메뉴 건너뛰기




Volumn 85, Issue , 2016, Pages 83-95

Transfer learning for short-term wind speed prediction with deep neural networks

Author keywords

Deep neural networks; Stacked denoising autoencoder; Transfer learning; Wind speed prediction

Indexed keywords

DATA MINING; DEEP NEURAL NETWORKS; ELECTRIC UTILITIES; NEURAL NETWORKS; PREDICTIVE ANALYTICS; SPEED; TRANSFER LEARNING; WEATHER FORECASTING; WIND; WIND POWER;

EID: 84934887601     PISSN: 09601481     EISSN: 18790682     Source Type: Journal    
DOI: 10.1016/j.renene.2015.06.034     Document Type: Article
Times cited : (413)

References (39)
  • 2
    • 21844477547 scopus 로고    scopus 로고
    • Wind speed and generated power forecasting in wind farm
    • Yang X.Y., Xiao Y., Chen S.Y. Wind speed and generated power forecasting in wind farm. Chin. Soc. Electr. Eng. 2005, 25(11):1.
    • (2005) Chin. Soc. Electr. Eng. , vol.25 , Issue.11 , pp. 1
    • Yang, X.Y.1    Xiao, Y.2    Chen, S.Y.3
  • 8
    • 0033086885 scopus 로고    scopus 로고
    • Short-term prediction of the power production from wind farms
    • Landberg L. Short-term prediction of the power production from wind farms. Wind Eng. Industrial Aerodynamics 1999, 80(1):207-220.
    • (1999) Wind Eng. Industrial Aerodynamics , vol.80 , Issue.1 , pp. 207-220
    • Landberg, L.1
  • 10
    • 60049087500 scopus 로고    scopus 로고
    • Discussion about short-term forecast of wind speed on wind farm
    • Guoyang W., Yang X., Shasha W. Discussion about short-term forecast of wind speed on wind farm. Jilin Electr. Power 2005, 181(5):4-21.
    • (2005) Jilin Electr. Power , vol.181 , Issue.5 , pp. 4-21
    • Guoyang, W.1    Yang, X.2    Shasha, W.3
  • 11
    • 84860254202 scopus 로고    scopus 로고
    • Amethod for short-term wind power prediction with multiple observation points
    • Khalid M., Savkin A. Amethod for short-term wind power prediction with multiple observation points. IEEE Trans. Power Syst. 2012, 27(2):579-586.
    • (2012) IEEE Trans. Power Syst. , vol.27 , Issue.2 , pp. 579-586
    • Khalid, M.1    Savkin, A.2
  • 12
    • 34250762015 scopus 로고    scopus 로고
    • Application of artificial neural networks for the wind speed prediction of target station using reference stations data
    • Bilgili M., Sahin B., Yasar A. Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew. Energy 2007, 32(14):2350-2360.
    • (2007) Renew. Energy , vol.32 , Issue.14 , pp. 2350-2360
    • Bilgili, M.1    Sahin, B.2    Yasar, A.3
  • 13
    • 29444457388 scopus 로고    scopus 로고
    • Locally recurrent neural networks for long-term wind speed and power prediction
    • Barbounis T., Theocharis J. Locally recurrent neural networks for long-term wind speed and power prediction. Neurocomputing 2006, 69(4):466-496.
    • (2006) Neurocomputing , vol.69 , Issue.4 , pp. 466-496
    • Barbounis, T.1    Theocharis, J.2
  • 14
    • 38349108557 scopus 로고    scopus 로고
    • Analysis of wind power generation and prediction using ANN: a case study
    • Carolin Mabel M., Fernandez E. Analysis of wind power generation and prediction using ANN: a case study. Renew. Energy 2008, 33(5):986-992.
    • (2008) Renew. Energy , vol.33 , Issue.5 , pp. 986-992
    • Carolin Mabel, M.1    Fernandez, E.2
  • 15
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G., Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87(7):2313-2320.
    • (2010) Appl. Energy , vol.87 , Issue.7 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 16
    • 58149474856 scopus 로고    scopus 로고
    • Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks
    • Salcedo Sanz S., Perez Bellido A.M., Ortiz Garcia E.G., Portilla Figueras A., Prieto L., Correoso F. Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks. Neurocomputing 2009, 72(4):1336-1341.
    • (2009) Neurocomputing , vol.72 , Issue.4 , pp. 1336-1341
    • Salcedo Sanz, S.1    Perez Bellido, A.M.2    Ortiz Garcia, E.G.3    Portilla Figueras, A.4    Prieto, L.5    Correoso, F.6
  • 18
  • 19
    • 78650698653 scopus 로고    scopus 로고
    • Short term wind speed prediction based on evolutionary support vector regression algorithms
    • Salcedo Sanz S., Perez Bellido A.M., Portilla Figueras A., Prieto L., et al. Short term wind speed prediction based on evolutionary support vector regression algorithms. Expert Syst. Appl. 2011, 38(4):4052-4057.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.4 , pp. 4052-4057
    • Salcedo Sanz, S.1    Perez Bellido, A.M.2    Portilla Figueras, A.3    Prieto, L.4
  • 20
    • 78650944534 scopus 로고    scopus 로고
    • Fine tuning support vector machines for short-term wind speed forecasting
    • Zhou J., Shi J., Li G. Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers. Manag. 2011, 52(4):1990-1998.
    • (2011) Energy Convers. Manag. , vol.52 , Issue.4 , pp. 1990-1998
    • Zhou, J.1    Shi, J.2    Li, G.3
  • 21
    • 79952183962 scopus 로고    scopus 로고
    • Acorrected hybrid approach for wind speed prediction in Hexi Corridor of China
    • Guo Z., Zhao J., Zhang W., Wang J. Acorrected hybrid approach for wind speed prediction in Hexi Corridor of China. Energy 2011, 36(3):1668-1679.
    • (2011) Energy , vol.36 , Issue.3 , pp. 1668-1679
    • Guo, Z.1    Zhao, J.2    Zhang, W.3    Wang, J.4
  • 22
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of mexico, using a hybrid ARI-MACANN model
    • Cadenas E., Rivera W. Wind speed forecasting in three different regions of mexico, using a hybrid ARI-MACANN model. Rnewable Energy 2010, 35(12):2732-2738.
    • (2010) Rnewable Energy , vol.35 , Issue.12 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 23
    • 84897656346 scopus 로고    scopus 로고
    • Wind power forecasts using Gaussian processes and numerical weather prediction
    • Chen N., Qian Z., Nabney I., Meng X. Wind power forecasts using Gaussian processes and numerical weather prediction. IEEE Trans. Power Syst. 2014, 29(2):656-665.
    • (2014) IEEE Trans. Power Syst. , vol.29 , Issue.2 , pp. 656-665
    • Chen, N.1    Qian, Z.2    Nabney, I.3    Meng, X.4
  • 24
    • 84903119035 scopus 로고    scopus 로고
    • Ahybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting
    • Haque A., Nehrir M., Mandal P. Ahybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting. IEEE Trans. Power Syst. 2014, 29(4):1663-1672.
    • (2014) IEEE Trans. Power Syst. , vol.29 , Issue.4 , pp. 1663-1672
    • Haque, A.1    Nehrir, M.2    Mandal, P.3
  • 26
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • Glorot X., Bordes A., Bengio Y. Domain adaptation for large-scale sentiment classification: A deep learning approach. Proc. 28th Int. Conf. Machine Learning 2011, 513-520.
    • (2011) Proc. 28th Int. Conf. Machine Learning , pp. 513-520
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 32
    • 77953358593 scopus 로고    scopus 로고
    • Anovel wind speed modeling approach using atmospheric pressure observations and hidden Markov models
    • Hocaoglu F.O., Gerek O.N., Kurban M. Anovel wind speed modeling approach using atmospheric pressure observations and hidden Markov models. Wind Eng. Industrial Aerodynamics 2010, 98(8):472-481.
    • (2010) Wind Eng. Industrial Aerodynamics , vol.98 , Issue.8 , pp. 472-481
    • Hocaoglu, F.O.1    Gerek, O.N.2    Kurban, M.3
  • 38
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2(1). 1-127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 39
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification, IEEE Trans
    • Huang G.B., Zhou H., Ding X., Zhang R. Extreme learning machine for regression and multiclass classification, IEEE Trans. Syst. Man, Cybern. Part B: Cybern. 2012, 42(2):513-529.
    • (2012) Syst. Man, Cybern. Part B: Cybern. , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.B.1    Zhou, H.2    Ding, X.3    Zhang, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.