메뉴 건너뛰기




Volumn , Issue , 2016, Pages 367-379

Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks

Author keywords

Convolutional Neural Networks; Dataflow; Energy Efficiency; Spatial Architecture

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPLEX NETWORKS; COMPUTER ARCHITECTURE; CONVOLUTION; COST BENEFIT ANALYSIS; COSTS; DATA FLOW ANALYSIS; DATA HANDLING; DIGITAL STORAGE; ENERGY UTILIZATION; NETWORK ARCHITECTURE; NEURAL NETWORKS;

EID: 84988317007     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISCA.2016.40     Document Type: Conference Paper
Times cited : (1493)

References (43)
  • 1
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, 2015.
    • (2015) Nature , vol.521 , Issue.7553
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 2
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," in NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 5
    • 84988399663 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in IEEE CVPR, 2016.
    • (2016) IEEE CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 6
    • 84940737052 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation," in IEEE CVPR, 2014.
    • (2014) IEEE CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 8
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, "Learning Deep Features for Scene Recognition using Places Database," in NIPS, 2014.
    • (2014) NIPS
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5
  • 10
    • 84988320060 scopus 로고    scopus 로고
    • Minimizing computation in convolutional neural networks
    • J. Cong and B. Xiao, "Minimizing computation in convolutional neural networks," in ICANN, 2014.
    • (2014) ICANN
    • Cong, J.1    Xiao, B.2
  • 11
    • 82455182918 scopus 로고    scopus 로고
    • Power, programmability, and granularity: The challenges of exascale computing
    • B. Dally, "Power, Programmability, and Granularity: The Challenges of ExaScale Computing," in IEEE IPDPS, 2011.
    • (2011) IEEE IPDPS
    • Dally, B.1
  • 12
    • 84946239930 scopus 로고    scopus 로고
    • Computing's energy problem (and what we can do about it)
    • M. Horowitz, "Computing's energy problem (and what we can do about it)," in IEEE ISSCC, 2014.
    • (2014) IEEE ISSCC
    • Horowitz, M.1
  • 16
    • 79551569552 scopus 로고    scopus 로고
    • Towards an embedded biologically-inspired machine vision processor
    • V. Sriram, D. Cox, K. H. Tsoi, and W. Luk, "Towards an embedded biologically-inspired machine vision processor," in FPT, 2010.
    • (2010) FPT
    • Sriram, V.1    Cox, D.2    Tsoi, K.H.3    Luk, W.4
  • 17
    • 77955007393 scopus 로고    scopus 로고
    • A dynamically configurable coprocessor for convolutional neural networks
    • S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, "A Dynamically Configurable Coprocessor for Convolutional Neural Networks," in ISCA, 2010.
    • (2010) ISCA
    • Chakradhar, S.1    Sankaradas, M.2    Jakkula, V.3    Cadambi, S.4
  • 18
    • 84892533708 scopus 로고    scopus 로고
    • Memory-centric accelerator design for Convolutional Neural Networks
    • M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, "Memory-centric accelerator design for Convolutional Neural Networks," in IEEE ICCD, 2013.
    • (2013) IEEE ICCD
    • Peemen, M.1    Setio, A.A.A.2    Mesman, B.3    Corporaal, H.4
  • 21
    • 84962921765 scopus 로고    scopus 로고
    • Optimizing FPGA-based accelerator design for deep convolutional neural networks
    • C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, "Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks," in FPGA, 2015.
    • (2015) FPGA
    • Zhang, C.1    Li, P.2    Sun, G.3    Guan, Y.4    Xiao, B.5    Cong, J.6
  • 22
    • 84897780584 scopus 로고    scopus 로고
    • Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning
    • T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, "DianNao: A Small-footprint High-throughput Accelerator for Ubiquitous Machine-learning," in ASPLOS, 2014.
    • (2014) ASPLOS
    • Chen, T.1    Du, Z.2    Sun, N.3    Wang, J.4    Wu, C.5    Chen, Y.6    Temam, O.7
  • 25
    • 84940782827 scopus 로고    scopus 로고
    • A 1.93TOPS/W scalable deep learning/inference processor with tetra-parallel MIMD architecture for big-data applications
    • S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H.-J. Yoo, "A 1.93TOPS/W scalable deep learning/inference processor with tetra-parallel MIMD architecture for big-data applications," in IEEE ISSCC, 2015.
    • (2015) IEEE ISSCC
    • Park, S.1    Bong, K.2    Shin, D.3    Lee, J.4    Choi, S.5    Yoo, H.-J.6
  • 27
    • 50149111721 scopus 로고    scopus 로고
    • MATRIX: A reconfigurable computing architecture with configurable instruction distribution and deployable resources
    • E. Mirsky and A. DeHon, "MATRIX: a reconfigurable computing architecture with configurable instruction distribution and deployable resources," in IEEE FCCM, 1996.
    • (1996) IEEE FCCM
    • Mirsky, E.1    DeHon, A.2
  • 28
    • 0001892534 scopus 로고    scopus 로고
    • Garp: A MIPS processor with a reconfigurable coprocessor
    • J. R. Hauser and J. Wawrzynek, "Garp: a MIPS processor with a reconfigurable coprocessor," in IEEE FCCM, 1997.
    • (1997) IEEE FCCM
    • Hauser, J.R.1    Wawrzynek, J.2
  • 29
    • 17844392445 scopus 로고    scopus 로고
    • ADRES: An architecture with tightly coupled vliw processor and coarse-grained reconfigurable matrix
    • B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, "ADRES: An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix," in FPL, 2003.
    • (2003) FPL
    • Mei, B.1    Vernalde, S.2    Verkest, D.3    Man, H.D.4    Lauwereins, R.5
  • 31
    • 84988399611 scopus 로고    scopus 로고
    • Dynamically specialized datapaths for energy efficient computing
    • V. Govindaraju, C.-H. Ho, and K. Sankaralingam, "Dynamically Specialized Datapaths for Energy Efficient Computing," in IEEE HPCA, 2011.
    • (2011) IEEE HPCA
    • Govindaraju, V.1    Ho, C.-H.2    Sankaralingam, K.3
  • 35
    • 84960079095 scopus 로고    scopus 로고
    • Exploring the potential of heterogeneous von neumann/dataflow execution models
    • T. Nowatzki, V. Gangadhar, and K. Sankaralingam, "Exploring the Potential of Heterogeneous Von Neumann/Dataflow Execution Models," in ISCA, 2015.
    • (2015) ISCA
    • Nowatzki, T.1    Gangadhar, V.2    Sankaralingam, K.3
  • 36
    • 84955509252 scopus 로고    scopus 로고
    • Convolutional networks and applications in vision
    • Y. LeCun, K. Kavukcuoglu, and C. Farabet, "Convolutional networks and applications in vision," in IEEE ISCAS, 2010.
    • (2010) IEEE ISCAS
    • LeCun, Y.1    Kavukcuoglu, K.2    Farabet, C.3
  • 37
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • V. Nair and G. E. Hinton, "Rectified Linear Units Improve Restricted Boltzmann Machines," in ICML, 2010.
    • (2010) ICML
    • Nair, V.1    Hinton, G.E.2
  • 38
    • 85083950579 scopus 로고    scopus 로고
    • Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding
    • S. Han, H. Mao, and W. J. Dally, "Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding," in ICLR, 2016.
    • (2016) ICLR
    • Han, S.1    Mao, H.2    Dally, W.J.3
  • 41
    • 84988330726 scopus 로고    scopus 로고
    • Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks
    • Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, "Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks," in IEEE ISSCC, 2016.
    • (2016) IEEE ISSCC
    • Chen, Y.-H.1    Krishna, T.2    Emer, J.3    Sze, V.4
  • 42
    • 84988372773 scopus 로고    scopus 로고
    • Exploiting spatial architectures for edit distance algorithms
    • J. J. Tithi, N. C. Crago, and J. S. Emer, "Exploiting spatial architectures for edit distance algorithms," IEEE ISPASS, 2014.
    • (2014) IEEE ISPASS
    • Tithi, J.J.1    Crago, N.C.2    Emer, J.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.