-
2
-
-
72049131519
-
Production of first and second generation biofuels: A comprehensive review
-
Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14: 578-597. doi: 10.1016/j. rser.2009.10.003
-
(2010)
Renew Sustain Energy Rev
, vol.14
, pp. 578-597
-
-
Naik, S.N.1
Goud, V.V.2
Rout, P.K.3
Dalai, A.K.4
-
3
-
-
84894639711
-
Green and sustainable manufacture of chemicals from biomass: State of the art
-
Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16: 950-963. doi: 10.1039/C3GC41935E
-
(2014)
Green Chem
, vol.16
, pp. 950-963
-
-
Sheldon, R.A.1
-
4
-
-
65949124493
-
Recent trends in global production and utilization of bio-ethanol fuel
-
Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86: 2273-2282. doi: 10.1016/j.apenergy.2009.03.015
-
(2009)
Appl Energy
, vol.86
, pp. 2273-2282
-
-
Balat, M.1
Balat, H.2
-
5
-
-
79959374585
-
Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
-
Yim H, Haselbeck R, NiuWet al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7: 445-452. doi: 10.1038/nchembio.580
-
(2011)
Nat Chem Biol
, vol.7
, pp. 445-452
-
-
Yim, H.1
Haselbeck, R.2
Niu, W.3
-
6
-
-
0142027026
-
Metabolic engineering for the microbial production of 1,3-propanediol
-
Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14: 454-459. doi: 10.1016/j.copbio.2003.08.005
-
(2003)
Curr Opin Biotechnol
, vol.14
, pp. 454-459
-
-
Nakamura, C.E.1
Whited, G.M.2
-
7
-
-
84872148262
-
Commercial biomass syngas fermentation
-
Daniell J, Köpke M, Simpson S (2012) Commercial biomass syngas fermentation. Energies 5: 5372-5417. doi: 10.3390/en5125372
-
(2012)
Energies
, vol.5
, pp. 5372-5417
-
-
Daniell, J.1
Köpke, M.2
Simpson, S.3
-
9
-
-
84893786890
-
The emerging bioeconomy: Industrial drivers, global impact, and international strategies
-
Kircher M (2014) The emerging bioeconomy: industrial drivers, global impact, and international strategies. Ind Biotechnol 10: 11-18. doi: 10.1089/ind.2014.1500
-
(2014)
Ind Biotechnol
, vol.10
, pp. 11-18
-
-
Kircher, M.1
-
10
-
-
84872690141
-
The impact of biofuels on commodity food prices: Assessment of findings
-
Zilberman D, Hochman G, Rajagopal D et al (2013) The impact of biofuels on commodity food prices: assessment of findings. Am J Agric Econ 95: 275-281. doi: 10.1093/ajae/aas037
-
(2013)
Am J Agric Econ
, vol.95
, pp. 275-281
-
-
Zilberman, D.1
Hochman, G.2
Rajagopal, D.3
-
12
-
-
40049092327
-
Land clearing and the biofuel carbon debt
-
Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319: 1235-1238. doi: 10.1126/science.1152747
-
(2008)
Science
, vol.319
, pp. 1235-1238
-
-
Fargione, J.1
Hill, J.2
Tilman, D.3
-
13
-
-
68649093162
-
-
US Public Law 110-140
-
110th United States Congress (2007) Energy Independence and Security Act of 2007. US Public Law 110-140. https://www.gpo.gov/fdsys/pkg/PLAW-110publ140/pdf/PLAW-110publ140.pdf
-
(2007)
Energy Independence and Security Act of 2007
-
-
-
15
-
-
84926020090
-
C1-carbon sources for chemical and fuel production by microbial gas fermentation
-
Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35: 63-72. doi: 10.1016/j.copbio.2015.03. 008
-
(2015)
Curr Opin Biotechnol
, vol.35
, pp. 63-72
-
-
Dürre, P.1
Eikmanns, B.J.2
-
16
-
-
78149406709
-
Biomass gasification: Still promising? A 30-year global overview
-
Kirkels AF, Verbong GPJ (2011) Biomass gasification: still promising? A 30-year global overview. Renew Sustain Energy Rev 15: 471-481. doi: 10.1016/j.rser.2010.09.046
-
(2011)
Renew Sustain Energy Rev
, vol.15
, pp. 471-481
-
-
Kirkels, A.F.1
Verbong, G.P.J.2
-
17
-
-
0036158804
-
Energy production from biomass (part 3): Gasification technologies
-
McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83: 55-63
-
(2002)
Bioresour Technol
, vol.83
, pp. 55-63
-
-
McKendry, P.1
-
18
-
-
84860803588
-
Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca
-
Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci 109: 7085-7090. doi: 10.1073/pnas.1120788109
-
(2012)
Proc Natl Acad Sci
, vol.109
, pp. 7085-7090
-
-
Temme, K.1
Zhao, D.2
Voigt, C.A.3
-
19
-
-
84875274861
-
Synthetic biology: From hype to impact
-
Gardner TS (2013) Synthetic biology: from hype to impact. Trends Biotechnol 31: 123-125. doi: 10.1016/j.tibtech.2013.01.018
-
(2013)
Trends Biotechnol
, vol.31
, pp. 123-125
-
-
Gardner, T.S.1
-
20
-
-
28344455644
-
Biotechnological production of amino acids and derivatives: Current status and prospects
-
Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69: 1-8. doi: 10.1007/s00253-005-0155-y
-
(2005)
Appl Microbiol Biotechnol
, vol.69
, pp. 1-8
-
-
Leuchtenberger, W.1
Huthmacher, K.2
Drauz, K.3
-
21
-
-
84886072640
-
Biochemical production of biobutanol
-
Luque R, Campelo J, Clark JH (eds), Woodhead Publishing, Cambridge
-
Köpke M, Dürre P (2010) Biochemical production of biobutanol. In: Luque R, Campelo J, Clark JH (eds) Handbook of biofuels production: processes and technologies. Woodhead Publishing, Cambridge, pp 221-257
-
(2010)
Handbook of biofuels production: Processes and technologies
, pp. 221-257
-
-
Köpke, M.1
Dürre, P.2
-
22
-
-
84855895484
-
Minimization and prevention of phage infections in bioprocesses
-
Los M (2012) Minimization and prevention of phage infections in bioprocesses. Methods Mol Biol 834: 305-315. doi: 10.1007/978-1-61779-483-4_19
-
(2012)
Methods Mol Biol
, vol.834
, pp. 305-315
-
-
Los, M.1
-
23
-
-
10944256640
-
Bacterial contaminants of fuel ethanol production
-
Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31: 401-408. doi: 10.1007/s10295-004-0159-0
-
(2004)
J Ind Microbiol Biotechnol
, vol.31
, pp. 401-408
-
-
Skinner, K.A.1
Leathers, T.D.2
-
24
-
-
79957980223
-
Industrial fermentation of renewable diesel fuels
-
Westfall PJ, Gardner TS (2011) Industrial fermentation of renewable diesel fuels. Curr Opin Biotechnol 22: 344-350. doi: 10.1016/j.copbio.2011.04.023
-
(2011)
Curr Opin Biotechnol
, vol.22
, pp. 344-350
-
-
Westfall, P.J.1
Gardner, T.S.2
-
25
-
-
9444285788
-
Escherichia coli acid resistance: Tales of an amateur acidophile
-
Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2: 898-907. doi: 10.1038/nrmicro1021
-
(2004)
Nat Rev Microbiol
, vol.2
, pp. 898-907
-
-
Foster, J.W.1
-
26
-
-
84909606329
-
Building carbon-carbon bonds using a biocatalytic methanol condensation cycle
-
Bogorad IW, Chen C-T, Theisen MK et al (2014) Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. Proc Natl Acad Sci 111: 15928-15933. doi: 10.1073/pnas.1413470111
-
(2014)
Proc Natl Acad Sci
, vol.111
, pp. 15928-15933
-
-
Bogorad, I.W.1
Chen, C.-T.2
Theisen, M.K.3
-
27
-
-
84886947479
-
Synthetic non-oxidative glycolysis enables complete carbon conservation
-
Bogorad IW, Lin T-S, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502: 693-697. doi: 10.1038/nature12575
-
(2013)
Nature
, vol.502
, pp. 693-697
-
-
Bogorad, I.W.1
Lin, T.-S.2
Liao, J.C.3
-
28
-
-
39649103644
-
Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals
-
Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74: 1124-1135. doi: 10.1128/AEM.02192-07
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 1124-1135
-
-
Murarka, A.1
Dharmadi, Y.2
Yazdani, S.S.3
Gonzalez, R.4
-
29
-
-
0034086965
-
Molecular biology and regulation of methane monooxygenase
-
Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173: 325-332
-
(2000)
Arch Microbiol
, vol.173
, pp. 325-332
-
-
Murrell, J.C.1
Gilbert, B.2
McDonald, I.R.3
-
30
-
-
84922433192
-
Engineering Escherichia coli for methanol conversion
-
Müller JEN, Meyer F, Litsanov B et al (2015) Engineering Escherichia coli for methanol conversion. Metab Eng 28: 190-201. doi: 10.1016/j.ymben.2014.12.008
-
(2015)
Metab Eng
, vol.28
, pp. 190-201
-
-
Müller, J.E.N.1
Meyer, F.2
Litsanov, B.3
-
32
-
-
84874116531
-
2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals
-
2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1-16. doi: 10.1016/j.coche.2012.07.005
-
(2012)
Curr Opin Chem Eng
, pp. 1-16
-
-
Fast, A.G.1
Papoutsakis, E.T.2
-
33
-
-
3242755111
-
The rocky roots of the acetyl-CoA pathway
-
Russell MJ, MartinW(2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29: 358-363. doi: 10.1016/j.tibs.2004.05.007
-
(2004)
Trends Biochem Sci
, vol.29
, pp. 358-363
-
-
Russell, M.J.1
Martin, W.2
-
34
-
-
81855183336
-
Bioconversion of synthesis gas to second generation biofuels: A review
-
Mohammadi M, Najafpour GD, Younesi H et al (2011) Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sustain Energy Rev 15: 4255-4273. doi: 10.1016/j.rser.2011.07.124
-
(2011)
Renew Sustain Energy Rev
, vol.15
, pp. 4255-4273
-
-
Mohammadi, M.1
Najafpour, G.D.2
Younesi, H.3
-
35
-
-
77949875923
-
Biomass-derived syngas fermentation into biofuels: Opportunities and challenges
-
Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101: 5013-5022. doi: 10.1016/j.biortech.2009.12.098
-
(2010)
Bioresour Technol
, vol.101
, pp. 5013-5022
-
-
Munasinghe, P.C.1
Khanal, S.K.2
-
36
-
-
84863630261
-
Pathway engineering and synthetic biology using acetogens
-
Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586: 2191-2198. doi: 10.1016/j.febslet.2012.04.043
-
(2012)
FEBS Lett
, vol.586
, pp. 2191-2198
-
-
Schiel-Bengelsdorf, B.1
Dürre, P.2
-
37
-
-
77951644817
-
Production of biofuels from synthesis gas using microbial catalysts
-
Tirado-Acevedo O, Chinn MS, Grunden AM (2010) Production of biofuels from synthesis gas using microbial catalysts. Adv Appl Microbiol 70: 57-92. doi: 10.1016/S0065-2164(10)70002-2
-
(2010)
Adv Appl Microbiol
, vol.70
, pp. 57-92
-
-
Tirado-Acevedo, O.1
Chinn, M.S.2
Grunden, A.M.3
-
38
-
-
79961098783
-
2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas
-
Köpke M, Mihalcea C, Liew F et al (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77: 5467-5475. doi: 10.1128/AEM.00355-11
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 5467-5475
-
-
Köpke, M.1
Mihalcea, C.2
Liew, F.3
-
39
-
-
84997185584
-
Clostridium
-
Flickinger MC (ed), Wiley, Hoboken
-
Schiel B, Dürre P (2010) Clostridium. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation and cell technology. Wiley, Hoboken, pp 1-15
-
(2010)
Encyclopedia of industrial biotechnology: Bioprocess, bioseparation and cell technology
, pp. 1-15
-
-
Schiel, B.1
Dürre, P.2
-
40
-
-
84862010951
-
Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications
-
Tracy BP, Jones SW, Fast AG et al (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23: 364-381. doi: 10.1016/j.copbio.2011.10.008
-
(2012)
Curr Opin Biotechnol
, vol.23
, pp. 364-381
-
-
Tracy, B.P.1
Jones, S.W.2
Fast, A.G.3
-
42
-
-
33645554486
-
Acetogenic clostridia
-
Dürre P (ed), CRC, Boca Raton
-
Drake HL, Küsel K (2005) Acetogenic clostridia. In: Dürre P (ed) Handbook of clostridia. CRC, Boca Raton, pp 721-748
-
(2005)
Handbook of clostridia
, pp. 721-748
-
-
Drake, H.L.1
Küsel, K.2
-
43
-
-
79953759834
-
Powering microbes with electricity: Direct electron transfer from electrodes to microbes
-
Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3: 27-35. doi: 10.1111/j.1758-2229.2010.00211.x
-
(2011)
Environ Microbiol Rep
, vol.3
, pp. 27-35
-
-
Lovley, D.R.1
-
44
-
-
84878652242
-
Electrobiocommodities: Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
-
Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 1-6. doi: 10.1016/j.copbio.2013.02.012
-
(2013)
Curr Opin Biotechnol
, pp. 1-6
-
-
Lovley, D.R.1
Nevin, K.P.2
-
45
-
-
79955675417
-
Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
-
Nevin KP, Hensley SA, Franks AE et al (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77: 2882-2886. doi: 10.1128/AEM.02642-10
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 2882-2886
-
-
Nevin, K.P.1
Hensley, S.A.2
Franks, A.E.3
-
46
-
-
78650173757
-
Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
-
Nevin KP, Woodard TL, Franks AE et al (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1: e00103-e00110. doi: 10.1128/mBio.00103-10
-
(2010)
MBio
, vol.1
, pp. e00103-e00110
-
-
Nevin, K.P.1
Woodard, T.L.2
Franks, A.E.3
-
47
-
-
0028298999
-
Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide
-
Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161: 345-351. doi: 10.1007/BF00303591
-
(1994)
Arch Microbiol
, vol.161
, pp. 345-351
-
-
Abrini, J.1
Naveau, H.2
Nyns, E.J.3
-
48
-
-
84899874115
-
Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia
-
Brown SD, Nagaraju S, Utturkar S et al (2014) Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia. Biotechnol Biofuels 7: 40. doi: 10.1186/1754-6834-7-40
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 40
-
-
Brown, S.D.1
Nagaraju, S.2
Utturkar, S.3
-
49
-
-
84940401439
-
Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies
-
Utturkar SM, Klingeman DM, Bruno-Barcena JM et al (2015) Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies. Sci Data 2: 150014. doi: 10.1038/sdata.2015.14
-
(2015)
Sci Data
, vol.2
, pp. 150014
-
-
Utturkar, S.M.1
Klingeman, D.M.2
Bruno-Barcena, J.M.3
-
50
-
-
0006715439
-
Biological production of ethanol from coal synthesis gas
-
Phillips JR, Klasson KT, Claussen EC et al (1993) Biological production of ethanol from coal synthesis gas. Appl Biochem Biotechnol 39: 559-571. doi: 10.1007/BF02919018
-
(1993)
Appl Biochem Biotechnol
, vol.39
, pp. 559-571
-
-
Phillips, J.R.1
Klasson, K.T.2
Claussen, E.C.3
-
51
-
-
0027460190
-
Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I
-
Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43: 232
-
(1993)
Int J Syst Bacteriol
, vol.43
, pp. 232
-
-
Tanner, R.S.1
Miller, L.M.2
Yang, D.3
-
54
-
-
84937925579
-
Complete genome sequence of Clostridium carboxidivorans P7(T), a syngas-fermenting bacterium capable of producing long-chain alcohols
-
Li N, Yang J, Chai C et al (2015) Complete genome sequence of Clostridium carboxidivorans P7(T), a syngas-fermenting bacterium capable of producing long-chain alcohols. J Biotechnol 211: 44-45. doi: 10.1016/j.jbiotec.2015.06.430
-
(2015)
J Biotechnol
, vol.211
, pp. 44-45
-
-
Li, N.1
Yang, J.2
Chai, C.3
-
55
-
-
26244461228
-
Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp
-
Liou JS-C, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55: 2085-2091. doi: 10.1099/ijs.0.63482-0
-
(2005)
Nov. Int J Syst Evol Microbiol
, vol.55
, pp. 2085-2091
-
-
Liou, J.S.-C.1
Balkwill, D.L.2
Drake, G.R.3
Tanner, R.S.4
-
56
-
-
84928595209
-
Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques
-
Phillips JR, Atiyeh HK, Tanner RS et al (2015) Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Bioresour Technol 190: 114-121. doi: 10.1016/j.biortech.2015.04.043
-
(2015)
Bioresour Technol
, vol.190
, pp. 114-121
-
-
Phillips, J.R.1
Atiyeh, H.K.2
Tanner, R.S.3
-
57
-
-
85008465331
-
Complete genome sequence of Rnf- and cytochrome-containing autotrophic acetogen Clostridium aceticum DSM 1496
-
Poehlein A, Bengelsdorf FR, Schiel-Bengelsdorf B et al (2015) Complete genome sequence of Rnf- and cytochrome-containing autotrophic acetogen Clostridium aceticum DSM 1496. Genome Announc 3: e00786-15. doi: 10.1128/genomeA.00786-15
-
(2015)
Genome Announc
, vol.3
, pp. e00786-e00815
-
-
Poehlein, A.1
Bengelsdorf, F.R.2
Schiel-Bengelsdorf, B.3
-
58
-
-
38949209126
-
Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium - Clostridium aceticum using statistical approach
-
Sim JH, Kamaruddin AH (2008) Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium - Clostridium aceticum using statistical approach. Bioresour Technol 99: 2724-2735. doi: 10.1016/j.biortech.2007.07.004
-
(2008)
Bioresour Technol
, vol.99
, pp. 2724-2735
-
-
Sim, J.H.1
Kamaruddin, A.H.2
-
59
-
-
44149096454
-
Biocatalytic conversion of CO to acetic acid by Clostridium aceticum-medium optimization using response surface methodology (RSM)
-
Sim JH, Kamaruddin AH, Long WS (2008) Biocatalytic conversion of CO to acetic acid by Clostridium aceticum-medium optimization using response surface methodology (RSM). Biochem Eng J 40: 337-347. doi: 10.1016/j.bej.2008.01.006
-
(2008)
Biochem Eng J
, vol.40
, pp. 337-347
-
-
Sim, J.H.1
Kamaruddin, A.H.2
Long, W.S.3
-
60
-
-
33847740300
-
Clostridium aceticum-a potential organism in catalyzing carbon monoxide to acetic acid: Application of response surface methodology
-
Sim JH, Kamaruddin AH, Long WS, Najafpour G (2007) Clostridium aceticum-a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology. Enzyme Microb Technol 40: 1234-1243. doi: 10.1016/j.enzmictec.2006.09.017
-
(2007)
Enzyme Microb Technol
, vol.40
, pp. 1234-1243
-
-
Sim, J.H.1
Kamaruddin, A.H.2
Long, W.S.3
Najafpour, G.4
-
61
-
-
85007415710
-
Draft genome sequence of Clostridium aceticum DSM 1496, a potential butanol producer through syngas fermentation
-
Song Y, Hwang S, Cho B-K (2015) Draft genome sequence of Clostridium aceticum DSM 1496, a potential butanol producer through syngas fermentation. Genome Announc 3: e00258-15. doi: 10.1128/genomeA.00258-15
-
(2015)
Genome Announc
, vol.3
, pp. e00258-e00315
-
-
Song, Y.1
Hwang, S.2
Cho, B.-K.3
-
62
-
-
34250599080
-
The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria
-
Wieringa KT (1939) The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie Van Leeuwenhoek 6: 251-262. doi: 10.1007/ BF02146190
-
(1939)
Antonie Van Leeuwenhoek
, vol.6
, pp. 251-262
-
-
Wieringa, K.T.1
-
63
-
-
13744258381
-
Physiology of the thermophilic acetogen Moorella thermoacetica
-
Drake HL, Daniel SL (2004) Physiology of the thermophilic acetogen Moorella thermoacetica. Res Microbiol 155: 869-883. doi: 10.1016/j.resmic.2004.10.002
-
(2004)
Res Microbiol
, vol.155
, pp. 869-883
-
-
Drake, H.L.1
Daniel, S.L.2
-
65
-
-
51649124894
-
The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum)
-
Pierce E, Xie G, Barabote RD et al (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 10: 2550-2573. doi: 10.1111/j.1462-2920.2008.01679.x
-
(2008)
Environ Microbiol
, vol.10
, pp. 2550-2573
-
-
Pierce, E.1
Xie, G.2
Barabote, R.D.3
-
66
-
-
0017746753
-
Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria
-
Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27: 355-361. doi: 10.1099/00207713-27-4-355
-
(1977)
Int J Syst Bacteriol
, vol.27
, pp. 355-361
-
-
Balch, W.E.1
Schoberth, S.2
Tanner, R.S.3
Wolfe, R.S.4
-
67
-
-
84859090257
-
An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis
-
Poehlein A, Schmidt S, Kaster A-K et al (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7, e33439. doi: 10.1371/journal.pone.0033439
-
(2012)
PLoS One
, vol.7
, pp. e33439
-
-
Poehlein, A.1
Schmidt, S.2
Kaster, A.-K.3
-
68
-
-
0026151803
-
Production of butanol and ethanol from synthesis gas via fermentation
-
Worden RM, Grethlein AJ, Jain MK, Datta R (1991) Production of butanol and ethanol from synthesis gas via fermentation. Fuel 70: 615-619. doi: 10.1016/0016-2361(91)90175-A
-
(1991)
Fuel
, vol.70
, pp. 615-619
-
-
Worden, R.M.1
Grethlein, A.J.2
Jain, M.K.3
Datta, R.4
-
69
-
-
0018971099
-
Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain
-
Zeikus JG, Lynd LH, Thompson TE et al (1980) Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain. Curr Microbiol 3: 381-386. doi: 10.1007/BF02601907
-
(1980)
Curr Microbiol
, vol.3
, pp. 381-386
-
-
Zeikus, J.G.1
Lynd, L.H.2
Thompson, T.E.3
-
70
-
-
0026112556
-
2 as a source of carbon and energy
-
2 as a source of carbon and energy. FASEB J 5: 156-163
-
(1991)
FASEB J
, vol.5
, pp. 156-163
-
-
Wood, H.G.1
-
71
-
-
10744223111
-
Energy conservation in acetogenic bacteria
-
Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69: 6345-6353. doi: 10.1128/AEM.69.11.6345
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 6345-6353
-
-
Müller, V.1
-
72
-
-
41349119857
-
Enzymology of the Wood-Ljungdahl pathway of acetogenesis
-
Ragsdale SW (2008) Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125: 129-136. doi: 10.1196/annals.1419.015
-
(2008)
Ann N Y Acad Sci
, vol.1125
, pp. 129-136
-
-
Ragsdale, S.W.1
-
73
-
-
33746916074
-
Acetogenic prokaryotes
-
Dworkin M, Falkow S, Rosenberg E et al (eds), 3rd edn. Springer, New York
-
Drake HL, Küsel K, Matthies C et al (2006) Acetogenic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, 3rd edn. Springer, New York, pp 354-420
-
(2006)
The prokaryotes
, pp. 354-420
-
-
Drake, H.L.1
Küsel, K.2
Matthies, C.3
-
75
-
-
84871712835
-
Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation
-
Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta 1827: 94-113
-
(2013)
Biochim Biophys Acta
, vol.1827
, pp. 94-113
-
-
Buckel, W.1
Thauer, R.K.2
-
76
-
-
84911440829
-
Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria
-
Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12: 809-821. doi: 10.1038/ nrmicro3365
-
(2014)
Nat Rev Microbiol
, vol.12
, pp. 809-821
-
-
Schuchmann, K.1
Müller, V.2
-
77
-
-
0002328698
-
The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis
-
Springer US, Boston
-
Ljungdahl LG (1994) The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. In: Acetogenesis. Springer US, Boston, pp 63-87
-
(1994)
Acetogenesis
, pp. 63-87
-
-
Ljungdahl, L.G.1
-
78
-
-
41349105505
-
Discovery of a ferredoxin: NAD+_oxidoreductase (Rnf) in Acetobacterium woodii: A novel potential coupling site in acetogens
-
Müller V, Imkamp F, Biegel E et al (2008) Discovery of a ferredoxin: NAD+_oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann N Y Acad Sci 1125: 137-146. doi: 10.1196/annals.1419.011
-
(2008)
Ann N Y Acad Sci
, vol.1125
, pp. 137-146
-
-
Müller, V.1
Imkamp, F.2
Biegel, E.3
-
79
-
-
66349115722
-
The ins and outs of Na(+) bioenergetics in Acetobacterium woodii
-
Schmidt S, Biegel E, Müller V (2009) The ins and outs of Na(+) bioenergetics in Acetobacterium woodii. Biochim Biophys Acta 1787: 691-696. doi: 10.1016/j.bbabio.2008. 12.015
-
(2009)
Biochim Biophys Acta
, vol.1787
, pp. 691-696
-
-
Schmidt, S.1
Biegel, E.2
Müller, V.3
-
80
-
-
0024430852
-
Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii
-
Heise R, Müller V, Gottschalk G (1989) Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J Bacteriol 171: 5473-5478
-
(1989)
J Bacteriol
, vol.171
, pp. 5473-5478
-
-
Heise, R.1
Müller, V.2
Gottschalk, G.3
-
81
-
-
84940421681
-
2 in Clostridium autoethanogenum involving electron bifurcation
-
2 in Clostridium autoethanogenum involving electron bifurcation. J Bacteriol. doi: 10.1128/JB.00399-15
-
(2015)
J Bacteriol.
-
-
Mock, J.1
Zheng, Y.2
Mueller, A.P.3
-
82
-
-
84884198848
-
NADP-specific electron-bifurcating [FeFe]- hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO
-
Wang S, Huang H, Kahnt J et al (2013) NADP-specific electron-bifurcating [FeFe]- hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol 195: 4373-4386. doi: 10.1128/JB.00678-13
-
(2013)
J Bacteriol
, vol.195
, pp. 4373-4386
-
-
Wang, S.1
Huang, H.2
Kahnt, J.3
-
83
-
-
84874639721
-
+ oxidoreductase essential for autotrophic growth
-
+ oxidoreductase essential for autotrophic growth. MBio 4: e00406-12-e00406-12. doi: 10.1128/mBio.00406-12
-
(2012)
MBio
, vol.4
, pp. e00406-12-e00406-12
-
-
Tremblay, P.-L.1
Zhang, T.2
Dar, S.A.3
-
84
-
-
84928393116
-
Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii
-
Bertsch J, Öppinger C, Hess V et al (2015) Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii. J Bacteriol 197: 1681-1689. doi: 10.1128/JB.00048-15
-
(2015)
J Bacteriol
, vol.197
, pp. 1681-1689
-
-
Bertsch, J.1
Öppinger, C.2
Hess, V.3
-
85
-
-
84938783243
-
CO metabolism in the acetogen Acetobacterium woodii
-
AEM.01772-15
-
Bertsch J, Müller V (2015) CO metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol AEM.01772-15. doi: 10.1128/AEM.01772-15
-
(2015)
Appl Environ Microbiol
-
-
Bertsch, J.1
Müller, V.2
-
86
-
-
51649108629
-
Fermentative butanol production by Clostridia
-
Lee SY, Park JH, Jang SH et al (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101: 209-228. doi: 10.1002/bit.22003
-
(2008)
Biotechnol Bioeng
, vol.101
, pp. 209-228
-
-
Lee, S.Y.1
Park, J.H.2
Jang, S.H.3
-
87
-
-
84930951543
-
Gas fermentation for commercial biofuels production
-
Fang Z (ed), InTech, Rijeka
-
Liew FM, Köpke M, Simpson SD (2013) Gas fermentation for commercial biofuels production. In: Fang Z (ed) Biofuel production-recent developments and prospects. InTech, Rijeka, pp 125-174
-
(2013)
Biofuel production-recent developments and prospects
, pp. 125-174
-
-
Liew, F.M.1
Köpke, M.2
Simpson, S.D.3
-
88
-
-
80052625837
-
Metabolic engineering of Clostridium acetobutylicum: Recent advances to improve butanol production
-
Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22: 634-647. doi: 10.1016/j.copbio.2011.01.011
-
(2011)
Curr Opin Biotechnol
, vol.22
, pp. 634-647
-
-
Lütke-Eversloh, T.1
Bahl, H.2
-
89
-
-
53049086510
-
Engineering solventogenic clostridia
-
Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19: 420-429. doi: 10.1016/j.copbio.2008.08.003
-
(2008)
Curr Opin Biotechnol
, vol.19
, pp. 420-429
-
-
Papoutsakis, E.T.1
-
90
-
-
77955610491
-
Clostridium ljungdahlii represents a microbial production platform based on syngas
-
Köpke M, Held C, Hujer S et al (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107: 13087-13092. doi: 10.1073/pnas.1004716107
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 13087-13092
-
-
Köpke, M.1
Held, C.2
Hujer, S.3
-
95
-
-
0022370898
-
Isolation and characterization of butanolresistant mutants of Clostridium acetobutylicum
-
Hermann M, Fayolle F, Marchal R et al (1985) Isolation and characterization of butanolresistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol 50: 1238-1243
-
(1985)
Appl Environ Microbiol
, vol.50
, pp. 1238-1243
-
-
Hermann, M.1
Fayolle, F.2
Marchal, R.3
-
96
-
-
84926619433
-
A universal mariner transposon system for forward genetic studies in the genus Clostridium
-
Zhang Y, Grosse-Honebrink A, Minton NP (2015) A universal mariner transposon system for forward genetic studies in the genus Clostridium. PLoS One 10, e0122411. doi: 10.1371/ journal.pone.0122411
-
(2015)
PLoS One
, vol.10
, pp. e0122411
-
-
Zhang, Y.1
Grosse-Honebrink, A.2
Minton, N.P.3
-
97
-
-
77954292796
-
Random mutagenesis of Clostridium cellulolyticum by using a Tn1545 derivative
-
Blouzard J-C, Valette O, Tardif C, de Philip P (2010) Random mutagenesis of Clostridium cellulolyticum by using a Tn1545 derivative. Appl Environ Microbiol 76: 4546-4549. doi: 10.1128/AEM.02417-09
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 4546-4549
-
-
Blouzard, J.-C.1
Valette, O.2
Tardif, C.3
de Philip, P.4
-
98
-
-
79952399941
-
Inactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis
-
Tracy BP, Jones SW, Papoutsakis ET (2011) Inactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis. J Bacteriol 193: 1414-1426. doi: 10.1128/JB.01380-10
-
(2011)
J Bacteriol
, vol.193
, pp. 1414-1426
-
-
Tracy, B.P.1
Jones, S.W.2
Papoutsakis, E.T.3
-
99
-
-
42549173688
-
PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum
-
Hillmann F, Fischer R-J, Saint-Prix F et al (2008) PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol Microbiol 68: 848-860. doi: 10.1111/j.1365-2958.2008.06192.x
-
(2008)
Mol Microbiol
, vol.68
, pp. 848-860
-
-
Hillmann, F.1
Fischer, R.-J.2
Saint-Prix, F.3
-
100
-
-
84869014233
-
Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway
-
Cooksley CM, Zhang Y, Wang H et al (2012) Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 14: 630-641. doi: 10.1016/j.ymben.2012.09.001
-
(2012)
Metab Eng
, vol.14
, pp. 630-641
-
-
Cooksley, C.M.1
Zhang, Y.2
Wang, H.3
-
101
-
-
0032986060
-
Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum
-
Desai RP, Papoutsakis ET (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65: 936-945
-
(1999)
Appl Environ Microbiol
, vol.65
, pp. 936-945
-
-
Desai, R.P.1
Papoutsakis, E.T.2
-
102
-
-
0029846031
-
Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824
-
Green EM, Boynton ZL, Harris LM et al (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142: 2079-2086. doi: 10.1099/13500872-142-8-2079
-
(1996)
Microbiology
, vol.142
, pp. 2079-2086
-
-
Green, E.M.1
Boynton, Z.L.2
Harris, L.M.3
-
104
-
-
83255174918
-
High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes
-
Argyros DA, Tripathi SA, Barrett TF et al (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77: 8288-8294. doi: 10.1128/AEM.00646-11
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 8288-8294
-
-
Argyros, D.A.1
Tripathi, S.A.2
Barrett, T.F.3
-
105
-
-
78049278436
-
Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant
-
Tripathi SA, Olson DG, Argyros DA et al (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76: 6591-6599. doi: 10.1128/AEM.01484-10
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 6591-6599
-
-
Tripathi, S.A.1
Olson, D.G.2
Argyros, D.A.3
-
106
-
-
84855266078
-
Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations
-
Li Y, Tschaplinski TJ, Engle NL et al (2012) Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol Biofuels 5: 2. doi: 10.1186/1754-6834-5-2
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 2
-
-
Li, Y.1
Tschaplinski, T.J.2
Engle, N.L.3
-
107
-
-
0041527233
-
Development of a sensitive gene expression reporter system and an inducible promoter-repressor system for Clostridium acetobutylicum
-
Girbal L, Mortier-barrière I, Rouanet C et al (2003) Development of a sensitive gene expression reporter system and an inducible promoter-repressor system for Clostridium acetobutylicum. Appl Environ Microbiol 69: 4985-4988. doi: 10.1128/AEM.69.8.4985
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 4985-4988
-
-
Girbal, L.1
Mortier-Barrière, I.2
Rouanet, C.3
-
108
-
-
34548124567
-
The ClosTron: A universal gene knock-out system for the genus Clostridium
-
Heap JT, Pennington OJ, Cartman ST et al (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70: 452-464. doi: 10.1016/j.mimet.2007.05.021
-
(2007)
J Microbiol Methods
, vol.70
, pp. 452-464
-
-
Heap, J.T.1
Pennington, O.J.2
Cartman, S.T.3
-
109
-
-
0034522972
-
Gene transfer to Clostridium cellulolyticum ATCC 35319
-
Jennert KC, Tardif C, Young DI, YoungM(2000) Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbiology 146(Pt 12): 3071-3080
-
(2000)
Microbiology
, vol.146
, pp. 3071-3080
-
-
Jennert, K.C.1
Tardif, C.2
Young, D.I.3
Young, M.4
-
110
-
-
14744283496
-
Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824
-
Mermelstein L, Welker N (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Bio/Technology 10: 190-195
-
(1992)
Bio/Technology
, vol.10
, pp. 190-195
-
-
Mermelstein, L.1
Welker, N.2
-
111
-
-
0027477171
-
In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824
-
Mermelstein LD, Papoutsakis ET (1993) In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 59: 1077-1081
-
(1993)
Appl Environ Microbiol
, vol.59
, pp. 1077-1081
-
-
Mermelstein, L.D.1
Papoutsakis, E.T.2
-
112
-
-
0025290597
-
Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum
-
Williams DR, Young DI, Young M (1990) Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J Gen Microbiol 136: 819-826. doi: 10.1099/00221287-136-5-819
-
(1990)
J Gen Microbiol
, vol.136
, pp. 819-826
-
-
Williams, D.R.1
Young, D.I.2
Young, M.3
-
114
-
-
84868649467
-
Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration
-
Al-Hinai MA, Fast AG, Papoutsakis ET (2012) Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration. Appl Environ Microbiol 78: 8112-8121. doi: 10.1128/ AEM.02214-12
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 8112-8121
-
-
Al-Hinai, M.A.1
Fast, A.G.2
Papoutsakis, E.T.3
-
115
-
-
84863792386
-
Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production
-
Cartman ST, Kelly ML, Heeg D et al (2012) Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol 78: 4683-4690. doi: 10.1128/AEM.00249-12
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 4683-4690
-
-
Cartman, S.T.1
Kelly, M.L.2
Heeg, D.3
-
116
-
-
84860362257
-
Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker
-
Heap JT, Ehsaan M, Cooksley CM et al (2012) Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res 1-10. doi: 10.1093/nar/gkr1321
-
(2012)
Nucleic Acids Res
, pp. 1-10
-
-
Heap, J.T.1
Ehsaan, M.2
Cooksley, C.M.3
-
118
-
-
79953204649
-
Development and application of a method for counterselectable in-frame deletion in Clostridium perfringens
-
Nariya H, Miyata S, Suzuki M et al (2011) Development and application of a method for counterselectable in-frame deletion in Clostridium perfringens. Appl Environ Microbiol 77: 1375-1382. doi: 10.1128/AEM.01572-10
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 1375-1382
-
-
Nariya, H.1
Miyata, S.2
Suzuki, M.3
-
119
-
-
84913595256
-
I-SceI-mediated scarless gene modification via allelic exchange in Clostridium
-
Zhang N, Shao L, Jiang Y et al (2015) I-SceI-mediated scarless gene modification via allelic exchange in Clostridium. J Microbiol Methods 108: 49-60. doi: 10.1016/j.mimet.2014.11.004
-
(2015)
J Microbiol Methods
, vol.108
, pp. 49-60
-
-
Zhang, N.1
Shao, L.2
Jiang, Y.3
-
120
-
-
84924425397
-
Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
-
Wang Y, Zhang Z-T, Seo S-O et al (2015) Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 1-5. doi: 10.1016/j. jbiotec.2015.02.005
-
(2015)
J Biotechnol
, pp. 1-5
-
-
Wang, Y.1
Zhang, Z.-T.2
Seo, S.-O.3
-
121
-
-
84930787559
-
Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase
-
AEM.00873-15
-
Xu T, Li Y, Shi Z et al (2015) Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl Environ Microbiol AEM.00873-15. doi: 10.1128/AEM.00873-15
-
(2015)
Appl Environ Microbiol
-
-
Xu, T.1
Li, Y.2
Shi, Z.3
-
122
-
-
71749102588
-
The ClosTron: Mutagenesis in Clostridium refined and streamlined
-
Heap JT, Kuehne SA, Ehsaan M et al (2010) The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 80: 49-55. doi: 10.1016/j.mimet.2009.10.018
-
(2010)
J Microbiol Methods
, vol.80
, pp. 49-55
-
-
Heap, J.T.1
Kuehne, S.A.2
Ehsaan, M.3
-
123
-
-
36248966555
-
Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum
-
Shao L, Hu S, Yang Y et al (2007) Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 17: 963-965. doi: 10.1038/cr.2007.91
-
(2007)
Cell Res
, vol.17
, pp. 963-965
-
-
Shao, L.1
Hu, S.2
Yang, Y.3
-
124
-
-
84924970547
-
A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum
-
Zhang J, Liu Y-J, Cui G-Z, Cui Q (2015) A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum. Biotechnol Biofuels 8: 36. doi: 10.1186/ s13068-015-0214-2
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 36
-
-
Zhang, J.1
Liu, Y.-J.2
Cui, G.-Z.3
Cui, Q.4
-
125
-
-
2342587365
-
Characterization and development of two reporter gene systems for Clostridium acetobutylicum
-
Feustel L, Nakotte S, Durre P (2004) Characterization and development of two reporter gene systems for Clostridium acetobutylicum. Appl Environ Microbiol 70: 798-803. doi: 10.1128/ AEM.70.2.798-803.2004
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 798-803
-
-
Feustel, L.1
Nakotte, S.2
Durre, P.3
-
126
-
-
0032876348
-
Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824
-
Tummala SB, Welker NE, Papoutsakis ET (1999) Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 65: 3793-3799
-
(1999)
Appl Environ Microbiol
, vol.65
, pp. 3793-3799
-
-
Tummala, S.B.1
Welker, N.E.2
Papoutsakis, E.T.3
-
127
-
-
0028335841
-
A Clostridium perfringens vector for the selection of promoters
-
Matsushita C, Matsushita O, Koyama M, Okabe A (1994) A Clostridium perfringens vector for the selection of promoters. Plasmid 31: 317-319
-
(1994)
Plasmid
, vol.31
, pp. 317-319
-
-
Matsushita, C.1
Matsushita, O.2
Koyama, M.3
Okabe, A.4
-
128
-
-
0024550498
-
Nucleotide sequence analysis and expression studies of a chloramphenicol-acetyltransferase-coding gene from Clostridium perfringens
-
Steffen C, Matzura H (1989) Nucleotide sequence analysis and expression studies of a chloramphenicol-acetyltransferase-coding gene from Clostridium perfringens. Gene 75: 349-354
-
(1989)
Gene
, vol.75
, pp. 349-354
-
-
Steffen, C.1
Matzura, H.2
-
129
-
-
84855469161
-
Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering
-
Dong H, Tao W, Zhang Y, Li Y (2012) Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: a useful tool for strain engineering. Metab Eng 14: 59-67. doi: 10.1016/j.ymben.2011.10.004
-
(2012)
Metab Eng
, vol.14
, pp. 59-67
-
-
Dong, H.1
Tao, W.2
Zhang, Y.3
Li, Y.4
-
130
-
-
79551471348
-
Construction and characterization of a lactoseinducible promoter system for controlled gene expression in Clostridium perfringens
-
Hartman AH, Liu H, Melville SB (2011) Construction and characterization of a lactoseinducible promoter system for controlled gene expression in Clostridium perfringens. Appl Environ Microbiol 77: 471-478. doi: 10.1128/AEM.01536-10
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 471-478
-
-
Hartman, A.H.1
Liu, H.2
Melville, S.B.3
-
131
-
-
84874738185
-
A genetic system for Clostridium ljungdahlii: A chassis for autotrophic production of biocommodities and a model homoacetogen
-
Leang C, Ueki T, Nevin KP, Lovley DR (2013) A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 79: 1102-1109. doi: 10.1128/AEM.02891-12
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 1102-1109
-
-
Leang, C.1
Ueki, T.2
Nevin, K.P.3
Lovley, D.R.4
-
132
-
-
84908433337
-
Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii
-
Ueki T, Nevin KP, Woodard TL, Lovley DR (2014) Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. MBio 5: e01636-14-e01636-14. doi: 10.1128/mBio.01636-14
-
(2014)
MBio
, vol.5
, pp. e01636-14-e01636-14
-
-
Ueki, T.1
Nevin, K.P.2
Woodard, T.L.3
Lovley, D.R.4
-
135
-
-
84899893925
-
Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase
-
AEM.00301-14
-
Köpke M, Gerth ML, Maddock DJ et al (2014) Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol AEM.00301-14. doi: 10.1128/AEM.00301-14
-
(2014)
Appl Environ Microbiol
-
-
Köpke, M.1
Gerth, M.L.2
Maddock, D.J.3
-
138
-
-
84896905548
-
Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii
-
Banerjee A, Leang C, Ueki T et al (2014) Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol 80: 2410-2416. doi: 10.1128/AEM.03666-13
-
(2014)
Appl Environ Microbiol
, vol.80
, pp. 2410-2416
-
-
Banerjee, A.1
Leang, C.2
Ueki, T.3
-
139
-
-
84930227327
-
Using genome-scale models to predict biological capabilities
-
O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161: 971-987. doi: 10.1016/j.cell.2015.05.019
-
(2015)
Cell
, vol.161
, pp. 971-987
-
-
O’Brien, E.J.1
Monk, J.M.2
Palsson, B.O.3
-
140
-
-
84888102796
-
Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii
-
Nagarajan H, Sahin M, Nogales J et al (2013) Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Fact 12: 118. doi: 10.1186/1475-2859-12-118
-
(2013)
Microb Cell Fact
, vol.12
, pp. 118
-
-
Nagarajan, H.1
Sahin, M.2
Nogales, J.3
-
141
-
-
84938688950
-
Investigating Moorella thermoacetica metabolism with a genome-scale constraint-nased metabolic model
-
Islam MA, Zengler K, Edwards EA et al (2015) Investigating Moorella thermoacetica metabolism with a genome-scale constraint-nased metabolic model. Integr Biol. doi: 10.1039/C5IB00095E
-
(2015)
Integr Biol.
-
-
Islam, M.A.1
Zengler, K.2
Edwards, E.A.3
-
142
-
-
84970028225
-
Low carbon fuels and commodity chemicals from waste gases - Systematic approach to understand energy metabolism in a model acetogen
-
Marcellin E, Behrendorff JB, Nagaraju S, DeTissera S, Segovia S, Palfreyman R, Daniell J, Licona-Cassani C, Quek L, Speight R, Hodson MP, Simpson SD, Mitchell WP, Köpke M, Nielsen LK (2016) Low carbon fuels and commodity chemicals from waste gases - systematic approach to understand energy metabolism in a model acetogen. Green Chem. doi: 10.1039/C5GC02708J
-
(2016)
Green Chem.
-
-
Marcellin, E.1
Behrendorff, J.B.2
Nagaraju, S.3
DeTissera, S.4
Segovia, S.5
Palfreyman, R.6
Daniell, J.7
Licona-Cassani, C.8
Quek, L.9
Speight, R.10
Hodson, M.P.11
Simpson, S.D.12
Mitchell, W.P.13
Köpke, M.14
Nielsen, L.K.15
-
143
-
-
51849115840
-
Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network
-
Lee J, Yun H, Feist AM et al (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 80: 849-862. doi: 10.1007/s00253-008-1654-4
-
(2008)
Appl Microbiol Biotechnol
, vol.80
, pp. 849-862
-
-
Lee, J.1
Yun, H.2
Feist, A.M.3
-
144
-
-
80051641411
-
Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052
-
Milne CB, Eddy JA, Raju R et al (2011) Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Syst Biol 5: 130. doi: 10.1186/1752-0509-5-130
-
(2011)
BMC Syst Biol
, vol.5
, pp. 130
-
-
Milne, C.B.1
Eddy, J.A.2
Raju, R.3
-
145
-
-
77954736119
-
Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production
-
Roberts SB, Gowen CM, Brooks JP, Fong SS (2010) Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst Biol 4: 31. doi: 10.1186/1752-0509-4-31
-
(2010)
BMC Syst Biol
, vol.4
, pp. 31
-
-
Roberts, S.B.1
Gowen, C.M.2
Brooks, J.P.3
Fong, S.S.4
-
146
-
-
77954724818
-
Genome-scale metabolic modeling of a clostridial - Co-culture for consolidated bioprocessing
-
Salimi F, Zhuang K, Mahadevan R (2010) Genome-scale metabolic modeling of a clostridial - co-culture for consolidated bioprocessing. Biotechnol J 5: 726-738. doi: 10.1002/biot.201000159
-
(2010)
Biotechnol J
, vol.5
, pp. 726-738
-
-
Salimi, F.1
Zhuang, K.2
Mahadevan, R.3
-
147
-
-
51849142353
-
Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis
-
Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: part I. Metabolic network resolution and analysis. Biotechnol Bioeng 101: 1036-1052. doi: 10.1002/bit.22010
-
(2008)
Biotechnol Bioeng
, vol.101
, pp. 1036-1052
-
-
Senger, R.S.1
Papoutsakis, E.T.2
-
148
-
-
84935015837
-
Metabolic modeling of synthesis gas fermentation in bubble column reactors
-
Chen J, Gomez J, Höffner K et al (2015) Metabolic modeling of synthesis gas fermentation in bubble column reactors. Biotechnol Biofuels 8: 89. doi: 10.1186/s13068-015-0272-5
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 89
-
-
Chen, J.1
Gomez, J.2
Höffner, K.3
-
149
-
-
84902272773
-
Euler APE: Drawing area-proportional 3-Venn diagrams using ellipses
-
Micallef L, Rodgers P (2014) euler APE: drawing area-proportional 3-Venn diagrams using ellipses. PLoS One. doi: 10.1371/journal.pone.0101717
-
(2014)
PLoS One.
-
-
Micallef, L.1
Rodgers, P.2
-
150
-
-
78650220759
-
Syngas fermentation to biofuel: Evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations
-
Munasinghe PC, Khanal SK (2010) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog 26: 1616-1621. doi: 10.1002/btpr.473
-
(2010)
Biotechnol Prog
, vol.26
, pp. 1616-1621
-
-
Munasinghe, P.C.1
Khanal, S.K.2
-
151
-
-
84918796739
-
Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations
-
Yasin M, Jeong Y, Park S et al (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresour Technol 177: 361-374. doi: 10.1016/j. biortech.2014.11.022
-
(2015)
Bioresour Technol
, vol.177
, pp. 361-374
-
-
Yasin, M.1
Jeong, Y.2
Park, S.3
-
152
-
-
0033200050
-
Reactor design issues for synthesis-gas fermentations
-
Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15: 834-844. doi: 10.1021/bp990108m
-
(1999)
Biotechnol Prog
, vol.15
, pp. 834-844
-
-
Bredwell, M.D.1
Srivastava, P.2
Worden, R.M.3
-
153
-
-
2542469689
-
Fermentation of biomass-generated producer gas to ethanol
-
Datar RP, Shenkman RM, Cateni BG et al (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86: 587-594. doi: 10.1002/bit.20071
-
(2004)
Biotechnol Bioeng
, vol.86
, pp. 587-594
-
-
Datar, R.P.1
Shenkman, R.M.2
Cateni, B.G.3
-
154
-
-
84874406663
-
A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors
-
Orgill JJ, Atiyeh HK, Devarapalli M et al (2013) A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors. Bioresour Technol 133: 340-346
-
(2013)
Bioresour Technol
, vol.133
, pp. 340-346
-
-
Orgill, J.J.1
Atiyeh, H.K.2
Devarapalli, M.3
-
155
-
-
57149141940
-
Separation technologies for the recovery and dehydration of alcohols from fermentation broths
-
Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2: 553-588. doi: 10.1002/bbb.108
-
(2008)
Biofuels Bioprod Biorefin
, vol.2
, pp. 553-588
-
-
Vane, L.M.1
-
156
-
-
84860467054
-
Biological conversion of carbon monoxide to ethanol: Effect of pH, gas pressure, reducing agent and yeast extract
-
Abubackar HN, Veiga MC, Kennes C (2012) Biological conversion of carbon monoxide to ethanol: effect of pH, gas pressure, reducing agent and yeast extract. Bioresour Technol 114: 518-522. doi: 10.1016/j.biortech.2012.03.027
-
(2012)
Bioresour Technol
, vol.114
, pp. 518-522
-
-
Abubackar, H.N.1
Veiga, M.C.2
Kennes, C.3
-
157
-
-
79955036003
-
Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by "Clostridium ragsdalei
-
Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by "Clostridium ragsdalei". Bioresour Technol 102: 5794-5799. doi: 10.1016/j.biortech.2011.02.032
-
(2011)
Bioresour Technol
, vol.102
, pp. 5794-5799
-
-
Kundiyana, D.K.1
Wilkins, M.R.2
Maddipati, P.3
Huhnke, R.L.4
-
158
-
-
84925434770
-
Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid
-
Abubackar HN, Veiga MC, Kennes C (2015) Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour Technol. doi: 10.1016/j.biortech.2015.02.113
-
(2015)
Bioresour Technol.
-
-
Abubackar, H.N.1
Veiga, M.C.2
Kennes, C.3
-
160
-
-
84939175815
-
Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention
-
Kantzow C, Mayer A, Weuster-Botz D (2015) Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention. J Biotechnol. doi: 10.1016/j.jbiotec.2015.07.020
-
(2015)
J Biotechnol.
-
-
Kantzow, C.1
Mayer, A.2
Weuster-Botz, D.3
-
165
-
-
84924024339
-
-
Accessed 25 Aug 2015
-
INEOS Bio (2013) INEOS Bio produces cellulosic ethanol at commercial scale. http:// www.ethanolproducer.com/articles/10096/ineos-declares-commercial-cellulosic-ethanolonline- in-florida. Accessed 25 Aug 2015
-
(2013)
INEOS Bio produces cellulosic ethanol at commercial scale
-
-
-
166
-
-
84997159370
-
-
Accessed 25 Aug 2015
-
Florida Department of Environmental Protection (2014) Technical evaluation and preliminary determination. http://www.ascension-publishing.com/INEOS-FIX-090514.pdf. Accessed 25 Aug 2015
-
(2014)
Technical evaluation and preliminary determination
-
-
-
168
-
-
84997108254
-
-
Accessed 25 Aug 2015
-
Coskata Inc. (2011) Form S-1 Coskata, Inc. http://www.sec.gov/Archives/edgar/data/1536893/000119312511343587/d267854ds1.htm. Accessed 25 Aug 2015
-
(2011)
Form S-1 Coskata, Inc.
-
-
-
176
-
-
84938811128
-
Sustainability of biofuels and renewable chemicals production from biomass
-
Kircher M (2015) Sustainability of biofuels and renewable chemicals production from biomass. Curr Opin Chem Biol 29: 26-31. doi: 10.1016/j.cbpa.2015.07.010
-
(2015)
Curr Opin Chem Biol
, vol.29
, pp. 26-31
-
-
Kircher, M.1
-
177
-
-
66949152935
-
-
Accessed 13 Aug 2015
-
California Energy Commission (2015) Low carbon fuel standard. http://www.energy.ca.gov/ low_carbon_fuel_standard/. Accessed 13 Aug 2015
-
(2015)
Low carbon fuel standard
-
-
-
178
-
-
79651473387
-
Directive 2009/30/ EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amend
-
The European Parliament and the Council of the European Union (2009) Directive 2009/30/ EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amend. Off J Eur Union L 140: 88-113
-
(2009)
Off J Eur Union L
, vol.140
, pp. 88-113
-
-
-
179
-
-
84883825591
-
Life-cycle analysis of energy use and greenhouse gas emissions of gas-to-liquid fuel pathway from steel mill off-gas in China by the LanzaTech process
-
Ou X, Zhang X, Zhang Q, Zhang X (2013) Life-cycle analysis of energy use and greenhouse gas emissions of gas-to-liquid fuel pathway from steel mill off-gas in China by the LanzaTech process. Front Energy 7: 263-270. doi: 10.1007/s11708-013-0263-9
-
(2013)
Front Energy
, vol.7
, pp. 263-270
-
-
Ou, X.1
Zhang, X.2
Zhang, Q.3
Zhang, X.4
-
182
-
-
84875217011
-
Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China
-
Liu B, Wang F, Zhang B, Bi J (2013) Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China. Energy Policy 56: 210-220. doi: 10.1016/j.enpol.2012.12.052
-
(2013)
Energy Policy
, vol.56
, pp. 210-220
-
-
Liu, B.1
Wang, F.2
Zhang, B.3
Bi, J.4
|