-
1
-
-
0041413385
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
Bartlett, P. L. and Mendelson, S. Rademacher and Gaussian complexities: Risk bounds and structural results. JMLR, 2002.
-
(2002)
JMLR
-
-
Bartlett, P.L.1
Mendelson, S.2
-
3
-
-
26444592981
-
Local rademacher complexities
-
Bartlett, P. L., Bousquet, O., and Mendelson, S. Local rademacher complexities. The Annals of Statistics, 33(4), 2005.
-
(2005)
The Annals of Statistics
, vol.33
, Issue.4
-
-
Bartlett, P.L.1
Bousquet, O.2
Mendelson, S.3
-
4
-
-
33645505792
-
Convexity, classification, and risk bounds
-
Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101, 2006.
-
(2006)
Journal of the American Statistical Association
, pp. 101
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
6
-
-
56349169825
-
-
experiment 4a, subject 3, 1000Hz
-
Blankertz, B. BCI Competition III data, experiment 4a, subject 3, 1000Hz, 2005. URL http://bbci.de/competition/iii/download/.
-
(2005)
BCI Competition III Data
-
-
Blankertz, B.1
-
9
-
-
84961681915
-
Inferring deterministic causal relations
-
Daniusis, P., Janzing, D., Mooij, J., Zscheischler, J., Steudel, B., Zhang, K., and Schölkopf, B. Inferring deterministic causal relations. UAI, 2012.
-
(2012)
UAI
-
-
Daniusis, P.1
Janzing, D.2
Mooij, J.3
Zscheischler, J.4
Steudel, B.5
Zhang, K.6
Schölkopf, B.7
-
12
-
-
84862630897
-
Hilbertian metrics and positive definite kernels on probability measures
-
Hein, M. and Bousquet, O. Hilbertian metrics and positive definite kernels on probability measures. AISTATS, 2004.
-
(2004)
AISTATS
-
-
Hein, M.1
Bousquet, O.2
-
13
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J. R., and Schölkopf, B. Nonlinear causal discovery with additive noise models. NIPS, 2009.
-
(2009)
NIPS
-
-
Hoyer, P.O.1
Janzing, D.2
Mooij, J.M.3
Peters, J.R.4
Schölkopf, B.5
-
14
-
-
84857129458
-
Information-geometric approach to inferring causal directions
-
Janzing, D., Mooij, J., Zhang, K., Lemeire, J., Zscheischler, J., Daniušis, P., Steudel, B., and Schölkopf, B. Information-geometric approach to inferring causal directions. Artificial Intelligence, 2012.
-
(2012)
Artificial Intelligence
-
-
Janzing, D.1
Mooij, J.2
Zhang, K.3
Lemeire, J.4
Zscheischler, J.5
Daniušis, P.6
Steudel, B.7
Schölkopf, B.8
-
15
-
-
84961681936
-
-
arXiv
-
Janzing, D., Steudel, B., Shajarisales, N., and Schölkopf, B. Justifying information-geometric causal inference. arXiv, 2014.
-
(2014)
Justifying Information-geometric Causal Inference
-
-
Janzing, D.1
Steudel, B.2
Shajarisales, N.3
Schölkopf, B.4
-
18
-
-
0001166808
-
Rademacher processes and bounding the risk of function learning
-
E. Gine, D. and J.Wellner (eds.), Birkhauser
-
Koltchinskii, V. and Panchenko, D. Rademacher processes and bounding the risk of function learning. In E. Gine, D. and J.Wellner (eds.), High Dimensional Probability, II, pp. 443-457. Birkhauser, 1999.
-
(1999)
High Dimensional Probability
, vol.2
, pp. 443-457
-
-
Koltchinskii, V.1
Panchenko, D.2
-
19
-
-
84919880773
-
Consistency of causal inference under the additive noise model
-
Kpotufe, S., Sgouritsa, E., Janzing, D., and Scholkopf, B. Consistency of causal inference under the additive noise model. ICML, 2013.
-
(2013)
ICML
-
-
Kpotufe, S.1
Sgouritsa, E.2
Janzing, D.3
Scholkopf, B.4
-
22
-
-
66549127714
-
Nonextensive information theoretic kernels on measures
-
Martins, A. F. T., Smith, N. A., Xing, E. P., Aguiar, P. M. Q., and Figueiredo, M. A. T. Nonextensive information theoretic kernels on measures. JMLR, 2009.
-
(2009)
JMLR
-
-
Martins, A.F.T.1
Smith, N.A.2
Xing, E.P.3
Aguiar, P.M.Q.4
Figueiredo, M.A.T.5
-
23
-
-
84888148228
-
The rademacher complexity of linear transformation classes
-
Maurer, A. The rademacher complexity of linear transformation classes. COLT, 2006.
-
(2006)
COLT
-
-
Maurer, A.1
-
24
-
-
84929033408
-
-
arXiv preprint arXiv:1412.3773
-
Mooij, J. M., Peters, J., Janzing, D., Zscheischler, J., and Schölkopf, B. Distinguishing cause from effect using observational data: methods and benchmarks. arXiv preprint arXiv:1412.3773, 2014.
-
(2014)
Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks
-
-
Mooij, J.M.1
Peters, J.2
Janzing, D.3
Zscheischler, J.4
Schölkopf, B.5
-
25
-
-
84877782369
-
Learning from distributions via support measure machines
-
Muandet, K., Fukumizu, K., Dinuzzo, F., and Schölkopf, B. Learning from distributions via support measure machines. NIPS, 2012.
-
(2012)
NIPS
-
-
Muandet, K.1
Fukumizu, K.2
Dinuzzo, F.3
Schölkopf, B.4
-
27
-
-
71149117601
-
Detecting the direction of causal time series
-
Peters, J., Janzing, D., Gretton, A., and Schölkopf, B. Detecting the direction of causal time series. ICML, 2009.
-
(2009)
ICML
-
-
Peters, J.1
Janzing, D.2
Gretton, A.3
Schölkopf, B.4
-
28
-
-
84904201625
-
Causal discovery with continuous additive noise models
-
Peters, J., M., Joris M., Janzing, D., and Schölkopf, B. Causal discovery with continuous additive noise models. JMLR, 2014.
-
(2014)
JMLR
-
-
Peters, J.M.1
Joris, M.2
Janzing, D.3
Schölkopf, B.4
-
29
-
-
77953218689
-
Random features for large-scale kernel machines
-
Rahimi, A. and Recht, B. Random features for large-scale kernel machines. NIPS, 2007.
-
(2007)
NIPS
-
-
Rahimi, A.1
Recht, B.2
-
30
-
-
77953199346
-
Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
-
Rahimi, A. and Recht, B. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. NIPS, 2008.
-
(2008)
NIPS
-
-
Rahimi, A.1
Recht, B.2
-
35
-
-
84867113617
-
On causal and anticausal learning
-
Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., and Mooij, J. On causal and anticausal learning. ICML, 2012.
-
(2012)
ICML
-
-
Schölkopf, B.1
Janzing, D.2
Peters, J.3
Sgouritsa, E.4
Zhang, K.5
Mooij, J.6
-
36
-
-
84867113617
-
On causal and anticausal learning
-
Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., and Mooij, J. M. On causal and anticausal learning. In ICML, 2012.
-
(2012)
ICML
-
-
Schölkopf, B.1
Janzing, D.2
Peters, J.3
Sgouritsa, E.4
Zhang, K.5
Mooij, J.M.6
-
37
-
-
33749326177
-
A linear non-Gaussian acyclic model for causal discovery
-
Shimizu, S., Hoyer, P. O., Hyvärinen, A., and Kerminen, A. A linear non-Gaussian acyclic model for causal discovery. JMLR, 2006.
-
(2006)
JMLR
-
-
Shimizu, S.1
Hoyer, P.O.2
Hyvärinen, A.3
Kerminen, A.4
-
38
-
-
79955829373
-
Di-rectlingam: A direct method for learning a linear non-Gaussian structural equation model
-
Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawa-hara, Y., Washio, T., Hoyer, P. O., and Bollen, K. Di-rectlingam: A direct method for learning a linear non-gaussian structural equation model. JMLR, 2011.
-
(2011)
JMLR
-
-
Shimizu, S.1
Inazumi, T.2
Sogawa, Y.3
Hyvärinen, A.4
Kawa-Hara, Y.5
Washio, T.6
Hoyer, P.O.7
Bollen, K.8
-
39
-
-
70049118151
-
A Hilbert space embedding for distributions
-
Springer-Verlag
-
Smola, A. J., Gretton, A., Song, L., and Schölkopf, B. A Hilbert space embedding for distributions. In ALT. Springer-Verlag, 2007.
-
(2007)
ALT
-
-
Smola, A.J.1
Gretton, A.2
Song, L.3
Schölkopf, B.4
-
41
-
-
0003614273
-
-
MIT Press
-
Spirtes, P., Glymour, C. N., and Scheines, R. Causation, prediction, and search. MIT Press, 2000.
-
(2000)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.N.2
Scheines, R.3
-
42
-
-
77951953755
-
Hilbert space embeddings and metrics on probability measures
-
Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Schölkopf, B., and Lanckriet, G. Hilbert space embeddings and metrics on probability measures. JMLR, 2010.
-
(2010)
JMLR
-
-
Sriperumbudur, B.K.1
Gretton, A.2
Fukumizu, K.3
Schölkopf, B.4
Lanckriet, G.5
-
43
-
-
85162054206
-
Probabilistic latent variable models for distinguishing between cause and effect
-
Stegle, O., Janzing, D., Zhang, K., Mooij, J. M., and Schölkopf, B. Probabilistic latent variable models for distinguishing between cause and effect. NIPS, 2010.
-
(2010)
NIPS
-
-
Stegle, O.1
Janzing, D.2
Zhang, K.3
Mooij, J.M.4
Schölkopf, B.5
-
45
-
-
84943566361
-
-
arXiv
-
Szabó, Z., Sriperumbudur, B., Póczos, B., and Gretton, A. Learning theory for distribution regression. arXiv, 2014.
-
(2014)
Learning Theory for Distribution Regression
-
-
Szabó, Z.1
Sriperumbudur, B.2
Póczos, B.3
Gretton, A.4
|