메뉴 건너뛰기




Volumn 156, Issue , 2016, Pages 293-321

Low-carbon fuel and chemical production by anaerobic gas fermentation

Author keywords

Acetogens; Biofuels; Clostridia; Gas fermentation; Synthesis gas; Wood Ljungdahl pathway

Indexed keywords

BIOFUEL; CARBON; GAS; HYDROGEN;

EID: 84997403734     PISSN: 07246145     EISSN: None     Source Type: Book Series    
DOI: 10.1007/10_2015_5005     Document Type: Chapter
Times cited : (27)

References (182)
  • 2
    • 72049131519 scopus 로고    scopus 로고
    • Production of first and second generation biofuels: A comprehensive review
    • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14: 578-597. doi: 10.1016/j. rser.2009.10.003
    • (2010) Renew Sustain Energy Rev , vol.14 , pp. 578-597
    • Naik, S.N.1    Goud, V.V.2    Rout, P.K.3    Dalai, A.K.4
  • 3
    • 84894639711 scopus 로고    scopus 로고
    • Green and sustainable manufacture of chemicals from biomass: State of the art
    • Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16: 950-963. doi: 10.1039/C3GC41935E
    • (2014) Green Chem , vol.16 , pp. 950-963
    • Sheldon, R.A.1
  • 4
    • 65949124493 scopus 로고    scopus 로고
    • Recent trends in global production and utilization of bio-ethanol fuel
    • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86: 2273-2282. doi: 10.1016/j.apenergy.2009.03.015
    • (2009) Appl Energy , vol.86 , pp. 2273-2282
    • Balat, M.1    Balat, H.2
  • 5
    • 79959374585 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
    • Yim H, Haselbeck R, NiuWet al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7: 445-452. doi: 10.1038/nchembio.580
    • (2011) Nat Chem Biol , vol.7 , pp. 445-452
    • Yim, H.1    Haselbeck, R.2    Niu, W.3
  • 6
    • 0142027026 scopus 로고    scopus 로고
    • Metabolic engineering for the microbial production of 1,3-propanediol
    • Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14: 454-459. doi: 10.1016/j.copbio.2003.08.005
    • (2003) Curr Opin Biotechnol , vol.14 , pp. 454-459
    • Nakamura, C.E.1    Whited, G.M.2
  • 7
    • 84872148262 scopus 로고    scopus 로고
    • Commercial biomass syngas fermentation
    • Daniell J, Köpke M, Simpson S (2012) Commercial biomass syngas fermentation. Energies 5: 5372-5417. doi: 10.3390/en5125372
    • (2012) Energies , vol.5 , pp. 5372-5417
    • Daniell, J.1    Köpke, M.2    Simpson, S.3
  • 8
    • 84911922376 scopus 로고    scopus 로고
    • 2 emissions and implications for reaching climate targets
    • 2 emissions and implications for reaching climate targets. Nat Geosci 7: 709-715. doi: 10.1038/ngeo2248
    • (2014) Nat Geosci , vol.7 , pp. 709-715
    • Friedlingstein, P.1    Andrew, R.M.2    Rogelj, J.3
  • 9
    • 84893786890 scopus 로고    scopus 로고
    • The emerging bioeconomy: Industrial drivers, global impact, and international strategies
    • Kircher M (2014) The emerging bioeconomy: industrial drivers, global impact, and international strategies. Ind Biotechnol 10: 11-18. doi: 10.1089/ind.2014.1500
    • (2014) Ind Biotechnol , vol.10 , pp. 11-18
    • Kircher, M.1
  • 10
    • 84872690141 scopus 로고    scopus 로고
    • The impact of biofuels on commodity food prices: Assessment of findings
    • Zilberman D, Hochman G, Rajagopal D et al (2013) The impact of biofuels on commodity food prices: assessment of findings. Am J Agric Econ 95: 275-281. doi: 10.1093/ajae/aas037
    • (2013) Am J Agric Econ , vol.95 , pp. 275-281
    • Zilberman, D.1    Hochman, G.2    Rajagopal, D.3
  • 12
    • 40049092327 scopus 로고    scopus 로고
    • Land clearing and the biofuel carbon debt
    • Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319: 1235-1238. doi: 10.1126/science.1152747
    • (2008) Science , vol.319 , pp. 1235-1238
    • Fargione, J.1    Hill, J.2    Tilman, D.3
  • 13
    • 68649093162 scopus 로고    scopus 로고
    • US Public Law 110-140
    • 110th United States Congress (2007) Energy Independence and Security Act of 2007. US Public Law 110-140. https://www.gpo.gov/fdsys/pkg/PLAW-110publ140/pdf/PLAW-110publ140.pdf
    • (2007) Energy Independence and Security Act of 2007
  • 15
    • 84926020090 scopus 로고    scopus 로고
    • C1-carbon sources for chemical and fuel production by microbial gas fermentation
    • Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35: 63-72. doi: 10.1016/j.copbio.2015.03. 008
    • (2015) Curr Opin Biotechnol , vol.35 , pp. 63-72
    • Dürre, P.1    Eikmanns, B.J.2
  • 16
    • 78149406709 scopus 로고    scopus 로고
    • Biomass gasification: Still promising? A 30-year global overview
    • Kirkels AF, Verbong GPJ (2011) Biomass gasification: still promising? A 30-year global overview. Renew Sustain Energy Rev 15: 471-481. doi: 10.1016/j.rser.2010.09.046
    • (2011) Renew Sustain Energy Rev , vol.15 , pp. 471-481
    • Kirkels, A.F.1    Verbong, G.P.J.2
  • 17
    • 0036158804 scopus 로고    scopus 로고
    • Energy production from biomass (part 3): Gasification technologies
    • McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83: 55-63
    • (2002) Bioresour Technol , vol.83 , pp. 55-63
    • McKendry, P.1
  • 18
    • 84860803588 scopus 로고    scopus 로고
    • Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca
    • Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci 109: 7085-7090. doi: 10.1073/pnas.1120788109
    • (2012) Proc Natl Acad Sci , vol.109 , pp. 7085-7090
    • Temme, K.1    Zhao, D.2    Voigt, C.A.3
  • 19
    • 84875274861 scopus 로고    scopus 로고
    • Synthetic biology: From hype to impact
    • Gardner TS (2013) Synthetic biology: from hype to impact. Trends Biotechnol 31: 123-125. doi: 10.1016/j.tibtech.2013.01.018
    • (2013) Trends Biotechnol , vol.31 , pp. 123-125
    • Gardner, T.S.1
  • 20
    • 28344455644 scopus 로고    scopus 로고
    • Biotechnological production of amino acids and derivatives: Current status and prospects
    • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69: 1-8. doi: 10.1007/s00253-005-0155-y
    • (2005) Appl Microbiol Biotechnol , vol.69 , pp. 1-8
    • Leuchtenberger, W.1    Huthmacher, K.2    Drauz, K.3
  • 21
    • 84886072640 scopus 로고    scopus 로고
    • Biochemical production of biobutanol
    • Luque R, Campelo J, Clark JH (eds), Woodhead Publishing, Cambridge
    • Köpke M, Dürre P (2010) Biochemical production of biobutanol. In: Luque R, Campelo J, Clark JH (eds) Handbook of biofuels production: processes and technologies. Woodhead Publishing, Cambridge, pp 221-257
    • (2010) Handbook of biofuels production: Processes and technologies , pp. 221-257
    • Köpke, M.1    Dürre, P.2
  • 22
    • 84855895484 scopus 로고    scopus 로고
    • Minimization and prevention of phage infections in bioprocesses
    • Los M (2012) Minimization and prevention of phage infections in bioprocesses. Methods Mol Biol 834: 305-315. doi: 10.1007/978-1-61779-483-4_19
    • (2012) Methods Mol Biol , vol.834 , pp. 305-315
    • Los, M.1
  • 23
    • 10944256640 scopus 로고    scopus 로고
    • Bacterial contaminants of fuel ethanol production
    • Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31: 401-408. doi: 10.1007/s10295-004-0159-0
    • (2004) J Ind Microbiol Biotechnol , vol.31 , pp. 401-408
    • Skinner, K.A.1    Leathers, T.D.2
  • 24
    • 79957980223 scopus 로고    scopus 로고
    • Industrial fermentation of renewable diesel fuels
    • Westfall PJ, Gardner TS (2011) Industrial fermentation of renewable diesel fuels. Curr Opin Biotechnol 22: 344-350. doi: 10.1016/j.copbio.2011.04.023
    • (2011) Curr Opin Biotechnol , vol.22 , pp. 344-350
    • Westfall, P.J.1    Gardner, T.S.2
  • 25
    • 9444285788 scopus 로고    scopus 로고
    • Escherichia coli acid resistance: Tales of an amateur acidophile
    • Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2: 898-907. doi: 10.1038/nrmicro1021
    • (2004) Nat Rev Microbiol , vol.2 , pp. 898-907
    • Foster, J.W.1
  • 26
    • 84909606329 scopus 로고    scopus 로고
    • Building carbon-carbon bonds using a biocatalytic methanol condensation cycle
    • Bogorad IW, Chen C-T, Theisen MK et al (2014) Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. Proc Natl Acad Sci 111: 15928-15933. doi: 10.1073/pnas.1413470111
    • (2014) Proc Natl Acad Sci , vol.111 , pp. 15928-15933
    • Bogorad, I.W.1    Chen, C.-T.2    Theisen, M.K.3
  • 27
    • 84886947479 scopus 로고    scopus 로고
    • Synthetic non-oxidative glycolysis enables complete carbon conservation
    • Bogorad IW, Lin T-S, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502: 693-697. doi: 10.1038/nature12575
    • (2013) Nature , vol.502 , pp. 693-697
    • Bogorad, I.W.1    Lin, T.-S.2    Liao, J.C.3
  • 28
    • 39649103644 scopus 로고    scopus 로고
    • Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals
    • Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74: 1124-1135. doi: 10.1128/AEM.02192-07
    • (2008) Appl Environ Microbiol , vol.74 , pp. 1124-1135
    • Murarka, A.1    Dharmadi, Y.2    Yazdani, S.S.3    Gonzalez, R.4
  • 29
    • 0034086965 scopus 로고    scopus 로고
    • Molecular biology and regulation of methane monooxygenase
    • Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173: 325-332
    • (2000) Arch Microbiol , vol.173 , pp. 325-332
    • Murrell, J.C.1    Gilbert, B.2    McDonald, I.R.3
  • 30
    • 84922433192 scopus 로고    scopus 로고
    • Engineering Escherichia coli for methanol conversion
    • Müller JEN, Meyer F, Litsanov B et al (2015) Engineering Escherichia coli for methanol conversion. Metab Eng 28: 190-201. doi: 10.1016/j.ymben.2014.12.008
    • (2015) Metab Eng , vol.28 , pp. 190-201
    • Müller, J.E.N.1    Meyer, F.2    Litsanov, B.3
  • 32
    • 84874116531 scopus 로고    scopus 로고
    • 2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals
    • 2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1-16. doi: 10.1016/j.coche.2012.07.005
    • (2012) Curr Opin Chem Eng , pp. 1-16
    • Fast, A.G.1    Papoutsakis, E.T.2
  • 33
    • 3242755111 scopus 로고    scopus 로고
    • The rocky roots of the acetyl-CoA pathway
    • Russell MJ, MartinW(2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29: 358-363. doi: 10.1016/j.tibs.2004.05.007
    • (2004) Trends Biochem Sci , vol.29 , pp. 358-363
    • Russell, M.J.1    Martin, W.2
  • 34
    • 81855183336 scopus 로고    scopus 로고
    • Bioconversion of synthesis gas to second generation biofuels: A review
    • Mohammadi M, Najafpour GD, Younesi H et al (2011) Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sustain Energy Rev 15: 4255-4273. doi: 10.1016/j.rser.2011.07.124
    • (2011) Renew Sustain Energy Rev , vol.15 , pp. 4255-4273
    • Mohammadi, M.1    Najafpour, G.D.2    Younesi, H.3
  • 35
    • 77949875923 scopus 로고    scopus 로고
    • Biomass-derived syngas fermentation into biofuels: Opportunities and challenges
    • Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101: 5013-5022. doi: 10.1016/j.biortech.2009.12.098
    • (2010) Bioresour Technol , vol.101 , pp. 5013-5022
    • Munasinghe, P.C.1    Khanal, S.K.2
  • 36
    • 84863630261 scopus 로고    scopus 로고
    • Pathway engineering and synthetic biology using acetogens
    • Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586: 2191-2198. doi: 10.1016/j.febslet.2012.04.043
    • (2012) FEBS Lett , vol.586 , pp. 2191-2198
    • Schiel-Bengelsdorf, B.1    Dürre, P.2
  • 37
    • 77951644817 scopus 로고    scopus 로고
    • Production of biofuels from synthesis gas using microbial catalysts
    • Tirado-Acevedo O, Chinn MS, Grunden AM (2010) Production of biofuels from synthesis gas using microbial catalysts. Adv Appl Microbiol 70: 57-92. doi: 10.1016/S0065-2164(10)70002-2
    • (2010) Adv Appl Microbiol , vol.70 , pp. 57-92
    • Tirado-Acevedo, O.1    Chinn, M.S.2    Grunden, A.M.3
  • 38
    • 79961098783 scopus 로고    scopus 로고
    • 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas
    • Köpke M, Mihalcea C, Liew F et al (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77: 5467-5475. doi: 10.1128/AEM.00355-11
    • (2011) Appl Environ Microbiol , vol.77 , pp. 5467-5475
    • Köpke, M.1    Mihalcea, C.2    Liew, F.3
  • 40
    • 84862010951 scopus 로고    scopus 로고
    • Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications
    • Tracy BP, Jones SW, Fast AG et al (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23: 364-381. doi: 10.1016/j.copbio.2011.10.008
    • (2012) Curr Opin Biotechnol , vol.23 , pp. 364-381
    • Tracy, B.P.1    Jones, S.W.2    Fast, A.G.3
  • 42
    • 33645554486 scopus 로고    scopus 로고
    • Acetogenic clostridia
    • Dürre P (ed), CRC, Boca Raton
    • Drake HL, Küsel K (2005) Acetogenic clostridia. In: Dürre P (ed) Handbook of clostridia. CRC, Boca Raton, pp 721-748
    • (2005) Handbook of clostridia , pp. 721-748
    • Drake, H.L.1    Küsel, K.2
  • 43
    • 79953759834 scopus 로고    scopus 로고
    • Powering microbes with electricity: Direct electron transfer from electrodes to microbes
    • Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3: 27-35. doi: 10.1111/j.1758-2229.2010.00211.x
    • (2011) Environ Microbiol Rep , vol.3 , pp. 27-35
    • Lovley, D.R.1
  • 44
    • 84878652242 scopus 로고    scopus 로고
    • Electrobiocommodities: Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
    • Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 1-6. doi: 10.1016/j.copbio.2013.02.012
    • (2013) Curr Opin Biotechnol , pp. 1-6
    • Lovley, D.R.1    Nevin, K.P.2
  • 45
    • 79955675417 scopus 로고    scopus 로고
    • Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
    • Nevin KP, Hensley SA, Franks AE et al (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77: 2882-2886. doi: 10.1128/AEM.02642-10
    • (2011) Appl Environ Microbiol , vol.77 , pp. 2882-2886
    • Nevin, K.P.1    Hensley, S.A.2    Franks, A.E.3
  • 46
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • Nevin KP, Woodard TL, Franks AE et al (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1: e00103-e00110. doi: 10.1128/mBio.00103-10
    • (2010) MBio , vol.1 , pp. e00103-e00110
    • Nevin, K.P.1    Woodard, T.L.2    Franks, A.E.3
  • 47
    • 0028298999 scopus 로고
    • Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide
    • Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161: 345-351. doi: 10.1007/BF00303591
    • (1994) Arch Microbiol , vol.161 , pp. 345-351
    • Abrini, J.1    Naveau, H.2    Nyns, E.J.3
  • 48
    • 84899874115 scopus 로고    scopus 로고
    • Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia
    • Brown SD, Nagaraju S, Utturkar S et al (2014) Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia. Biotechnol Biofuels 7: 40. doi: 10.1186/1754-6834-7-40
    • (2014) Biotechnol Biofuels , vol.7 , pp. 40
    • Brown, S.D.1    Nagaraju, S.2    Utturkar, S.3
  • 49
    • 84940401439 scopus 로고    scopus 로고
    • Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies
    • Utturkar SM, Klingeman DM, Bruno-Barcena JM et al (2015) Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies. Sci Data 2: 150014. doi: 10.1038/sdata.2015.14
    • (2015) Sci Data , vol.2 , pp. 150014
    • Utturkar, S.M.1    Klingeman, D.M.2    Bruno-Barcena, J.M.3
  • 50
    • 0006715439 scopus 로고
    • Biological production of ethanol from coal synthesis gas
    • Phillips JR, Klasson KT, Claussen EC et al (1993) Biological production of ethanol from coal synthesis gas. Appl Biochem Biotechnol 39: 559-571. doi: 10.1007/BF02919018
    • (1993) Appl Biochem Biotechnol , vol.39 , pp. 559-571
    • Phillips, J.R.1    Klasson, K.T.2    Claussen, E.C.3
  • 51
    • 0027460190 scopus 로고
    • Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I
    • Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43: 232
    • (1993) Int J Syst Bacteriol , vol.43 , pp. 232
    • Tanner, R.S.1    Miller, L.M.2    Yang, D.3
  • 54
    • 84937925579 scopus 로고    scopus 로고
    • Complete genome sequence of Clostridium carboxidivorans P7(T), a syngas-fermenting bacterium capable of producing long-chain alcohols
    • Li N, Yang J, Chai C et al (2015) Complete genome sequence of Clostridium carboxidivorans P7(T), a syngas-fermenting bacterium capable of producing long-chain alcohols. J Biotechnol 211: 44-45. doi: 10.1016/j.jbiotec.2015.06.430
    • (2015) J Biotechnol , vol.211 , pp. 44-45
    • Li, N.1    Yang, J.2    Chai, C.3
  • 55
    • 26244461228 scopus 로고    scopus 로고
    • Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp
    • Liou JS-C, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55: 2085-2091. doi: 10.1099/ijs.0.63482-0
    • (2005) Nov. Int J Syst Evol Microbiol , vol.55 , pp. 2085-2091
    • Liou, J.S.-C.1    Balkwill, D.L.2    Drake, G.R.3    Tanner, R.S.4
  • 56
    • 84928595209 scopus 로고    scopus 로고
    • Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques
    • Phillips JR, Atiyeh HK, Tanner RS et al (2015) Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Bioresour Technol 190: 114-121. doi: 10.1016/j.biortech.2015.04.043
    • (2015) Bioresour Technol , vol.190 , pp. 114-121
    • Phillips, J.R.1    Atiyeh, H.K.2    Tanner, R.S.3
  • 57
    • 85008465331 scopus 로고    scopus 로고
    • Complete genome sequence of Rnf- and cytochrome-containing autotrophic acetogen Clostridium aceticum DSM 1496
    • Poehlein A, Bengelsdorf FR, Schiel-Bengelsdorf B et al (2015) Complete genome sequence of Rnf- and cytochrome-containing autotrophic acetogen Clostridium aceticum DSM 1496. Genome Announc 3: e00786-15. doi: 10.1128/genomeA.00786-15
    • (2015) Genome Announc , vol.3 , pp. e00786-e00815
    • Poehlein, A.1    Bengelsdorf, F.R.2    Schiel-Bengelsdorf, B.3
  • 58
    • 38949209126 scopus 로고    scopus 로고
    • Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium - Clostridium aceticum using statistical approach
    • Sim JH, Kamaruddin AH (2008) Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium - Clostridium aceticum using statistical approach. Bioresour Technol 99: 2724-2735. doi: 10.1016/j.biortech.2007.07.004
    • (2008) Bioresour Technol , vol.99 , pp. 2724-2735
    • Sim, J.H.1    Kamaruddin, A.H.2
  • 59
    • 44149096454 scopus 로고    scopus 로고
    • Biocatalytic conversion of CO to acetic acid by Clostridium aceticum-medium optimization using response surface methodology (RSM)
    • Sim JH, Kamaruddin AH, Long WS (2008) Biocatalytic conversion of CO to acetic acid by Clostridium aceticum-medium optimization using response surface methodology (RSM). Biochem Eng J 40: 337-347. doi: 10.1016/j.bej.2008.01.006
    • (2008) Biochem Eng J , vol.40 , pp. 337-347
    • Sim, J.H.1    Kamaruddin, A.H.2    Long, W.S.3
  • 60
    • 33847740300 scopus 로고    scopus 로고
    • Clostridium aceticum-a potential organism in catalyzing carbon monoxide to acetic acid: Application of response surface methodology
    • Sim JH, Kamaruddin AH, Long WS, Najafpour G (2007) Clostridium aceticum-a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology. Enzyme Microb Technol 40: 1234-1243. doi: 10.1016/j.enzmictec.2006.09.017
    • (2007) Enzyme Microb Technol , vol.40 , pp. 1234-1243
    • Sim, J.H.1    Kamaruddin, A.H.2    Long, W.S.3    Najafpour, G.4
  • 61
    • 85007415710 scopus 로고    scopus 로고
    • Draft genome sequence of Clostridium aceticum DSM 1496, a potential butanol producer through syngas fermentation
    • Song Y, Hwang S, Cho B-K (2015) Draft genome sequence of Clostridium aceticum DSM 1496, a potential butanol producer through syngas fermentation. Genome Announc 3: e00258-15. doi: 10.1128/genomeA.00258-15
    • (2015) Genome Announc , vol.3 , pp. e00258-e00315
    • Song, Y.1    Hwang, S.2    Cho, B.-K.3
  • 62
    • 34250599080 scopus 로고
    • The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria
    • Wieringa KT (1939) The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie Van Leeuwenhoek 6: 251-262. doi: 10.1007/ BF02146190
    • (1939) Antonie Van Leeuwenhoek , vol.6 , pp. 251-262
    • Wieringa, K.T.1
  • 63
    • 13744258381 scopus 로고    scopus 로고
    • Physiology of the thermophilic acetogen Moorella thermoacetica
    • Drake HL, Daniel SL (2004) Physiology of the thermophilic acetogen Moorella thermoacetica. Res Microbiol 155: 869-883. doi: 10.1016/j.resmic.2004.10.002
    • (2004) Res Microbiol , vol.155 , pp. 869-883
    • Drake, H.L.1    Daniel, S.L.2
  • 64
    • 0000628298 scopus 로고
    • A new type of glucose fermentation by Clostridium thermoaceticum
    • Fontaine FE, Peterson WH, Johnson MJ, George J (1942) A new type of glucose fermentation by Clostridium thermoaceticum. J Bacteriol 43: 701-715
    • (1942) J Bacteriol , vol.43 , pp. 701-715
    • Fontaine, F.E.1    Peterson, W.H.2    Johnson, M.J.3    George, J.4
  • 65
    • 51649124894 scopus 로고    scopus 로고
    • The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum)
    • Pierce E, Xie G, Barabote RD et al (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 10: 2550-2573. doi: 10.1111/j.1462-2920.2008.01679.x
    • (2008) Environ Microbiol , vol.10 , pp. 2550-2573
    • Pierce, E.1    Xie, G.2    Barabote, R.D.3
  • 66
    • 0017746753 scopus 로고
    • Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria
    • Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27: 355-361. doi: 10.1099/00207713-27-4-355
    • (1977) Int J Syst Bacteriol , vol.27 , pp. 355-361
    • Balch, W.E.1    Schoberth, S.2    Tanner, R.S.3    Wolfe, R.S.4
  • 67
    • 84859090257 scopus 로고    scopus 로고
    • An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis
    • Poehlein A, Schmidt S, Kaster A-K et al (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7, e33439. doi: 10.1371/journal.pone.0033439
    • (2012) PLoS One , vol.7 , pp. e33439
    • Poehlein, A.1    Schmidt, S.2    Kaster, A.-K.3
  • 68
    • 0026151803 scopus 로고
    • Production of butanol and ethanol from synthesis gas via fermentation
    • Worden RM, Grethlein AJ, Jain MK, Datta R (1991) Production of butanol and ethanol from synthesis gas via fermentation. Fuel 70: 615-619. doi: 10.1016/0016-2361(91)90175-A
    • (1991) Fuel , vol.70 , pp. 615-619
    • Worden, R.M.1    Grethlein, A.J.2    Jain, M.K.3    Datta, R.4
  • 69
    • 0018971099 scopus 로고
    • Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain
    • Zeikus JG, Lynd LH, Thompson TE et al (1980) Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain. Curr Microbiol 3: 381-386. doi: 10.1007/BF02601907
    • (1980) Curr Microbiol , vol.3 , pp. 381-386
    • Zeikus, J.G.1    Lynd, L.H.2    Thompson, T.E.3
  • 70
    • 0026112556 scopus 로고
    • 2 as a source of carbon and energy
    • 2 as a source of carbon and energy. FASEB J 5: 156-163
    • (1991) FASEB J , vol.5 , pp. 156-163
    • Wood, H.G.1
  • 71
    • 10744223111 scopus 로고    scopus 로고
    • Energy conservation in acetogenic bacteria
    • Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69: 6345-6353. doi: 10.1128/AEM.69.11.6345
    • (2003) Appl Environ Microbiol , vol.69 , pp. 6345-6353
    • Müller, V.1
  • 72
    • 41349119857 scopus 로고    scopus 로고
    • Enzymology of the Wood-Ljungdahl pathway of acetogenesis
    • Ragsdale SW (2008) Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125: 129-136. doi: 10.1196/annals.1419.015
    • (2008) Ann N Y Acad Sci , vol.1125 , pp. 129-136
    • Ragsdale, S.W.1
  • 73
    • 33746916074 scopus 로고    scopus 로고
    • Acetogenic prokaryotes
    • Dworkin M, Falkow S, Rosenberg E et al (eds), 3rd edn. Springer, New York
    • Drake HL, Küsel K, Matthies C et al (2006) Acetogenic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, 3rd edn. Springer, New York, pp 354-420
    • (2006) The prokaryotes , pp. 354-420
    • Drake, H.L.1    Küsel, K.2    Matthies, C.3
  • 75
    • 84871712835 scopus 로고    scopus 로고
    • Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation
    • Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta 1827: 94-113
    • (2013) Biochim Biophys Acta , vol.1827 , pp. 94-113
    • Buckel, W.1    Thauer, R.K.2
  • 76
    • 84911440829 scopus 로고    scopus 로고
    • Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria
    • Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12: 809-821. doi: 10.1038/ nrmicro3365
    • (2014) Nat Rev Microbiol , vol.12 , pp. 809-821
    • Schuchmann, K.1    Müller, V.2
  • 77
    • 0002328698 scopus 로고
    • The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis
    • Springer US, Boston
    • Ljungdahl LG (1994) The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. In: Acetogenesis. Springer US, Boston, pp 63-87
    • (1994) Acetogenesis , pp. 63-87
    • Ljungdahl, L.G.1
  • 78
    • 41349105505 scopus 로고    scopus 로고
    • Discovery of a ferredoxin: NAD+_oxidoreductase (Rnf) in Acetobacterium woodii: A novel potential coupling site in acetogens
    • Müller V, Imkamp F, Biegel E et al (2008) Discovery of a ferredoxin: NAD+_oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann N Y Acad Sci 1125: 137-146. doi: 10.1196/annals.1419.011
    • (2008) Ann N Y Acad Sci , vol.1125 , pp. 137-146
    • Müller, V.1    Imkamp, F.2    Biegel, E.3
  • 79
    • 66349115722 scopus 로고    scopus 로고
    • The ins and outs of Na(+) bioenergetics in Acetobacterium woodii
    • Schmidt S, Biegel E, Müller V (2009) The ins and outs of Na(+) bioenergetics in Acetobacterium woodii. Biochim Biophys Acta 1787: 691-696. doi: 10.1016/j.bbabio.2008. 12.015
    • (2009) Biochim Biophys Acta , vol.1787 , pp. 691-696
    • Schmidt, S.1    Biegel, E.2    Müller, V.3
  • 80
    • 0024430852 scopus 로고
    • Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii
    • Heise R, Müller V, Gottschalk G (1989) Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J Bacteriol 171: 5473-5478
    • (1989) J Bacteriol , vol.171 , pp. 5473-5478
    • Heise, R.1    Müller, V.2    Gottschalk, G.3
  • 81
    • 84940421681 scopus 로고    scopus 로고
    • 2 in Clostridium autoethanogenum involving electron bifurcation
    • 2 in Clostridium autoethanogenum involving electron bifurcation. J Bacteriol. doi: 10.1128/JB.00399-15
    • (2015) J Bacteriol.
    • Mock, J.1    Zheng, Y.2    Mueller, A.P.3
  • 82
    • 84884198848 scopus 로고    scopus 로고
    • NADP-specific electron-bifurcating [FeFe]- hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO
    • Wang S, Huang H, Kahnt J et al (2013) NADP-specific electron-bifurcating [FeFe]- hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol 195: 4373-4386. doi: 10.1128/JB.00678-13
    • (2013) J Bacteriol , vol.195 , pp. 4373-4386
    • Wang, S.1    Huang, H.2    Kahnt, J.3
  • 83
    • 84874639721 scopus 로고    scopus 로고
    • + oxidoreductase essential for autotrophic growth
    • + oxidoreductase essential for autotrophic growth. MBio 4: e00406-12-e00406-12. doi: 10.1128/mBio.00406-12
    • (2012) MBio , vol.4 , pp. e00406-12-e00406-12
    • Tremblay, P.-L.1    Zhang, T.2    Dar, S.A.3
  • 84
    • 84928393116 scopus 로고    scopus 로고
    • Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii
    • Bertsch J, Öppinger C, Hess V et al (2015) Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii. J Bacteriol 197: 1681-1689. doi: 10.1128/JB.00048-15
    • (2015) J Bacteriol , vol.197 , pp. 1681-1689
    • Bertsch, J.1    Öppinger, C.2    Hess, V.3
  • 85
    • 84938783243 scopus 로고    scopus 로고
    • CO metabolism in the acetogen Acetobacterium woodii
    • AEM.01772-15
    • Bertsch J, Müller V (2015) CO metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol AEM.01772-15. doi: 10.1128/AEM.01772-15
    • (2015) Appl Environ Microbiol
    • Bertsch, J.1    Müller, V.2
  • 86
    • 51649108629 scopus 로고    scopus 로고
    • Fermentative butanol production by Clostridia
    • Lee SY, Park JH, Jang SH et al (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101: 209-228. doi: 10.1002/bit.22003
    • (2008) Biotechnol Bioeng , vol.101 , pp. 209-228
    • Lee, S.Y.1    Park, J.H.2    Jang, S.H.3
  • 88
    • 80052625837 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium acetobutylicum: Recent advances to improve butanol production
    • Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22: 634-647. doi: 10.1016/j.copbio.2011.01.011
    • (2011) Curr Opin Biotechnol , vol.22 , pp. 634-647
    • Lütke-Eversloh, T.1    Bahl, H.2
  • 89
    • 53049086510 scopus 로고    scopus 로고
    • Engineering solventogenic clostridia
    • Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19: 420-429. doi: 10.1016/j.copbio.2008.08.003
    • (2008) Curr Opin Biotechnol , vol.19 , pp. 420-429
    • Papoutsakis, E.T.1
  • 90
    • 77955610491 scopus 로고    scopus 로고
    • Clostridium ljungdahlii represents a microbial production platform based on syngas
    • Köpke M, Held C, Hujer S et al (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107: 13087-13092. doi: 10.1073/pnas.1004716107
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 13087-13092
    • Köpke, M.1    Held, C.2    Hujer, S.3
  • 95
    • 0022370898 scopus 로고
    • Isolation and characterization of butanolresistant mutants of Clostridium acetobutylicum
    • Hermann M, Fayolle F, Marchal R et al (1985) Isolation and characterization of butanolresistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol 50: 1238-1243
    • (1985) Appl Environ Microbiol , vol.50 , pp. 1238-1243
    • Hermann, M.1    Fayolle, F.2    Marchal, R.3
  • 96
    • 84926619433 scopus 로고    scopus 로고
    • A universal mariner transposon system for forward genetic studies in the genus Clostridium
    • Zhang Y, Grosse-Honebrink A, Minton NP (2015) A universal mariner transposon system for forward genetic studies in the genus Clostridium. PLoS One 10, e0122411. doi: 10.1371/ journal.pone.0122411
    • (2015) PLoS One , vol.10 , pp. e0122411
    • Zhang, Y.1    Grosse-Honebrink, A.2    Minton, N.P.3
  • 97
    • 77954292796 scopus 로고    scopus 로고
    • Random mutagenesis of Clostridium cellulolyticum by using a Tn1545 derivative
    • Blouzard J-C, Valette O, Tardif C, de Philip P (2010) Random mutagenesis of Clostridium cellulolyticum by using a Tn1545 derivative. Appl Environ Microbiol 76: 4546-4549. doi: 10.1128/AEM.02417-09
    • (2010) Appl Environ Microbiol , vol.76 , pp. 4546-4549
    • Blouzard, J.-C.1    Valette, O.2    Tardif, C.3    de Philip, P.4
  • 98
    • 79952399941 scopus 로고    scopus 로고
    • Inactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis
    • Tracy BP, Jones SW, Papoutsakis ET (2011) Inactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis. J Bacteriol 193: 1414-1426. doi: 10.1128/JB.01380-10
    • (2011) J Bacteriol , vol.193 , pp. 1414-1426
    • Tracy, B.P.1    Jones, S.W.2    Papoutsakis, E.T.3
  • 99
    • 42549173688 scopus 로고    scopus 로고
    • PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum
    • Hillmann F, Fischer R-J, Saint-Prix F et al (2008) PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol Microbiol 68: 848-860. doi: 10.1111/j.1365-2958.2008.06192.x
    • (2008) Mol Microbiol , vol.68 , pp. 848-860
    • Hillmann, F.1    Fischer, R.-J.2    Saint-Prix, F.3
  • 100
    • 84869014233 scopus 로고    scopus 로고
    • Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway
    • Cooksley CM, Zhang Y, Wang H et al (2012) Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 14: 630-641. doi: 10.1016/j.ymben.2012.09.001
    • (2012) Metab Eng , vol.14 , pp. 630-641
    • Cooksley, C.M.1    Zhang, Y.2    Wang, H.3
  • 101
    • 0032986060 scopus 로고    scopus 로고
    • Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum
    • Desai RP, Papoutsakis ET (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65: 936-945
    • (1999) Appl Environ Microbiol , vol.65 , pp. 936-945
    • Desai, R.P.1    Papoutsakis, E.T.2
  • 102
    • 0029846031 scopus 로고    scopus 로고
    • Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824
    • Green EM, Boynton ZL, Harris LM et al (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142: 2079-2086. doi: 10.1099/13500872-142-8-2079
    • (1996) Microbiology , vol.142 , pp. 2079-2086
    • Green, E.M.1    Boynton, Z.L.2    Harris, L.M.3
  • 104
    • 83255174918 scopus 로고    scopus 로고
    • High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes
    • Argyros DA, Tripathi SA, Barrett TF et al (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77: 8288-8294. doi: 10.1128/AEM.00646-11
    • (2011) Appl Environ Microbiol , vol.77 , pp. 8288-8294
    • Argyros, D.A.1    Tripathi, S.A.2    Barrett, T.F.3
  • 105
    • 78049278436 scopus 로고    scopus 로고
    • Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant
    • Tripathi SA, Olson DG, Argyros DA et al (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76: 6591-6599. doi: 10.1128/AEM.01484-10
    • (2010) Appl Environ Microbiol , vol.76 , pp. 6591-6599
    • Tripathi, S.A.1    Olson, D.G.2    Argyros, D.A.3
  • 106
    • 84855266078 scopus 로고    scopus 로고
    • Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations
    • Li Y, Tschaplinski TJ, Engle NL et al (2012) Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol Biofuels 5: 2. doi: 10.1186/1754-6834-5-2
    • (2012) Biotechnol Biofuels , vol.5 , pp. 2
    • Li, Y.1    Tschaplinski, T.J.2    Engle, N.L.3
  • 107
    • 0041527233 scopus 로고    scopus 로고
    • Development of a sensitive gene expression reporter system and an inducible promoter-repressor system for Clostridium acetobutylicum
    • Girbal L, Mortier-barrière I, Rouanet C et al (2003) Development of a sensitive gene expression reporter system and an inducible promoter-repressor system for Clostridium acetobutylicum. Appl Environ Microbiol 69: 4985-4988. doi: 10.1128/AEM.69.8.4985
    • (2003) Appl Environ Microbiol , vol.69 , pp. 4985-4988
    • Girbal, L.1    Mortier-Barrière, I.2    Rouanet, C.3
  • 108
    • 34548124567 scopus 로고    scopus 로고
    • The ClosTron: A universal gene knock-out system for the genus Clostridium
    • Heap JT, Pennington OJ, Cartman ST et al (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70: 452-464. doi: 10.1016/j.mimet.2007.05.021
    • (2007) J Microbiol Methods , vol.70 , pp. 452-464
    • Heap, J.T.1    Pennington, O.J.2    Cartman, S.T.3
  • 109
    • 0034522972 scopus 로고    scopus 로고
    • Gene transfer to Clostridium cellulolyticum ATCC 35319
    • Jennert KC, Tardif C, Young DI, YoungM(2000) Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbiology 146(Pt 12): 3071-3080
    • (2000) Microbiology , vol.146 , pp. 3071-3080
    • Jennert, K.C.1    Tardif, C.2    Young, D.I.3    Young, M.4
  • 110
    • 14744283496 scopus 로고
    • Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824
    • Mermelstein L, Welker N (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Bio/Technology 10: 190-195
    • (1992) Bio/Technology , vol.10 , pp. 190-195
    • Mermelstein, L.1    Welker, N.2
  • 111
    • 0027477171 scopus 로고
    • In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824
    • Mermelstein LD, Papoutsakis ET (1993) In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 59: 1077-1081
    • (1993) Appl Environ Microbiol , vol.59 , pp. 1077-1081
    • Mermelstein, L.D.1    Papoutsakis, E.T.2
  • 112
    • 0025290597 scopus 로고
    • Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum
    • Williams DR, Young DI, Young M (1990) Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J Gen Microbiol 136: 819-826. doi: 10.1099/00221287-136-5-819
    • (1990) J Gen Microbiol , vol.136 , pp. 819-826
    • Williams, D.R.1    Young, D.I.2    Young, M.3
  • 114
    • 84868649467 scopus 로고    scopus 로고
    • Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration
    • Al-Hinai MA, Fast AG, Papoutsakis ET (2012) Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration. Appl Environ Microbiol 78: 8112-8121. doi: 10.1128/ AEM.02214-12
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8112-8121
    • Al-Hinai, M.A.1    Fast, A.G.2    Papoutsakis, E.T.3
  • 115
    • 84863792386 scopus 로고    scopus 로고
    • Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production
    • Cartman ST, Kelly ML, Heeg D et al (2012) Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol 78: 4683-4690. doi: 10.1128/AEM.00249-12
    • (2012) Appl Environ Microbiol , vol.78 , pp. 4683-4690
    • Cartman, S.T.1    Kelly, M.L.2    Heeg, D.3
  • 116
    • 84860362257 scopus 로고    scopus 로고
    • Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker
    • Heap JT, Ehsaan M, Cooksley CM et al (2012) Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res 1-10. doi: 10.1093/nar/gkr1321
    • (2012) Nucleic Acids Res , pp. 1-10
    • Heap, J.T.1    Ehsaan, M.2    Cooksley, C.M.3
  • 118
    • 79953204649 scopus 로고    scopus 로고
    • Development and application of a method for counterselectable in-frame deletion in Clostridium perfringens
    • Nariya H, Miyata S, Suzuki M et al (2011) Development and application of a method for counterselectable in-frame deletion in Clostridium perfringens. Appl Environ Microbiol 77: 1375-1382. doi: 10.1128/AEM.01572-10
    • (2011) Appl Environ Microbiol , vol.77 , pp. 1375-1382
    • Nariya, H.1    Miyata, S.2    Suzuki, M.3
  • 119
    • 84913595256 scopus 로고    scopus 로고
    • I-SceI-mediated scarless gene modification via allelic exchange in Clostridium
    • Zhang N, Shao L, Jiang Y et al (2015) I-SceI-mediated scarless gene modification via allelic exchange in Clostridium. J Microbiol Methods 108: 49-60. doi: 10.1016/j.mimet.2014.11.004
    • (2015) J Microbiol Methods , vol.108 , pp. 49-60
    • Zhang, N.1    Shao, L.2    Jiang, Y.3
  • 120
    • 84924425397 scopus 로고    scopus 로고
    • Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
    • Wang Y, Zhang Z-T, Seo S-O et al (2015) Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 1-5. doi: 10.1016/j. jbiotec.2015.02.005
    • (2015) J Biotechnol , pp. 1-5
    • Wang, Y.1    Zhang, Z.-T.2    Seo, S.-O.3
  • 121
    • 84930787559 scopus 로고    scopus 로고
    • Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase
    • AEM.00873-15
    • Xu T, Li Y, Shi Z et al (2015) Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl Environ Microbiol AEM.00873-15. doi: 10.1128/AEM.00873-15
    • (2015) Appl Environ Microbiol
    • Xu, T.1    Li, Y.2    Shi, Z.3
  • 122
    • 71749102588 scopus 로고    scopus 로고
    • The ClosTron: Mutagenesis in Clostridium refined and streamlined
    • Heap JT, Kuehne SA, Ehsaan M et al (2010) The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 80: 49-55. doi: 10.1016/j.mimet.2009.10.018
    • (2010) J Microbiol Methods , vol.80 , pp. 49-55
    • Heap, J.T.1    Kuehne, S.A.2    Ehsaan, M.3
  • 123
    • 36248966555 scopus 로고    scopus 로고
    • Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum
    • Shao L, Hu S, Yang Y et al (2007) Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 17: 963-965. doi: 10.1038/cr.2007.91
    • (2007) Cell Res , vol.17 , pp. 963-965
    • Shao, L.1    Hu, S.2    Yang, Y.3
  • 124
    • 84924970547 scopus 로고    scopus 로고
    • A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum
    • Zhang J, Liu Y-J, Cui G-Z, Cui Q (2015) A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum. Biotechnol Biofuels 8: 36. doi: 10.1186/ s13068-015-0214-2
    • (2015) Biotechnol Biofuels , vol.8 , pp. 36
    • Zhang, J.1    Liu, Y.-J.2    Cui, G.-Z.3    Cui, Q.4
  • 125
    • 2342587365 scopus 로고    scopus 로고
    • Characterization and development of two reporter gene systems for Clostridium acetobutylicum
    • Feustel L, Nakotte S, Durre P (2004) Characterization and development of two reporter gene systems for Clostridium acetobutylicum. Appl Environ Microbiol 70: 798-803. doi: 10.1128/ AEM.70.2.798-803.2004
    • (2004) Appl Environ Microbiol , vol.70 , pp. 798-803
    • Feustel, L.1    Nakotte, S.2    Durre, P.3
  • 126
    • 0032876348 scopus 로고    scopus 로고
    • Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824
    • Tummala SB, Welker NE, Papoutsakis ET (1999) Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 65: 3793-3799
    • (1999) Appl Environ Microbiol , vol.65 , pp. 3793-3799
    • Tummala, S.B.1    Welker, N.E.2    Papoutsakis, E.T.3
  • 127
    • 0028335841 scopus 로고
    • A Clostridium perfringens vector for the selection of promoters
    • Matsushita C, Matsushita O, Koyama M, Okabe A (1994) A Clostridium perfringens vector for the selection of promoters. Plasmid 31: 317-319
    • (1994) Plasmid , vol.31 , pp. 317-319
    • Matsushita, C.1    Matsushita, O.2    Koyama, M.3    Okabe, A.4
  • 128
    • 0024550498 scopus 로고
    • Nucleotide sequence analysis and expression studies of a chloramphenicol-acetyltransferase-coding gene from Clostridium perfringens
    • Steffen C, Matzura H (1989) Nucleotide sequence analysis and expression studies of a chloramphenicol-acetyltransferase-coding gene from Clostridium perfringens. Gene 75: 349-354
    • (1989) Gene , vol.75 , pp. 349-354
    • Steffen, C.1    Matzura, H.2
  • 129
    • 84855469161 scopus 로고    scopus 로고
    • Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering
    • Dong H, Tao W, Zhang Y, Li Y (2012) Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: a useful tool for strain engineering. Metab Eng 14: 59-67. doi: 10.1016/j.ymben.2011.10.004
    • (2012) Metab Eng , vol.14 , pp. 59-67
    • Dong, H.1    Tao, W.2    Zhang, Y.3    Li, Y.4
  • 130
    • 79551471348 scopus 로고    scopus 로고
    • Construction and characterization of a lactoseinducible promoter system for controlled gene expression in Clostridium perfringens
    • Hartman AH, Liu H, Melville SB (2011) Construction and characterization of a lactoseinducible promoter system for controlled gene expression in Clostridium perfringens. Appl Environ Microbiol 77: 471-478. doi: 10.1128/AEM.01536-10
    • (2011) Appl Environ Microbiol , vol.77 , pp. 471-478
    • Hartman, A.H.1    Liu, H.2    Melville, S.B.3
  • 131
    • 84874738185 scopus 로고    scopus 로고
    • A genetic system for Clostridium ljungdahlii: A chassis for autotrophic production of biocommodities and a model homoacetogen
    • Leang C, Ueki T, Nevin KP, Lovley DR (2013) A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 79: 1102-1109. doi: 10.1128/AEM.02891-12
    • (2013) Appl Environ Microbiol , vol.79 , pp. 1102-1109
    • Leang, C.1    Ueki, T.2    Nevin, K.P.3    Lovley, D.R.4
  • 132
    • 84908433337 scopus 로고    scopus 로고
    • Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii
    • Ueki T, Nevin KP, Woodard TL, Lovley DR (2014) Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. MBio 5: e01636-14-e01636-14. doi: 10.1128/mBio.01636-14
    • (2014) MBio , vol.5 , pp. e01636-14-e01636-14
    • Ueki, T.1    Nevin, K.P.2    Woodard, T.L.3    Lovley, D.R.4
  • 135
    • 84899893925 scopus 로고    scopus 로고
    • Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase
    • AEM.00301-14
    • Köpke M, Gerth ML, Maddock DJ et al (2014) Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol AEM.00301-14. doi: 10.1128/AEM.00301-14
    • (2014) Appl Environ Microbiol
    • Köpke, M.1    Gerth, M.L.2    Maddock, D.J.3
  • 138
    • 84896905548 scopus 로고    scopus 로고
    • Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii
    • Banerjee A, Leang C, Ueki T et al (2014) Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol 80: 2410-2416. doi: 10.1128/AEM.03666-13
    • (2014) Appl Environ Microbiol , vol.80 , pp. 2410-2416
    • Banerjee, A.1    Leang, C.2    Ueki, T.3
  • 139
    • 84930227327 scopus 로고    scopus 로고
    • Using genome-scale models to predict biological capabilities
    • O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161: 971-987. doi: 10.1016/j.cell.2015.05.019
    • (2015) Cell , vol.161 , pp. 971-987
    • O’Brien, E.J.1    Monk, J.M.2    Palsson, B.O.3
  • 140
    • 84888102796 scopus 로고    scopus 로고
    • Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii
    • Nagarajan H, Sahin M, Nogales J et al (2013) Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Fact 12: 118. doi: 10.1186/1475-2859-12-118
    • (2013) Microb Cell Fact , vol.12 , pp. 118
    • Nagarajan, H.1    Sahin, M.2    Nogales, J.3
  • 141
    • 84938688950 scopus 로고    scopus 로고
    • Investigating Moorella thermoacetica metabolism with a genome-scale constraint-nased metabolic model
    • Islam MA, Zengler K, Edwards EA et al (2015) Investigating Moorella thermoacetica metabolism with a genome-scale constraint-nased metabolic model. Integr Biol. doi: 10.1039/C5IB00095E
    • (2015) Integr Biol.
    • Islam, M.A.1    Zengler, K.2    Edwards, E.A.3
  • 143
    • 51849115840 scopus 로고    scopus 로고
    • Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network
    • Lee J, Yun H, Feist AM et al (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 80: 849-862. doi: 10.1007/s00253-008-1654-4
    • (2008) Appl Microbiol Biotechnol , vol.80 , pp. 849-862
    • Lee, J.1    Yun, H.2    Feist, A.M.3
  • 144
    • 80051641411 scopus 로고    scopus 로고
    • Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052
    • Milne CB, Eddy JA, Raju R et al (2011) Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Syst Biol 5: 130. doi: 10.1186/1752-0509-5-130
    • (2011) BMC Syst Biol , vol.5 , pp. 130
    • Milne, C.B.1    Eddy, J.A.2    Raju, R.3
  • 145
    • 77954736119 scopus 로고    scopus 로고
    • Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production
    • Roberts SB, Gowen CM, Brooks JP, Fong SS (2010) Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst Biol 4: 31. doi: 10.1186/1752-0509-4-31
    • (2010) BMC Syst Biol , vol.4 , pp. 31
    • Roberts, S.B.1    Gowen, C.M.2    Brooks, J.P.3    Fong, S.S.4
  • 146
    • 77954724818 scopus 로고    scopus 로고
    • Genome-scale metabolic modeling of a clostridial - Co-culture for consolidated bioprocessing
    • Salimi F, Zhuang K, Mahadevan R (2010) Genome-scale metabolic modeling of a clostridial - co-culture for consolidated bioprocessing. Biotechnol J 5: 726-738. doi: 10.1002/biot.201000159
    • (2010) Biotechnol J , vol.5 , pp. 726-738
    • Salimi, F.1    Zhuang, K.2    Mahadevan, R.3
  • 147
    • 51849142353 scopus 로고    scopus 로고
    • Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis
    • Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: part I. Metabolic network resolution and analysis. Biotechnol Bioeng 101: 1036-1052. doi: 10.1002/bit.22010
    • (2008) Biotechnol Bioeng , vol.101 , pp. 1036-1052
    • Senger, R.S.1    Papoutsakis, E.T.2
  • 148
    • 84935015837 scopus 로고    scopus 로고
    • Metabolic modeling of synthesis gas fermentation in bubble column reactors
    • Chen J, Gomez J, Höffner K et al (2015) Metabolic modeling of synthesis gas fermentation in bubble column reactors. Biotechnol Biofuels 8: 89. doi: 10.1186/s13068-015-0272-5
    • (2015) Biotechnol Biofuels , vol.8 , pp. 89
    • Chen, J.1    Gomez, J.2    Höffner, K.3
  • 149
    • 84902272773 scopus 로고    scopus 로고
    • Euler APE: Drawing area-proportional 3-Venn diagrams using ellipses
    • Micallef L, Rodgers P (2014) euler APE: drawing area-proportional 3-Venn diagrams using ellipses. PLoS One. doi: 10.1371/journal.pone.0101717
    • (2014) PLoS One.
    • Micallef, L.1    Rodgers, P.2
  • 150
    • 78650220759 scopus 로고    scopus 로고
    • Syngas fermentation to biofuel: Evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations
    • Munasinghe PC, Khanal SK (2010) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog 26: 1616-1621. doi: 10.1002/btpr.473
    • (2010) Biotechnol Prog , vol.26 , pp. 1616-1621
    • Munasinghe, P.C.1    Khanal, S.K.2
  • 151
    • 84918796739 scopus 로고    scopus 로고
    • Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations
    • Yasin M, Jeong Y, Park S et al (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresour Technol 177: 361-374. doi: 10.1016/j. biortech.2014.11.022
    • (2015) Bioresour Technol , vol.177 , pp. 361-374
    • Yasin, M.1    Jeong, Y.2    Park, S.3
  • 152
    • 0033200050 scopus 로고    scopus 로고
    • Reactor design issues for synthesis-gas fermentations
    • Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15: 834-844. doi: 10.1021/bp990108m
    • (1999) Biotechnol Prog , vol.15 , pp. 834-844
    • Bredwell, M.D.1    Srivastava, P.2    Worden, R.M.3
  • 153
    • 2542469689 scopus 로고    scopus 로고
    • Fermentation of biomass-generated producer gas to ethanol
    • Datar RP, Shenkman RM, Cateni BG et al (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86: 587-594. doi: 10.1002/bit.20071
    • (2004) Biotechnol Bioeng , vol.86 , pp. 587-594
    • Datar, R.P.1    Shenkman, R.M.2    Cateni, B.G.3
  • 154
    • 84874406663 scopus 로고    scopus 로고
    • A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors
    • Orgill JJ, Atiyeh HK, Devarapalli M et al (2013) A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors. Bioresour Technol 133: 340-346
    • (2013) Bioresour Technol , vol.133 , pp. 340-346
    • Orgill, J.J.1    Atiyeh, H.K.2    Devarapalli, M.3
  • 155
    • 57149141940 scopus 로고    scopus 로고
    • Separation technologies for the recovery and dehydration of alcohols from fermentation broths
    • Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2: 553-588. doi: 10.1002/bbb.108
    • (2008) Biofuels Bioprod Biorefin , vol.2 , pp. 553-588
    • Vane, L.M.1
  • 156
    • 84860467054 scopus 로고    scopus 로고
    • Biological conversion of carbon monoxide to ethanol: Effect of pH, gas pressure, reducing agent and yeast extract
    • Abubackar HN, Veiga MC, Kennes C (2012) Biological conversion of carbon monoxide to ethanol: effect of pH, gas pressure, reducing agent and yeast extract. Bioresour Technol 114: 518-522. doi: 10.1016/j.biortech.2012.03.027
    • (2012) Bioresour Technol , vol.114 , pp. 518-522
    • Abubackar, H.N.1    Veiga, M.C.2    Kennes, C.3
  • 157
    • 79955036003 scopus 로고    scopus 로고
    • Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by "Clostridium ragsdalei
    • Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by "Clostridium ragsdalei". Bioresour Technol 102: 5794-5799. doi: 10.1016/j.biortech.2011.02.032
    • (2011) Bioresour Technol , vol.102 , pp. 5794-5799
    • Kundiyana, D.K.1    Wilkins, M.R.2    Maddipati, P.3    Huhnke, R.L.4
  • 158
    • 84925434770 scopus 로고    scopus 로고
    • Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid
    • Abubackar HN, Veiga MC, Kennes C (2015) Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour Technol. doi: 10.1016/j.biortech.2015.02.113
    • (2015) Bioresour Technol.
    • Abubackar, H.N.1    Veiga, M.C.2    Kennes, C.3
  • 160
    • 84939175815 scopus 로고    scopus 로고
    • Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention
    • Kantzow C, Mayer A, Weuster-Botz D (2015) Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention. J Biotechnol. doi: 10.1016/j.jbiotec.2015.07.020
    • (2015) J Biotechnol.
    • Kantzow, C.1    Mayer, A.2    Weuster-Botz, D.3
  • 165
    • 84924024339 scopus 로고    scopus 로고
    • Accessed 25 Aug 2015
    • INEOS Bio (2013) INEOS Bio produces cellulosic ethanol at commercial scale. http:// www.ethanolproducer.com/articles/10096/ineos-declares-commercial-cellulosic-ethanolonline- in-florida. Accessed 25 Aug 2015
    • (2013) INEOS Bio produces cellulosic ethanol at commercial scale
  • 166
    • 84997159370 scopus 로고    scopus 로고
    • Accessed 25 Aug 2015
    • Florida Department of Environmental Protection (2014) Technical evaluation and preliminary determination. http://www.ascension-publishing.com/INEOS-FIX-090514.pdf. Accessed 25 Aug 2015
    • (2014) Technical evaluation and preliminary determination
  • 168
    • 84997108254 scopus 로고    scopus 로고
    • Accessed 25 Aug 2015
    • Coskata Inc. (2011) Form S-1 Coskata, Inc. http://www.sec.gov/Archives/edgar/data/1536893/000119312511343587/d267854ds1.htm. Accessed 25 Aug 2015
    • (2011) Form S-1 Coskata, Inc.
  • 176
    • 84938811128 scopus 로고    scopus 로고
    • Sustainability of biofuels and renewable chemicals production from biomass
    • Kircher M (2015) Sustainability of biofuels and renewable chemicals production from biomass. Curr Opin Chem Biol 29: 26-31. doi: 10.1016/j.cbpa.2015.07.010
    • (2015) Curr Opin Chem Biol , vol.29 , pp. 26-31
    • Kircher, M.1
  • 177
    • 66949152935 scopus 로고    scopus 로고
    • Accessed 13 Aug 2015
    • California Energy Commission (2015) Low carbon fuel standard. http://www.energy.ca.gov/ low_carbon_fuel_standard/. Accessed 13 Aug 2015
    • (2015) Low carbon fuel standard
  • 178
    • 79651473387 scopus 로고    scopus 로고
    • Directive 2009/30/ EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amend
    • The European Parliament and the Council of the European Union (2009) Directive 2009/30/ EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amend. Off J Eur Union L 140: 88-113
    • (2009) Off J Eur Union L , vol.140 , pp. 88-113
  • 179
    • 84883825591 scopus 로고    scopus 로고
    • Life-cycle analysis of energy use and greenhouse gas emissions of gas-to-liquid fuel pathway from steel mill off-gas in China by the LanzaTech process
    • Ou X, Zhang X, Zhang Q, Zhang X (2013) Life-cycle analysis of energy use and greenhouse gas emissions of gas-to-liquid fuel pathway from steel mill off-gas in China by the LanzaTech process. Front Energy 7: 263-270. doi: 10.1007/s11708-013-0263-9
    • (2013) Front Energy , vol.7 , pp. 263-270
    • Ou, X.1    Zhang, X.2    Zhang, Q.3    Zhang, X.4
  • 182
    • 84875217011 scopus 로고    scopus 로고
    • Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China
    • Liu B, Wang F, Zhang B, Bi J (2013) Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China. Energy Policy 56: 210-220. doi: 10.1016/j.enpol.2012.12.052
    • (2013) Energy Policy , vol.56 , pp. 210-220
    • Liu, B.1    Wang, F.2    Zhang, B.3    Bi, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.