메뉴 건너뛰기




Volumn 52, Issue 1, 2017, Pages 127-138

Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks

Author keywords

Convolutional neural networks (CNNs); dataflow processing; deep learning; energy efficient accelerators; spatial architecture

Indexed keywords

COMPUTER ARCHITECTURE; CONVOLUTION; DATA COMPRESSION; NETWORK ARCHITECTURE; NEURAL NETWORKS; RECONFIGURABLE HARDWARE;

EID: 84995478886     PISSN: 00189200     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSSC.2016.2616357     Document Type: Article
Times cited : (2505)

References (36)
  • 1
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • May
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, May 2015.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 3
    • 84978755117 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • abs/1409.1556, Sep.
    • K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," CoRR, vol. abs/1409.1556, pp. 1-14, Sep. 2014.
    • (2014) CoRR , pp. 1-14
    • Simonyan, K.1    Zisserman, A.2
  • 7
    • 84906486689 scopus 로고    scopus 로고
    • OverFeat: Integrated recognition, localization and detection using convolutional networks
    • abs/1312.6229, Dec.
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, "OverFeat: Integrated recognition, localization and detection using convolutional networks," CoRR, vol. abs/1312.6229, pp. 1-16, Dec. 2013.
    • (2013) CoRR , pp. 1-16
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 9
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of Go with deep neural networks and tree search
    • Jan.
    • D. Silver et al., "Mastering the game of Go with deep neural networks and tree search," Nature, vol. 529, no. 7587, pp. 484-489, Jan. 2016.
    • (2016) Nature , vol.529 , Issue.7587 , pp. 484-489
    • Silver, D.1
  • 10
    • 77954995378 scopus 로고    scopus 로고
    • Understanding sources of inefficiency in generalpurpose chips
    • R. Hameed et al., "Understanding sources of inefficiency in generalpurpose chips," in Proc. 37th Annu. Int. Symp. Comput. Archit., 2010, pp. 37-47.
    • (2010) Proc. 37th Annu. Int. Symp. Comput. Archit. , pp. 37-47
    • Hameed, R.1
  • 17
    • 84897780584 scopus 로고    scopus 로고
    • DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning
    • T. Chen et al., "DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning," in Proc. 19th Int. Conf. Archit. Support Program. Lang. Oper. Syst., 2014, pp. 269-284.
    • (2014) Proc. 19th Int. Conf. Archit. Support Program. Lang. Oper. Syst. , pp. 269-284
    • Chen, T.1
  • 18
    • 84959912559 scopus 로고    scopus 로고
    • ShiDianNao: Shifting vision processing closer to the sensor
    • Z. Du et al., "ShiDianNao: Shifting vision processing closer to the sensor," in Proc. 42nd Annu. Int. Symp. Comput. Archit., 2015, pp. 92-104.
    • (2015) Proc. 42nd Annu. Int. Symp. Comput. Archit. , pp. 92-104
    • Du, Z.1
  • 20
    • 85009376990 scopus 로고    scopus 로고
    • Deep learning with limited numerical precision
    • abs/1502.02551, Feb.
    • S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, "Deep learning with limited numerical precision," CoRR, vol. abs/1502.02551, pp. 1-10, Feb. 2015.
    • (2015) CoRR , pp. 1-10
    • Gupta, S.1    Agrawal, A.2    Gopalakrishnan, K.3    Narayanan, P.4
  • 22
    • 84945946618 scopus 로고    scopus 로고
    • A ultra-low-energy convolution engine for fast brain-inspired vision in multicore clusters
    • F. Conti and L. Benini, "A ultra-low-energy convolution engine for fast brain-inspired vision in multicore clusters," in Proc. Design, Autom. Test Eur. Conf. Exhibit., 2015, pp. 683-688.
    • (2015) Proc. Design, Autom. Test Eur. Conf. Exhibit. , pp. 683-688
    • Conti, F.1    Benini, L.2
  • 23
    • 84940782827 scopus 로고    scopus 로고
    • A 1.93TOPS/W scalable deep learning/inference processor with tetraparallel MIMD architecture for big-data applications
    • Feb.
    • S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H.-J. Yoo, "A 1.93TOPS/W scalable deep learning/inference processor with tetraparallel MIMD architecture for big-data applications," in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2015, pp. 1-3.
    • (2015) Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) , pp. 1-3
    • Park, S.1    Bong, K.2    Shin, D.3    Lee, J.4    Choi, S.5    Yoo, H.-J.6
  • 26
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 27
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition challenge
    • Dec.
    • O. Russakovsky et al., "ImageNet large scale visual recognition challenge," Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.
    • (2015) Int. J. Comput. Vis. , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 31
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proc. 27th Int. Conf. Mach. Learn. (ICML), 2010, pp. 807-814.
    • (2010) Proc. 27th Int. Conf. Mach. Learn. (ICML) , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 32
    • 84988317007 scopus 로고    scopus 로고
    • Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks
    • Y.-H. Chen, J. Emer, and V. Sze, "Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks," in Proc. 43rd Annu. Int. Symp. Comput. Archit. (ISCA), 2016, pp. 367-379.
    • (2016) Proc. 43rd Annu. Int. Symp. Comput. Archit. (ISCA) , pp. 367-379
    • Chen, Y.-H.1    Emer, J.2    Sze, V.3
  • 33
    • 84965140688 scopus 로고    scopus 로고
    • Learning both weights and connections for efficient neural network
    • S. Han, J. Pool, J. Tran, and W. Dally, "Learning both weights and connections for efficient neural network," in Proc. Adv. Neural Inf. Process. Syst., vol. 28. 2015, pp. 1135-1143.
    • (2015) Proc. Adv. Neural Inf. Process. Syst. , vol.28 , pp. 1135-1143
    • Han, S.1    Pool, J.2    Tran, J.3    Dally, W.4
  • 35
    • 84905454865 scopus 로고    scopus 로고
    • SCORPIO: A 36-core research chip demonstrating snoopy coherence on a scalable mesh NoC with in-network ordering
    • Jun.
    • B. K. Daya et al., "SCORPIO: A 36-core research chip demonstrating snoopy coherence on a scalable mesh NoC with in-network ordering," in Proc. 41st Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2014, pp. 25-36.
    • (2014) Proc. 41st Annu. Int. Symp. Comput. Archit. (ISCA) , pp. 25-36
    • Daya, B.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.