-
3
-
-
33746060884
-
Unifying divergence minimization and statistical inference via convex duality
-
Yasemin Altun and Alexander Smola. Unifying divergence minimization and statistical inference via convex duality. In Conference on Learning Theory (COLT), pages 139-153, 2006.
-
(2006)
Conference on Learning Theory (COLT)
, pp. 139-153
-
-
Altun, Y.1
Smola, A.2
-
5
-
-
84879815802
-
Multiple instance classification: Review, taxonomy and comparative study
-
Jaume Amores. Multiple instance classification: Review, taxonomy and comparative study. Artificial Intelligence, 201: 81-105, 2013.
-
(2013)
Artificial Intelligence
, vol.201
, pp. 81-105
-
-
Amores, J.1
-
6
-
-
0032302519
-
Approximating hyper-rectangles: Learning and pseudorandom sets
-
Peter Auer. Approximating hyper-rectangles: Learning and pseudorandom sets. Journal of Computer and System Sciences, 57: 376-388, 1998.
-
(1998)
Journal of Computer and System Sciences
, vol.57
, pp. 376-388
-
-
Auer, P.1
-
7
-
-
84885922503
-
-
Technical report, Department of Computer Science and Engineering, University of California, San Diego
-
Boris Babenko. Multiple instance learning: Algorithms and applications. Technical report, Department of Computer Science and Engineering, University of California, San Diego, 2004. (http://cms.brookes.ac.uk/research/visiongroup/talks/rg-dec-11-09/bbabenkoffre.pdf).
-
(2004)
Multiple Instance Learning: Algorithms and Applications
-
-
Babenko, B.1
-
9
-
-
56449128429
-
Multiple instance ranking
-
Charles Bergeron, Jed Zaretzki, Curt Breneman, and Kristin P. Bennett. Multiple instance ranking. In International Conference on Machine Learning (ICML), pages 48-55, 2008.
-
(2008)
International Conference on Machine Learning (ICML)
, pp. 48-55
-
-
Bergeron, C.1
Zaretzki, J.2
Breneman, C.3
Bennett, K.P.4
-
10
-
-
84860251069
-
Fast bundle algorithm for multiple-instance learning
-
Charles Bergeron, Gregory Moore, Jed Zaretzki, Curt M. Breneman, and Kristin P. Bennett. Fast bundle algorithm for multiple-instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34: 1068-1079, 2012.
-
(2012)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.34
, pp. 1068-1079
-
-
Bergeron, C.1
Moore, G.2
Zaretzki, J.3
Breneman, C.M.4
Bennett, K.P.5
-
12
-
-
0031704194
-
A note on learning from multiple-instance examples
-
Avrim Blum and Adam Kalai. A note on learning from multiple-instance examples. Machine Learning, 30: 23-29, 1998.
-
(1998)
Machine Learning
, vol.30
, pp. 23-29
-
-
Blum, A.1
Kalai, A.2
-
13
-
-
84939243215
-
A survey on multi-output regression
-
Hanen Borchani, Gherardo Varando, Concha Bielza, and Pedro Larranaga. A survey on multi-output regression. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5: 216-233, 2015.
-
(2015)
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
, vol.5
, pp. 216-233
-
-
Borchani, H.1
Varando, G.2
Bielza, C.3
Larranaga, P.4
-
17
-
-
48849086653
-
Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem
-
Claudio Carmeli, Ernesto De Vito, and Alessandro Toigo. Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem. Analysis and Applications, 4: 377-408, 2006.
-
(2006)
Analysis and Applications
, vol.4
, pp. 377-408
-
-
Carmeli, C.1
De Vito, E.2
Toigo, A.3
-
18
-
-
77950188618
-
Vector valued reproducing kernel Hilbert spaces and universality
-
Claudio Carmeli, Ernesto De Vito, Alessandro Toigo, and Veronica Umanitá. Vector valued reproducing kernel Hilbert spaces and universality. Analysis and Applications, 8: 19-61, 2010.
-
(2010)
Analysis and Applications
, vol.8
, pp. 19-61
-
-
Carmeli, C.1
De Vito, E.2
Toigo, A.3
Umanitá, V.4
-
19
-
-
85032751662
-
Information-geometric dimensionality reduction
-
Kevin M. Carter, Raviv Raich, William G. Finn, and Alfred O. Hero. Information-geometric dimensionality reduction. IEEE Signal Processing Magazine, 28: 89-99, 2011.
-
(2011)
IEEE Signal Processing Magazine
, vol.28
, pp. 89-99
-
-
Carter, K.M.1
Raich, R.2
Finn, W.G.3
Hero, A.O.4
-
20
-
-
84894321541
-
Maximum margin multipleinstance feature weighting
-
Jing Chai, Hongtao Chen, Lixia Huang, and Fanhua Shang. Maximum margin multipleinstance feature weighting. Pattern Recognition, 47: 2091-2103, 2014a.
-
(2014)
Pattern Recognition
, vol.47
, pp. 2091-2103
-
-
Chai, J.1
Chen, H.2
Huang, L.3
Shang, F.4
-
21
-
-
84897114117
-
Multiple-instance discriminant analysis
-
Jing Chai, Xinghao Ding, Hongtao Chen, and Tingyu Li. Multiple-instance discriminant analysis. Pattern Recognition, 47: 2517-2531, 2014b.
-
(2014)
Pattern Recognition
, vol.47
, pp. 2517-2531
-
-
Chai, J.1
Ding, X.2
Chen, H.3
Tingyu, Li.4
-
26
-
-
47049131326
-
Discretization error analysis for Tikhonov regularization
-
Ernesto de Vito, Lorenzo Rosasco, and Andrea Caponnetto. Discretization error analysis for Tikhonov regularization. Analysis and Applications, 4: 81-99, 2006.
-
(2006)
Analysis and Applications
, vol.4
, pp. 81-99
-
-
De Vito, E.1
Rosasco, L.2
Caponnetto, A.3
-
27
-
-
0030649484
-
Solving the multiple instance problem with axis-parallel rectangles
-
Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Perez. Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89: 31-71, 1997.
-
(1997)
Artificial Intelligence
, vol.89
, pp. 31-71
-
-
Dietterich, T.G.1
Lathrop, R.H.2
Lozano-Perez, T.3
-
28
-
-
44649089454
-
A spectrum theorem for perturbed bounded linear operators
-
Jiu Ding and Aihui Zhou. A spectrum theorem for perturbed bounded linear operators. Applied Mathematics and Computation, 201: 723-728, 2008.
-
(2008)
Applied Mathematics and Computation
, vol.201
, pp. 723-728
-
-
Ding, J.1
Zhou, A.2
-
29
-
-
0141830875
-
Multiple-instance learning of real-valued data
-
Daniel R. Dooly, Qi Zhang, Sally A. Goldman, and Robert A. Amar. Multiple-instance learning of real-valued data. Journal of Machine Learning Research, 3: 651-678, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 651-678
-
-
Dooly, D.R.1
Qi Zhang2
Goldman, S.A.3
Amar, R.A.4
-
31
-
-
0031338770
-
Distance measures for point sets and their computation
-
Thomas Eiter and Heikki Mannila. Distance measures for point sets and their computation. Acta Informatica, 34: 109-133, 1997.
-
(1997)
Acta Informatica
, vol.34
, pp. 109-133
-
-
Eiter, T.1
Mannila, H.2
-
34
-
-
77952349835
-
A review of multi-instance learning assumptions
-
James Foulds and Eibe Frank. A review of multi-instance learning assumptions. The Knowledge Engineering Review, 25: 1-25, 2010.
-
(2010)
The Knowledge Engineering Review
, vol.25
, pp. 1-25
-
-
Foulds, J.1
Frank, E.2
-
35
-
-
4544371135
-
Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
-
Kenji Fukumizu, Francis Bach, and Michael Jordan. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. Journal of Machine Learning Research, 5: 73-99, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 73-99
-
-
Fukumizu, K.1
Bach, F.2
Jordan, M.3
-
37
-
-
84859477054
-
A kernel two-sample test
-
Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test. Journal of Machine Learning Research, 13: 723-773, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.5
-
38
-
-
0003624357
-
-
Springer, New-york
-
Lászlo Györ, Michael Kohler, Adam Krzyzak, and HarroWalk. A Distribution-Free Theory of Nonparametric Regression. Springer, New-york, 2002.
-
(2002)
A Distribution-Free Theory of Nonparametric Regression.
-
-
Györ, L.1
Kohler, M.2
Krzyzak, A.3
Walk, H.4
-
39
-
-
0004019973
-
-
Technical report, Department of Computer Science, University of California at Santa Cruz
-
David Haussler. Convolution kernels on discrete structures. Technical report, Department of Computer Science, University of California at Santa Cruz, 1999. (http://cbse.soe. ucsc.edu/sites/default/files/convolutions.pdf).
-
(1999)
Convolution Kernels on Discrete Structures
-
-
Haussler, D.1
-
43
-
-
80053442119
-
Nonlinear functional regression: A functional RKHS approach
-
Hachem Kadri, Emmanuel Duos, Philippe Preux, Stephane Canu, and Manuel Davy. Nonlinear functional regression: A functional RKHS approach. International Conference on Artificial Intelligence and Statistics (AISTATS; JMLR W& CP), 9: 374-380, 2010.
-
(2010)
International Conference on Artificial Intelligence and Statistics (AISTATS; JMLR W& CP)
, vol.9
, pp. 374-380
-
-
Kadri, H.1
Duos, E.2
Preux, P.3
Canu, S.4
Davy, M.5
-
44
-
-
84877728327
-
Multiple operator-valued kernel learning
-
Hachem Kadri, Alain Rakotomamonjy, Francis Bach, and Philippe Preux. Multiple operator-valued kernel learning. In Advances in Neural Information Processing Systems (NIPS), pages 2429-2437, 2012.
-
(2012)
Advances in Neural Information Processing Systems (NIPS)
, pp. 2429-2437
-
-
Kadri, H.1
Rakotomamonjy, A.2
Bach, F.3
Preux, P.4
-
46
-
-
84979950596
-
Operator-valued kernels for learning from functional response data
-
Hachem Kadri, Emmanuel Duos, Philippe Preux, Stephane Canu, Alain Rakotomamonjy, and Julien Audiren. Operator-valued kernels for learning from functional response data. Journal of Machine Learning Research, 17: 1-54, 2016.
-
(2016)
Journal of Machine Learning Research
, vol.17
, pp. 1-54
-
-
Kadri, H.1
Duos, E.2
Preux, P.3
Canu, S.4
Rakotomamonjy, A.5
Audiren, J.6
-
48
-
-
84860619723
-
-
Technical report, Max Planck Institute for Intelligent Systems
-
Samory Kpotufe. k-NN regression adapts to local intrinsic dimension. Technical report, Max Planck Institute for Intelligent Systems, 2011. (http://arxiv.org/abs/1110.4300).
-
(2011)
K-NN Regression Adapts to Local Intrinsic Dimension
-
-
Kpotufe, S.1
-
50
-
-
0031701616
-
PAC learning of axis-aligned rectangles with respect to product distributions from multiple-instance examples
-
Philip M. Long and Lei Tan. PAC learning of axis-aligned rectangles with respect to product distributions from multiple-instance examples. Machine Learning, 30: 7-21, 1998.
-
(1998)
Machine Learning
, vol.30
, pp. 7-21
-
-
Philip M Long1
Tan, L.2
-
51
-
-
84965164729
-
Towards a learning theory of cause-effect inference
-
David Lopez-Paz, Krikamol Muandet, Bernhard Schölkopf, and Iliya Tolstikhin. Towards a learning theory of cause-effect inference. International Conference on Machine Learning (ICML; JMLR W& CP), 37: 1452-1461, 2015.
-
(2015)
International Conference on Machine Learning (ICML; JMLR W& CP)
, vol.37
, pp. 1452-1461
-
-
Lopez-Paz, D.1
Muandet, K.2
Schölkopf, B.3
Tolstikhin, I.4
-
52
-
-
66549127714
-
Nonextensive information theoretical kernels on measures
-
Andre F. T. Martins, Noah A. Smith, Eric P. Xing, Pedro M. Q. Aguiar, and Mário A. T. Figueiredo. Nonextensive information theoretical kernels on measures. Journal of Machine Learning Research, 10: 935-975, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 935-975
-
-
Martins, A.F.T.1
Smith, N.A.2
Xing, E.P.3
Aguiar, P.M.Q.4
Figueiredo, M.A.T.5
-
54
-
-
14544299611
-
On learning vector-valued functions
-
Charles A. Micchelli and Massimiliano Pontil. On learning vector-valued functions. Neural Computation, 17: 177-204, 2005.
-
(2005)
Neural Computation
, vol.17
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.2
-
55
-
-
84877782369
-
Learning from distributions via support measure machines
-
Krikamol Muandet, Kenji Fukumizu, Francesco Dinuzzo, and Bernhard Schölkopf. Learning from distributions via support measure machines. In Advances in Neural Information Processing Systems (NIPS), pages 10-18, 2012.
-
(2012)
Advances in Neural Information Processing Systems (NIPS)
, pp. 10-18
-
-
Muandet, K.1
Fukumizu, K.2
Dinuzzo, F.3
Schölkopf, B.4
-
56
-
-
19744371683
-
Functional modelling and classification of longitudinal data
-
Hans-Georg Müller. Functional modelling and classification of longitudinal data. Scandinavian Journal of Statistics, 32: 223-240, 2005.
-
(2005)
Scandinavian Journal of Statistics
, vol.32
, pp. 223-240
-
-
Müller, H.-G.1
-
57
-
-
84555190989
-
A closed-form expression for the Sharma-Mittal entropy of exponential families
-
Frank Nielsen and Richard Nock. A closed-form expression for the Sharma-Mittal entropy of exponential families. Journal of Physics A: Mathematical and Theoretical, 45: 032003, 2012.
-
(2012)
Journal of Physics A: Mathematical and Theoretical
, vol.45
, pp. 032003
-
-
Nielsen, F.1
Nock, R.2
-
59
-
-
84954309689
-
Fast function to function regression
-
Junier Oliva, William Neiswanger, Barnabás Poczos, Eric Xing, Hy Trac, Shirley Ho, and Je Schneider. Fast function to function regression. International Conference on Artificial Intelligence and Statistics (AISTATS; JMLR W& CP), 38: 717-725, 2015.
-
(2015)
International Conference on Artificial Intelligence and Statistics (AISTATS; JMLR W& CP)
, vol.38
, pp. 717-725
-
-
Oliva, J.1
Neiswanger, W.2
Poczos, B.3
Xing, E.4
Hy Trac5
Ho, S.6
Schneider, J.7
-
60
-
-
84954318745
-
Fast distribution to real regression
-
Junier B. Oliva, Willie Neiswanger, Barnabás Poczos, Je Schneider, and Eric Xing. Fast distribution to real regression. International Conference on Artificial Intelligence and Statistics (AISTATS; JMLR W& CP), 33: 706-714, 2014.
-
(2014)
International Conference on Artificial Intelligence and Statistics (AISTATS; JMLR W& CP)
, vol.33
, pp. 706-714
-
-
Oliva, J.B.1
Neiswanger, W.2
Poczos, B.3
Schneider, J.4
Xing, E.5
-
63
-
-
77958553299
-
Non-I.I.D. Multi-instance dimensionality reduction by learning a maximum bag margin subspace
-
Wei Ping, Ye Xu, Kexin Ren, Chi-Hung Chi, and Shen Furao. Non-I.I.D. multi-instance dimensionality reduction by learning a maximum bag margin subspace. In AAAI Conference on Artificial Intelligence, pages 551-556, 2010.
-
(2010)
AAAI Conference on Artificial Intelligence
, pp. 551-556
-
-
Ping, W.1
Xu, Y.2
Ren, K.3
Chi, C.-H.4
Furao, S.5
-
64
-
-
80053153929
-
Nonparametric divergence estimation with applications to machine learning on distributions
-
Barnabás Poczos, Liang Xiong, and Je Schneider. Nonparametric divergence estimation with applications to machine learning on distributions. In Uncertainty in Artificial Intelligence (UAI), pages 599-608, 2011.
-
(2011)
Uncertainty in Artificial Intelligence (UAI)
, pp. 599-608
-
-
Poczos, B.1
Xiong, L.2
Schneider, J.3
-
65
-
-
84954343604
-
-
Technical report, Carnegie Mellon University
-
Barnabás Poczos, Liang Xiong, Dougal Sutherland, and Je Schneider. Support distribution machines. Technical report, Carnegie Mellon University, 2012. (http://arxiv.org/abs/1202.0302).
-
(2012)
Support Distribution Machines
-
-
Poczos, B.1
Xiong, L.2
Sutherland, D.3
Schneider, J.4
-
66
-
-
84923315975
-
Distribution-free distribution regression
-
Barnabás Poczos, Alessandro Rinaldo, Aarti Singh, and LarryWasserman. Distribution-free distribution regression. International Conference on Artificial Intelligence and Statistics (AISTATS; JMLR W& CP), 31: 507-515, 2013.
-
(2013)
International Conference on Artificial Intelligence and Statistics (AISTATS; JMLR W& CP)
, vol.31
, pp. 507-515
-
-
Poczos, B.1
Rinaldo, A.2
Singh, A.3
Wasserman, L.4
-
67
-
-
0035402326
-
A polynomial time computable metric between point sets
-
Jan Ramon and Maurice Bruynooghe. A polynomial time computable metric between point sets. Acta Informatica, 37: 765-780, 2001.
-
(2001)
Acta Informatica
, vol.37
, pp. 765-780
-
-
Ramon, J.1
Bruynooghe, M.2
-
71
-
-
56449092895
-
Bayesian multiple instance learning: Automatic feature selection and inductive transfer
-
Vikas C. Raykar, Balaji Krishnapuram, Jinbo Bi, Murat Dundar, and R. Bharat Rao. Bayesian multiple instance learning: Automatic feature selection and inductive transfer. In International Conference on Machine Learning (ICML), pages 808-815, 2008.
-
(2008)
International Conference on Machine Learning (ICML)
, pp. 808-815
-
-
Raykar, V.C.1
Krishnapuram, B.2
Bi, J.3
Dundar, M.4
Rao, R.B.5
-
72
-
-
84979902257
-
Distributed coordinate descent method for learning with big data
-
Peter Richtárik and Martin Takác. Distributed coordinate descent method for learning with big data. Journal of Machine Learning Research, 17: 1-25, 2016.
-
(2016)
Journal of Machine Learning Research
, vol.17
, pp. 1-25
-
-
Richtárik, P.1
Takác, M.2
-
75
-
-
84869481832
-
Multi-instance learning with any hypothesis class
-
Sivan Sabato and Naftali Tishby. Multi-instance learning with any hypothesis class. Journal of Machine Learning Research, 13: 2999-3039, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 2999-3039
-
-
Sabato, S.1
Tishby, N.2
-
77
-
-
0037749769
-
Estimating the approximation error in learning theory
-
Steve Smale and Ding-Xuan Zhou. Estimating the approximation error in learning theory. Analysis and Applications, 1: 17-41, 2003.
-
(2003)
Analysis and Applications
, vol.1
, pp. 17-41
-
-
Smale, S.1
Zhou, D.-X.2
-
78
-
-
77951953755
-
Hilbert space embeddings and metrics on probability measures
-
Bharath Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Gert Lanckriet, and Bernhard Schölkopf. Hilbert space embeddings and metrics on probability measures. Journal of Machine Learning Research, 11: 1517-1561, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1517-1561
-
-
Sriperumbudur, B.1
Gretton, A.2
Fukumizu, K.3
Lanckriet, G.4
Schölkopf, B.5
-
79
-
-
80052235767
-
Universality, characteristic kernels and RKHS embedding of measures
-
Bharath K. Sriperumbudur, Kenji Fukumizu, and Gert R. G. Lanckriet. Universality, characteristic kernels and RKHS embedding of measures. Journal of Machine Learning Research, 12: 2389-2410, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2389-2410
-
-
Sriperumbudur, B.K.1
Fukumizu, K.2
Lanckriet, G.R.G.3
-
80
-
-
84907016884
-
-
Technical report
-
Bharath K. Sriperumbudur, Kenji Fukumizu, Revant Kumar, Arthur Gretton, and Aapo Hyvärinen. Density estimation in infinite dimensional exponential families. Technical report, 2014. (http://arxiv.org/pdf/1312.3516).
-
(2014)
Density Estimation in Infinite Dimensional Exponential Families
-
-
Sriperumbudur, B.K.1
Fukumizu, K.2
Kumar, R.3
Gretton, A.4
Hyvärinen, A.5
-
82
-
-
84860443821
-
Mercer's theorem on general domains: On the interaction between measures, kernels, and RKHSs
-
Ingo Steinwart and Clint Scovel. Mercer's theorem on general domains: On the interaction between measures, kernels, and RKHSs. Constructive Approximation, 35: 363-417, 2012.
-
(2012)
Constructive Approximation
, vol.35
, pp. 363-417
-
-
Steinwart, I.1
Scovel, C.2
-
84
-
-
55549114309
-
Application of integral operator for regularized least-square regression
-
Hongwei Sun and Qiang Wu. Application of integral operator for regularized least-square regression. Mathematical and Computer Modelling, 49: 276-285, 2009a.
-
(2009)
Mathematical and Computer Modelling
, vol.49
, pp. 276-285
-
-
Sun, H.1
Qiang, Wu.2
-
85
-
-
62549100873
-
A note on application of integral operator in learning theory
-
Hongwei Sun and Qiang Wu. A note on application of integral operator in learning theory. Applied and Computational Harmonic Analysis, 26: 416-421, 2009b.
-
(2009)
Applied and Computational Harmonic Analysis
, vol.26
, pp. 416-421
-
-
Sun, H.1
Qiang, Wu.2
-
86
-
-
84884810331
-
Large-scale personalized human activity recognition using online multitask learning
-
Xu Sun, Hisashi Kashima, and Naonori Ueda. Large-scale personalized human activity recognition using online multitask learning. IEEE Transactions on Knowledge and Data Engine, 25: 2551-2563, 2013.
-
(2013)
IEEE Transactions on Knowledge and Data Engine
, vol.25
, pp. 2551-2563
-
-
Xu Sun1
Kashima, H.2
Ueda, N.3
-
88
-
-
84995397619
-
Linear-time learning on distributions with approximate kernel embeddings
-
Dougal J. Sutherland, Junier B. Oliva, Barnabás Poczos, and Je Schneider. Linear-time learning on distributions with approximate kernel embeddings. In AAAI Conference on Artifical Intelligence (AAAI), pages 2073-2079, 2016.
-
(2016)
AAAI Conference on Artifical Intelligence (AAAI)
, pp. 2073-2079
-
-
Sutherland, D.J.1
Oliva, J.B.2
Poczos, B.3
Schneider, J.4
-
89
-
-
84954309811
-
Two-stage sampled learning theory on distributions
-
Zoltán Szabo, Arthur Gretton, Barnabás Poczos, and Bharath Sriperumbudur. Two-stage sampled learning theory on distributions. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages 948-957, 2015.
-
(2015)
International Conference on Artificial Intelligence and Statistics (AISTATS)
, pp. 948-957
-
-
Szabo, Z.1
Gretton, A.2
Poczos, B.3
Sriperumbudur, B.4
-
90
-
-
0021518106
-
A theory of the learnable
-
Leslie Valiant. A theory of the learnable. Communications of the ACM, 27: 1134-1142, 1984.
-
(1984)
Communications of the ACM
, vol.27
, pp. 1134-1142
-
-
Valiant, L.1
-
91
-
-
84883836025
-
Closed-form Jensen-Renyi divergence for mixture of Gaussians and applications to group-wise shape registration
-
Fei Wang, Tanveer Syeda-Mahmood, Baba C. Vemuri, David Beymer, and Anand Rangarajan. Closed-form Jensen-Renyi divergence for mixture of Gaussians and applications to group-wise shape registration. Medical Image Computing and Computer-Assisted Intervention, 12: 648-655, 2009.
-
(2009)
Medical Image Computing and Computer-Assisted Intervention
, vol.12
, pp. 648-655
-
-
Wang, F.1
Syeda-Mahmood, T.2
Vemuri, B.C.3
Beymer, D.4
Rangarajan, A.5
-
94
-
-
84860227756
-
Identifying multi-instance outliers
-
Ou Wu, Jun Gao, Weiming Hu, Bing Li, and Mingliang Zhu. Identifying multi-instance outliers. In SIAM International Conference on Data Mining (SDM), pages 430-441, 2010.
-
(2010)
SIAM International Conference on Data Mining (SDM)
, pp. 430-441
-
-
Wu, O.1
Gao, J.2
Hu, W.3
Li, B.4
Zhu, M.5
-
95
-
-
85020684874
-
Randomized sketches for kernels: Fast and optimal non-parametric regression
-
to appear; arXiv
-
Yun Yang, Mert Pilanci, and Martin J. Wainwright. Randomized sketches for kernels: Fast and optimal non-parametric regression. Annals of Statistics, 2016. (to appear; arXiv: Http://arxiv.org/abs/1501.06195).
-
(2016)
Annals of Statistics
-
-
Yang, Y.1
Pilanci, M.2
Wainwright, M.J.3
-
96
-
-
84870053092
-
HyDR-MI: A hybrid algorithm to reduce dimensionality in multiple instance learning
-
Amelia Zafra, Mykola Pechenizkiy, and Sebastián Ventura. HyDR-MI: A hybrid algorithm to reduce dimensionality in multiple instance learning. Information Sciences, 222: 282-301, 2013.
-
(2013)
Information Sciences
, vol.222
, pp. 282-301
-
-
Zafra, A.1
Pechenizkiy, M.2
Ventura, S.3
-
98
-
-
78751693866
-
M3IC: Maximum margin multiple instance clustering
-
Dan Zhang, Fei Wang, Luo Si, and Tao Li. M3IC: Maximum margin multiple instance clustering. In International Joint Conferences on Artificial Intelligence (IJCAI), pages 1339-1344, 2009.
-
(2009)
International Joint Conferences on Artificial Intelligence (IJCAI)
, pp. 1339-1344
-
-
Zhang, D.1
Wang, F.2
Si, L.3
Li, T.4
-
99
-
-
79955835564
-
Maximum margin multiple instance clustering with applications to image and text clustering
-
Dan Zhang, Fei Wang, Luo Si, and Tao Li. Maximum margin multiple instance clustering with applications to image and text clustering. IEEE Transactions on Neural Networks, 22: 739-751, 2011.
-
(2011)
IEEE Transactions on Neural Networks
, vol.22
, pp. 739-751
-
-
Zhang, D.1
Wang, F.2
Si, L.3
Li, T.4
-
100
-
-
84897478893
-
Multiple instance learning with global embedding
-
Dan Zhang, Jingrui He, Luo Si, and Richard D. Lawrence. MILEAGE: Multiple Instance LEArning with Global Embedding. International Conference on Machine Learning (ICML; JMLR W& CP), 28: 82-90, 2013.
-
(2013)
International Conference on Machine Learning (ICML; JMLR W& CP)
, vol.28
, pp. 82-90
-
-
Zhang, D.1
He, J.2
Si, L.3
Richard, D.4
-
101
-
-
68149124491
-
Multi-instance clustering with applications to multiinstance prediction
-
Min-Ling Zhang and Zhi-Hua Zhou. Multi-instance clustering with applications to multiinstance prediction. Applied Intelligence, 31: 47-68, 2009.
-
(2009)
Applied Intelligence
, vol.31
, pp. 47-68
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
103
-
-
84877334125
-
Modeling disease progression via multi-task learning
-
Jiayu Zhou, Jun Liu, Vaibhav A. Narayan, and Jieping Ye. Modeling disease progression via multi-task learning. NeuroImage, 78: 233-248, 2013.
-
(2013)
NeuroImage
, vol.78
, pp. 233-248
-
-
Zhou, J.1
Liu, J.2
Vaibhav A Narayan3
Jieping, Ye.4
-
104
-
-
33645988196
-
From sample similarity to ensemble similarity: Probabilistic distance measures in reproducing kernel Hilbert space
-
Shaohua Kevin Zhou and Rama Chellappa. From sample similarity to ensemble similarity: Probabilistic distance measures in reproducing kernel Hilbert space. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28: 917-929, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, pp. 917-929
-
-
Zhou, S.K.1
Chellappa, R.2
-
105
-
-
33745609124
-
-
Technical report, AI Lab, Department of Computer Science & Technology, Nanjing University, Nanjing, China
-
Zhi-Hua Zhou. Multi-instance learning: A survey. Technical report, AI Lab, Department of Computer Science & Technology, Nanjing University, Nanjing, China, 2004. (http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/techrep04.pdf).
-
(2004)
Multi-Instance Learning: A Survey
-
-
Zhou, Z.-H.1
|