-
1
-
-
84930630277
-
Deep learning
-
May
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, May 2015.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
2
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Adv. Neural Inf. Process. Syst., vol. 25. 2012, pp. 1097-1105.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst.
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
3
-
-
84978755117
-
Very deep convolutional networks for large-scale image recognition
-
abs/1409.1556, Sep.
-
K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," CoRR, vol. abs/1409.1556, pp. 1-14, Sep. 2014.
-
(2014)
CoRR
, pp. 1-14
-
-
Simonyan, K.1
Zisserman, A.2
-
5
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
6
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Jun.
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2014, pp. 580-587.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
7
-
-
84906486689
-
OverFeat: Integrated recognition, localization and detection using convolutional networks
-
abs/1312.6229, Dec.
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, "OverFeat: Integrated recognition, localization and detection using convolutional networks," CoRR, vol. abs/1312.6229, pp. 1-16, Dec. 2013.
-
(2013)
CoRR
, pp. 1-16
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
9
-
-
84963949906
-
Mastering the game of Go with deep neural networks and tree search
-
Jan.
-
D. Silver et al., "Mastering the game of Go with deep neural networks and tree search," Nature, vol. 529, no. 7587, pp. 484-489, Jan. 2016.
-
(2016)
Nature
, vol.529
, Issue.7587
, pp. 484-489
-
-
Silver, D.1
-
10
-
-
77954995378
-
Understanding sources of inefficiency in generalpurpose chips
-
R. Hameed et al., "Understanding sources of inefficiency in generalpurpose chips," in Proc. 37th Annu. Int. Symp. Comput. Archit., 2010, pp. 37-47.
-
(2010)
Proc. 37th Annu. Int. Symp. Comput. Archit.
, pp. 37-47
-
-
Hameed, R.1
-
13
-
-
79551569552
-
Towards an embedded biologically-inspired machine vision processor
-
Dec.
-
V. Sriram, D. Cox, K. H. Tsoi, and W. Luk, "Towards an embedded biologically-inspired machine vision processor," in Proc. Int. Conf. Field-Program. Technol. (FPT), Dec. 2010, pp. 273-278.
-
(2010)
Proc. Int. Conf. Field-Program. Technol. (FPT)
, pp. 273-278
-
-
Sriram, V.1
Cox, D.2
Tsoi, K.H.3
Luk, W.4
-
14
-
-
77955007393
-
A dynamically configurable coprocessor for convolutional neural networks
-
S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, "A dynamically configurable coprocessor for convolutional neural networks," in Proc. 37th Annu. Int. Symp. Comput. Archit., 2010, pp. 247-257.
-
(2010)
Proc. 37th Annu. Int. Symp. Comput. Archit.
, pp. 247-257
-
-
Chakradhar, S.1
Sankaradas, M.2
Jakkula, V.3
Cadambi, S.4
-
15
-
-
84892533708
-
Memorycentric accelerator design for convolutional neural networks
-
Oct.
-
M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, "Memorycentric accelerator design for convolutional neural networks," in Proc. IEEE 31st Int. Conf. Comput. Design (ICCD), Oct. 2013, pp. 13-19.
-
(2013)
Proc. IEEE 31st Int. Conf. Comput. Design (ICCD)
, pp. 13-19
-
-
Peemen, M.1
Setio, A.A.A.2
Mesman, B.3
Corporaal, H.4
-
16
-
-
84908529622
-
A 240 G-ops/s mobile coprocessor for deep neural networks
-
Jun.
-
V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, "A 240 G-ops/s mobile coprocessor for deep neural networks," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2014, pp. 696-701.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW)
, pp. 696-701
-
-
Gokhale, V.1
Jin, J.2
Dundar, A.3
Martini, B.4
Culurciello, E.5
-
17
-
-
84897780584
-
DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning
-
T. Chen et al., "DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning," in Proc. 19th Int. Conf. Archit. Support Program. Lang. Oper. Syst., 2014, pp. 269-284.
-
(2014)
Proc. 19th Int. Conf. Archit. Support Program. Lang. Oper. Syst.
, pp. 269-284
-
-
Chen, T.1
-
18
-
-
84959912559
-
ShiDianNao: Shifting vision processing closer to the sensor
-
Z. Du et al., "ShiDianNao: Shifting vision processing closer to the sensor," in Proc. 42nd Annu. Int. Symp. Comput. Archit., 2015, pp. 92-104.
-
(2015)
Proc. 42nd Annu. Int. Symp. Comput. Archit.
, pp. 92-104
-
-
Du, Z.1
-
20
-
-
85009376990
-
Deep learning with limited numerical precision
-
abs/1502.02551, Feb.
-
S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, "Deep learning with limited numerical precision," CoRR, vol. abs/1502.02551, pp. 1-10, Feb. 2015.
-
(2015)
CoRR
, pp. 1-10
-
-
Gupta, S.1
Agrawal, A.2
Gopalakrishnan, K.3
Narayanan, P.4
-
21
-
-
84962921765
-
Optimizing FPGA-based accelerator design for deep convolutional neural networks
-
C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, "Optimizing FPGA-based accelerator design for deep convolutional neural networks," in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2015, pp. 161-170.
-
(2015)
Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays
, pp. 161-170
-
-
Zhang, C.1
Li, P.2
Sun, G.3
Guan, Y.4
Xiao, B.5
Cong, J.6
-
22
-
-
84945946618
-
A ultra-low-energy convolution engine for fast brain-inspired vision in multicore clusters
-
F. Conti and L. Benini, "A ultra-low-energy convolution engine for fast brain-inspired vision in multicore clusters," in Proc. Design, Autom. Test Eur. Conf. Exhibit., 2015, pp. 683-688.
-
(2015)
Proc. Design, Autom. Test Eur. Conf. Exhibit.
, pp. 683-688
-
-
Conti, F.1
Benini, L.2
-
23
-
-
84940782827
-
A 1.93TOPS/W scalable deep learning/inference processor with tetraparallel MIMD architecture for big-data applications
-
Feb.
-
S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H.-J. Yoo, "A 1.93TOPS/W scalable deep learning/inference processor with tetraparallel MIMD architecture for big-data applications," in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2015, pp. 1-3.
-
(2015)
Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC)
, pp. 1-3
-
-
Park, S.1
Bong, K.2
Shin, D.3
Lee, J.4
Choi, S.5
Yoo, H.-J.6
-
24
-
-
84955438096
-
Origami: A convolutional network accelerator
-
L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L. Benini, "Origami: A convolutional network accelerator," in Proc. 25th Ed. Great Lakes Symp. VLSI, 2015, pp. 199-204.
-
(2015)
Proc. 25th Ed. Great Lakes Symp. VLSI
, pp. 199-204
-
-
Cavigelli, L.1
Gschwend, D.2
Mayer, C.3
Willi, S.4
Muheim, B.5
Benini, L.6
-
25
-
-
84962847015
-
A 1.42TOPS/W deep convolutional neural network recognition processor for intelligent IoE systems
-
Jan./Feb.
-
J. Sim, J.-S. Park, M. Kim, D. Bae, Y. Choi, and L.-S. Kim, "A 1.42TOPS/W deep convolutional neural network recognition processor for intelligent IoE systems," in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Jan./Feb. 2016, pp. 264-265.
-
(2016)
Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC)
, pp. 264-265
-
-
Sim, J.1
Park, J.-S.2
Kim, M.3
Bae, D.4
Choi, Y.5
Kim, L.-S.6
-
26
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov.
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
27
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Dec.
-
O. Russakovsky et al., "ImageNet large scale visual recognition challenge," Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.
-
(2015)
Int. J. Comput. Vis.
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
-
30
-
-
77955998889
-
Convolutional networks and applications in vision
-
May/Jun.
-
Y. LeCun, K. Kavukcuoglu, and C. Farabet, "Convolutional networks and applications in vision," in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May/Jun. 2010, pp. 253-256.
-
(2010)
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS)
, pp. 253-256
-
-
LeCun, Y.1
Kavukcuoglu, K.2
Farabet, C.3
-
32
-
-
84988317007
-
Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks
-
Y.-H. Chen, J. Emer, and V. Sze, "Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks," in Proc. 43rd Annu. Int. Symp. Comput. Archit. (ISCA), 2016, pp. 367-379.
-
(2016)
Proc. 43rd Annu. Int. Symp. Comput. Archit. (ISCA)
, pp. 367-379
-
-
Chen, Y.-H.1
Emer, J.2
Sze, V.3
-
33
-
-
84965140688
-
Learning both weights and connections for efficient neural network
-
S. Han, J. Pool, J. Tran, and W. Dally, "Learning both weights and connections for efficient neural network," in Proc. Adv. Neural Inf. Process. Syst., vol. 28. 2015, pp. 1135-1143.
-
(2015)
Proc. Adv. Neural Inf. Process. Syst.
, vol.28
, pp. 1135-1143
-
-
Han, S.1
Pool, J.2
Tran, J.3
Dally, W.4
-
35
-
-
84905454865
-
SCORPIO: A 36-core research chip demonstrating snoopy coherence on a scalable mesh NoC with in-network ordering
-
Jun.
-
B. K. Daya et al., "SCORPIO: A 36-core research chip demonstrating snoopy coherence on a scalable mesh NoC with in-network ordering," in Proc. 41st Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2014, pp. 25-36.
-
(2014)
Proc. 41st Annu. Int. Symp. Comput. Archit. (ISCA)
, pp. 25-36
-
-
Daya, B.K.1
-
36
-
-
84962860246
-
Eyeriss: An energyefficient reconfigurable accelerator for deep convolutional neural networks
-
Jan./Feb.
-
Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, "Eyeriss: An energyefficient reconfigurable accelerator for deep convolutional neural networks," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), Jan./Feb. 2016, pp. 262-263.
-
(2016)
IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC)
, pp. 262-263
-
-
Chen, Y.-H.1
Krishna, T.2
Emer, J.3
Sze, V.4
|