification, IEEE Trans
-
Huang G.B., Zhou H., Ding X., Zhang R. Extreme learning machine for regression and multiclass classification, IEEE Trans. Syst. Man, Cybern. Part B: Cybern. 2012, 42(2):513-529.
-
(2012)
Syst. Man, Cybern. Part B: Cybern.
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
|