메뉴 건너뛰기




Volumn 17, Issue , 2016, Pages

Learning theory for distribution regression

Author keywords

Kernel Ridge regression; Mean embedding; Minimax optimality; Multi instance learning; Two stage sampled distribution regression

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTATION THEORY; COMPUTATIONAL EFFICIENCY; ECONOMIC AND SOCIAL EFFECTS; LEARNING ALGORITHMS; LEARNING SYSTEMS; PROBABILITY DISTRIBUTIONS;

EID: 84995467512     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (147)

References (106)
  • 3
    • 33746060884 scopus 로고    scopus 로고
    • Unifying divergence minimization and statistical inference via convex duality
    • Yasemin Altun and Alexander Smola. Unifying divergence minimization and statistical inference via convex duality. In Conference on Learning Theory (COLT), pages 139-153, 2006.
    • (2006) Conference on Learning Theory (COLT) , pp. 139-153
    • Altun, Y.1    Smola, A.2
  • 5
    • 84879815802 scopus 로고    scopus 로고
    • Multiple instance classification: Review, taxonomy and comparative study
    • Jaume Amores. Multiple instance classification: Review, taxonomy and comparative study. Artificial Intelligence, 201: 81-105, 2013.
    • (2013) Artificial Intelligence , vol.201 , pp. 81-105
    • Amores, J.1
  • 6
    • 0032302519 scopus 로고    scopus 로고
    • Approximating hyper-rectangles: Learning and pseudorandom sets
    • Peter Auer. Approximating hyper-rectangles: Learning and pseudorandom sets. Journal of Computer and System Sciences, 57: 376-388, 1998.
    • (1998) Journal of Computer and System Sciences , vol.57 , pp. 376-388
    • Auer, P.1
  • 7
    • 84885922503 scopus 로고    scopus 로고
    • Technical report, Department of Computer Science and Engineering, University of California, San Diego
    • Boris Babenko. Multiple instance learning: Algorithms and applications. Technical report, Department of Computer Science and Engineering, University of California, San Diego, 2004. (http://cms.brookes.ac.uk/research/visiongroup/talks/rg-dec-11-09/bbabenkoffre.pdf).
    • (2004) Multiple Instance Learning: Algorithms and Applications
    • Babenko, B.1
  • 12
    • 0031704194 scopus 로고    scopus 로고
    • A note on learning from multiple-instance examples
    • Avrim Blum and Adam Kalai. A note on learning from multiple-instance examples. Machine Learning, 30: 23-29, 1998.
    • (1998) Machine Learning , vol.30 , pp. 23-29
    • Blum, A.1    Kalai, A.2
  • 17
    • 48849086653 scopus 로고    scopus 로고
    • Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem
    • Claudio Carmeli, Ernesto De Vito, and Alessandro Toigo. Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem. Analysis and Applications, 4: 377-408, 2006.
    • (2006) Analysis and Applications , vol.4 , pp. 377-408
    • Carmeli, C.1    De Vito, E.2    Toigo, A.3
  • 18
    • 77950188618 scopus 로고    scopus 로고
    • Vector valued reproducing kernel Hilbert spaces and universality
    • Claudio Carmeli, Ernesto De Vito, Alessandro Toigo, and Veronica Umanitá. Vector valued reproducing kernel Hilbert spaces and universality. Analysis and Applications, 8: 19-61, 2010.
    • (2010) Analysis and Applications , vol.8 , pp. 19-61
    • Carmeli, C.1    De Vito, E.2    Toigo, A.3    Umanitá, V.4
  • 20
    • 84894321541 scopus 로고    scopus 로고
    • Maximum margin multipleinstance feature weighting
    • Jing Chai, Hongtao Chen, Lixia Huang, and Fanhua Shang. Maximum margin multipleinstance feature weighting. Pattern Recognition, 47: 2091-2103, 2014a.
    • (2014) Pattern Recognition , vol.47 , pp. 2091-2103
    • Chai, J.1    Chen, H.2    Huang, L.3    Shang, F.4
  • 21
    • 84897114117 scopus 로고    scopus 로고
    • Multiple-instance discriminant analysis
    • Jing Chai, Xinghao Ding, Hongtao Chen, and Tingyu Li. Multiple-instance discriminant analysis. Pattern Recognition, 47: 2517-2531, 2014b.
    • (2014) Pattern Recognition , vol.47 , pp. 2517-2531
    • Chai, J.1    Ding, X.2    Chen, H.3    Tingyu, Li.4
  • 26
    • 47049131326 scopus 로고    scopus 로고
    • Discretization error analysis for Tikhonov regularization
    • Ernesto de Vito, Lorenzo Rosasco, and Andrea Caponnetto. Discretization error analysis for Tikhonov regularization. Analysis and Applications, 4: 81-99, 2006.
    • (2006) Analysis and Applications , vol.4 , pp. 81-99
    • De Vito, E.1    Rosasco, L.2    Caponnetto, A.3
  • 27
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Perez. Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89: 31-71, 1997.
    • (1997) Artificial Intelligence , vol.89 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 28
    • 44649089454 scopus 로고    scopus 로고
    • A spectrum theorem for perturbed bounded linear operators
    • Jiu Ding and Aihui Zhou. A spectrum theorem for perturbed bounded linear operators. Applied Mathematics and Computation, 201: 723-728, 2008.
    • (2008) Applied Mathematics and Computation , vol.201 , pp. 723-728
    • Ding, J.1    Zhou, A.2
  • 31
    • 0031338770 scopus 로고    scopus 로고
    • Distance measures for point sets and their computation
    • Thomas Eiter and Heikki Mannila. Distance measures for point sets and their computation. Acta Informatica, 34: 109-133, 1997.
    • (1997) Acta Informatica , vol.34 , pp. 109-133
    • Eiter, T.1    Mannila, H.2
  • 34
    • 77952349835 scopus 로고    scopus 로고
    • A review of multi-instance learning assumptions
    • James Foulds and Eibe Frank. A review of multi-instance learning assumptions. The Knowledge Engineering Review, 25: 1-25, 2010.
    • (2010) The Knowledge Engineering Review , vol.25 , pp. 1-25
    • Foulds, J.1    Frank, E.2
  • 35
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
    • Kenji Fukumizu, Francis Bach, and Michael Jordan. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. Journal of Machine Learning Research, 5: 73-99, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.2    Jordan, M.3
  • 39
    • 0004019973 scopus 로고    scopus 로고
    • Technical report, Department of Computer Science, University of California at Santa Cruz
    • David Haussler. Convolution kernels on discrete structures. Technical report, Department of Computer Science, University of California at Santa Cruz, 1999. (http://cbse.soe. ucsc.edu/sites/default/files/convolutions.pdf).
    • (1999) Convolution Kernels on Discrete Structures
    • Haussler, D.1
  • 48
    • 84860619723 scopus 로고    scopus 로고
    • Technical report, Max Planck Institute for Intelligent Systems
    • Samory Kpotufe. k-NN regression adapts to local intrinsic dimension. Technical report, Max Planck Institute for Intelligent Systems, 2011. (http://arxiv.org/abs/1110.4300).
    • (2011) K-NN Regression Adapts to Local Intrinsic Dimension
    • Kpotufe, S.1
  • 50
    • 0031701616 scopus 로고    scopus 로고
    • PAC learning of axis-aligned rectangles with respect to product distributions from multiple-instance examples
    • Philip M. Long and Lei Tan. PAC learning of axis-aligned rectangles with respect to product distributions from multiple-instance examples. Machine Learning, 30: 7-21, 1998.
    • (1998) Machine Learning , vol.30 , pp. 7-21
    • Philip M Long1    Tan, L.2
  • 53
    • 73949116964 scopus 로고    scopus 로고
    • Regularization in kernel learning
    • Shahar Mendelson and Joseph Neeman. Regularization in kernel learning. The Annals of Statistics, 38: 526-565, 2010.
    • (2010) The Annals of Statistics , vol.38 , pp. 526-565
    • Mendelson, S.1    Neeman, J.2
  • 54
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • Charles A. Micchelli and Massimiliano Pontil. On learning vector-valued functions. Neural Computation, 17: 177-204, 2005.
    • (2005) Neural Computation , vol.17 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.2
  • 56
    • 19744371683 scopus 로고    scopus 로고
    • Functional modelling and classification of longitudinal data
    • Hans-Georg Müller. Functional modelling and classification of longitudinal data. Scandinavian Journal of Statistics, 32: 223-240, 2005.
    • (2005) Scandinavian Journal of Statistics , vol.32 , pp. 223-240
    • Müller, H.-G.1
  • 57
    • 84555190989 scopus 로고    scopus 로고
    • A closed-form expression for the Sharma-Mittal entropy of exponential families
    • Frank Nielsen and Richard Nock. A closed-form expression for the Sharma-Mittal entropy of exponential families. Journal of Physics A: Mathematical and Theoretical, 45: 032003, 2012.
    • (2012) Journal of Physics A: Mathematical and Theoretical , vol.45 , pp. 032003
    • Nielsen, F.1    Nock, R.2
  • 63
    • 77958553299 scopus 로고    scopus 로고
    • Non-I.I.D. Multi-instance dimensionality reduction by learning a maximum bag margin subspace
    • Wei Ping, Ye Xu, Kexin Ren, Chi-Hung Chi, and Shen Furao. Non-I.I.D. multi-instance dimensionality reduction by learning a maximum bag margin subspace. In AAAI Conference on Artificial Intelligence, pages 551-556, 2010.
    • (2010) AAAI Conference on Artificial Intelligence , pp. 551-556
    • Ping, W.1    Xu, Y.2    Ren, K.3    Chi, C.-H.4    Furao, S.5
  • 64
    • 80053153929 scopus 로고    scopus 로고
    • Nonparametric divergence estimation with applications to machine learning on distributions
    • Barnabás Poczos, Liang Xiong, and Je Schneider. Nonparametric divergence estimation with applications to machine learning on distributions. In Uncertainty in Artificial Intelligence (UAI), pages 599-608, 2011.
    • (2011) Uncertainty in Artificial Intelligence (UAI) , pp. 599-608
    • Poczos, B.1    Xiong, L.2    Schneider, J.3
  • 67
    • 0035402326 scopus 로고    scopus 로고
    • A polynomial time computable metric between point sets
    • Jan Ramon and Maurice Bruynooghe. A polynomial time computable metric between point sets. Acta Informatica, 37: 765-780, 2001.
    • (2001) Acta Informatica , vol.37 , pp. 765-780
    • Ramon, J.1    Bruynooghe, M.2
  • 72
    • 84979902257 scopus 로고    scopus 로고
    • Distributed coordinate descent method for learning with big data
    • Peter Richtárik and Martin Takác. Distributed coordinate descent method for learning with big data. Journal of Machine Learning Research, 17: 1-25, 2016.
    • (2016) Journal of Machine Learning Research , vol.17 , pp. 1-25
    • Richtárik, P.1    Takác, M.2
  • 75
    • 84869481832 scopus 로고    scopus 로고
    • Multi-instance learning with any hypothesis class
    • Sivan Sabato and Naftali Tishby. Multi-instance learning with any hypothesis class. Journal of Machine Learning Research, 13: 2999-3039, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 2999-3039
    • Sabato, S.1    Tishby, N.2
  • 77
    • 0037749769 scopus 로고    scopus 로고
    • Estimating the approximation error in learning theory
    • Steve Smale and Ding-Xuan Zhou. Estimating the approximation error in learning theory. Analysis and Applications, 1: 17-41, 2003.
    • (2003) Analysis and Applications , vol.1 , pp. 17-41
    • Smale, S.1    Zhou, D.-X.2
  • 82
    • 84860443821 scopus 로고    scopus 로고
    • Mercer's theorem on general domains: On the interaction between measures, kernels, and RKHSs
    • Ingo Steinwart and Clint Scovel. Mercer's theorem on general domains: On the interaction between measures, kernels, and RKHSs. Constructive Approximation, 35: 363-417, 2012.
    • (2012) Constructive Approximation , vol.35 , pp. 363-417
    • Steinwart, I.1    Scovel, C.2
  • 84
    • 55549114309 scopus 로고    scopus 로고
    • Application of integral operator for regularized least-square regression
    • Hongwei Sun and Qiang Wu. Application of integral operator for regularized least-square regression. Mathematical and Computer Modelling, 49: 276-285, 2009a.
    • (2009) Mathematical and Computer Modelling , vol.49 , pp. 276-285
    • Sun, H.1    Qiang, Wu.2
  • 85
    • 62549100873 scopus 로고    scopus 로고
    • A note on application of integral operator in learning theory
    • Hongwei Sun and Qiang Wu. A note on application of integral operator in learning theory. Applied and Computational Harmonic Analysis, 26: 416-421, 2009b.
    • (2009) Applied and Computational Harmonic Analysis , vol.26 , pp. 416-421
    • Sun, H.1    Qiang, Wu.2
  • 86
    • 84884810331 scopus 로고    scopus 로고
    • Large-scale personalized human activity recognition using online multitask learning
    • Xu Sun, Hisashi Kashima, and Naonori Ueda. Large-scale personalized human activity recognition using online multitask learning. IEEE Transactions on Knowledge and Data Engine, 25: 2551-2563, 2013.
    • (2013) IEEE Transactions on Knowledge and Data Engine , vol.25 , pp. 2551-2563
    • Xu Sun1    Kashima, H.2    Ueda, N.3
  • 90
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Leslie Valiant. A theory of the learnable. Communications of the ACM, 27: 1134-1142, 1984.
    • (1984) Communications of the ACM , vol.27 , pp. 1134-1142
    • Valiant, L.1
  • 95
    • 85020684874 scopus 로고    scopus 로고
    • Randomized sketches for kernels: Fast and optimal non-parametric regression
    • to appear; arXiv
    • Yun Yang, Mert Pilanci, and Martin J. Wainwright. Randomized sketches for kernels: Fast and optimal non-parametric regression. Annals of Statistics, 2016. (to appear; arXiv: Http://arxiv.org/abs/1501.06195).
    • (2016) Annals of Statistics
    • Yang, Y.1    Pilanci, M.2    Wainwright, M.J.3
  • 96
    • 84870053092 scopus 로고    scopus 로고
    • HyDR-MI: A hybrid algorithm to reduce dimensionality in multiple instance learning
    • Amelia Zafra, Mykola Pechenizkiy, and Sebastián Ventura. HyDR-MI: A hybrid algorithm to reduce dimensionality in multiple instance learning. Information Sciences, 222: 282-301, 2013.
    • (2013) Information Sciences , vol.222 , pp. 282-301
    • Zafra, A.1    Pechenizkiy, M.2    Ventura, S.3
  • 99
    • 79955835564 scopus 로고    scopus 로고
    • Maximum margin multiple instance clustering with applications to image and text clustering
    • Dan Zhang, Fei Wang, Luo Si, and Tao Li. Maximum margin multiple instance clustering with applications to image and text clustering. IEEE Transactions on Neural Networks, 22: 739-751, 2011.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , pp. 739-751
    • Zhang, D.1    Wang, F.2    Si, L.3    Li, T.4
  • 101
    • 68149124491 scopus 로고    scopus 로고
    • Multi-instance clustering with applications to multiinstance prediction
    • Min-Ling Zhang and Zhi-Hua Zhou. Multi-instance clustering with applications to multiinstance prediction. Applied Intelligence, 31: 47-68, 2009.
    • (2009) Applied Intelligence , vol.31 , pp. 47-68
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 103
    • 84877334125 scopus 로고    scopus 로고
    • Modeling disease progression via multi-task learning
    • Jiayu Zhou, Jun Liu, Vaibhav A. Narayan, and Jieping Ye. Modeling disease progression via multi-task learning. NeuroImage, 78: 233-248, 2013.
    • (2013) NeuroImage , vol.78 , pp. 233-248
    • Zhou, J.1    Liu, J.2    Vaibhav A Narayan3    Jieping, Ye.4
  • 104
    • 33645988196 scopus 로고    scopus 로고
    • From sample similarity to ensemble similarity: Probabilistic distance measures in reproducing kernel Hilbert space
    • Shaohua Kevin Zhou and Rama Chellappa. From sample similarity to ensemble similarity: Probabilistic distance measures in reproducing kernel Hilbert space. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28: 917-929, 2006.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , pp. 917-929
    • Zhou, S.K.1    Chellappa, R.2
  • 105
    • 33745609124 scopus 로고    scopus 로고
    • Technical report, AI Lab, Department of Computer Science & Technology, Nanjing University, Nanjing, China
    • Zhi-Hua Zhou. Multi-instance learning: A survey. Technical report, AI Lab, Department of Computer Science & Technology, Nanjing University, Nanjing, China, 2004. (http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/techrep04.pdf).
    • (2004) Multi-Instance Learning: A Survey
    • Zhou, Z.-H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.