메뉴 건너뛰기




Volumn , Issue , 2010, Pages 430-441

Identifying multi-instance outliers

Author keywords

[No Author keywords available]

Indexed keywords

DATA ACQUISITION; STATISTICS;

EID: 84860227756     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972801.38     Document Type: Conference Paper
Times cited : (9)

References (24)
  • 2
    • 21844431631 scopus 로고    scopus 로고
    • Machine learning methods for predicting failures in hard drives: A multiple-instance application
    • J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado, Machine Learning Methods for predicting failures in hard drives: A multiple-instance application, JMLR, 6(2005), pp. 783-816.
    • JMLR , vol.6 , Issue.2005 , pp. 783-816
    • Murray, J.F.1    Hughes, G.F.2    Kreutz-Delgado, K.3
  • 5
    • 33749568055 scopus 로고    scopus 로고
    • Detecting outliers using transduction and statistical testing
    • D. Barbar, C. Domeniconi and J. Rogers, Detecting outliers using transduction and statistical testing, in Proc. SIGKDD, pp. 55-64, 2006.
    • (2006) Proc. SIGKDD , pp. 55-64
    • Barbar, D.1    Domeniconi, C.2    Rogers, J.3
  • 7
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple-instance problem with axis-parallel rectangles
    • T. G. Dietterich, R. H. Lathrop and T. Lozano-Perez, Solving the multiple-instance problem with axis-parallel rectangles, Artificial Intelligence, 39(1-2), pp. 31-71, 1997.
    • (1997) Artificial Intelligence , vol.39 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 8
    • 19544366584 scopus 로고    scopus 로고
    • RDF: A density-based outlier detection method using vertical data representation
    • D. Ren, B. Wang and W. Perrizo, RDF: A Density-based Outlier Detection Method using Vertical Data Representation, in Proc. ICDM, pp. 503-506, 2004.
    • (2004) Proc. ICDM , pp. 503-506
    • Ren, D.1    Wang, B.2    Perrizo, W.3
  • 9
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • C. C. Aggarwal and P. S. Yu, Outlier Detection for High Dimensional Data, in Proc. SIGMOD, pp. 37-46, 2001.
    • (2001) Proc. SIGMOD , pp. 37-46
    • Aggarwal, C.C.1    Yu, P.S.2
  • 10
    • 62249120040 scopus 로고    scopus 로고
    • Outlier detection with the kernelized spatial depth function
    • Y. Chen, X. Dang, H. Peng and H. L. Bart Jr, Outlier Detection with the Kernelized Spatial Depth Function, IEEE Trans. on PAMI, Vol.31, 2009, pp. 288-305.
    • (2009) IEEE Trans. on PAMI , vol.31 , pp. 288-305
    • Chen, Y.1    Dang, X.2    Peng, H.3    Bart Jr., H.L.4
  • 11
    • 65449145220 scopus 로고    scopus 로고
    • Angle-based outlier detection in high-dimensional data
    • H. Kriegel, M. S. Hubert and A. Zimek, Angle-Based Outlier Detection in High-dimensional Data, in Proc. SIGKDD, 2008, pp. 444-452.
    • (2008) Proc. SIGKDD , pp. 444-452
    • Kriegel, H.1    Hubert, M.S.2    Zimek, A.3
  • 12
    • 0345359208 scopus 로고    scopus 로고
    • LOCI: Fast outlier detection using the local correlation integral
    • S. Papadimitriou, H. Kitagawa and P. B. Gibbons, LOCI: Fast Outlier Detection Using the Local Correlation Integral, in Proc. ICDE, 2003, pp. 315-326.
    • (2003) Proc. ICDE , pp. 315-326
    • Papadimitriou, S.1    Kitagawa, H.2    Gibbons, P.B.3
  • 13
    • 33745609124 scopus 로고    scopus 로고
    • Multi-instance learning: A survey
    • Nanjing University, China
    • Z-H. Zhou, Multi-instance learning: a survey, Technical Report, AI Lab, Nanjing University, China, 2004.
    • (2004) Technical Report, AI Lab
    • Zhou, Z.-H.1
  • 15
    • 84878430035 scopus 로고    scopus 로고
    • Outlier detection with globally optimal exemplar-based GMM
    • X. Yang, L. J. Latechi, D. Pokrajac, Outlier Detection with Globally Optimal Exemplar-Based GMM, in Proc. SDM, pp. 145-154, 2009.
    • (2009) Proc. SDM , pp. 145-154
    • Yang, X.1    Latechi, L.J.2    Pokrajac, D.3
  • 16
    • 32344452166 scopus 로고    scopus 로고
    • A comparative study of anomaly detection schemes in network intrusion detection
    • A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur and J. Srivastava, A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection, in Proc. SDM, pp. 25-36, 2003.
    • (2003) Proc. SDM , pp. 25-36
    • Lazarevic, A.1    Ertoz, L.2    Kumar, V.3    Ozgur, A.4    Srivastava, J.5
  • 17
    • 51949113537 scopus 로고    scopus 로고
    • Multiple-instance ranking: Learning to rank images for image retrieval
    • Y. Hu, M. Li and N. Yu, Multiple-Instance Ranking: Learning to Rank Images for Image Retrieval, in Proc. CVPR, pp. 1-8, 2008.
    • (2008) Proc. CVPR , pp. 1-8
    • Hu, Y.1    Li, M.2    Yu, N.3
  • 18
    • 68149124491 scopus 로고    scopus 로고
    • Multi-instance clustering with applications to multi-instance prediction
    • M-L. Zhang and Z-H. Zhou, Multi-instance clustering with applications to multi-instance prediction, Applied Intelligence, 2009, 31(1): 47-68.
    • (2009) Applied Intelligence , vol.31 , Issue.1 , pp. 47-68
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 19
    • 62649092399 scopus 로고    scopus 로고
    • COSmulti-instanceC: Conceptually specified multi-instance clusters
    • H. Kriegel, A. Pryakhin, M. Schubert and A. Zimek, COSmulti-instanceC: Conceptually Specified Multi-Instance Clusters, in Proc. ICDM, pp. 917-921, 2006.
    • (2006) Proc. ICDM , pp. 917-921
    • Kriegel, H.1    Pryakhin, A.2    Schubert, M.3    Zimek, A.4
  • 20
    • 33745447341 scopus 로고    scopus 로고
    • Mining for outliers in sequential databases
    • P. Sun, S. Chawla and B. Arunasalam, Mining for Outliers in Sequential Databases, in Proc. SDM, pp. 94-105, 2006.
    • (2006) Proc. SDM , pp. 94-105
    • Sun, P.1    Chawla, S.2    Arunasalam, B.3
  • 22
    • 84880121435 scopus 로고    scopus 로고
    • http://archive.ics.uci.edu/ml/datasets/Musk+%28Version+1%29
  • 23
    • 84880102592 scopus 로고    scopus 로고
    • http://archive.ics.uci.edu/ml/datasets/Musk+%28Version+2%29
  • 24
    • 84880127866 scopus 로고    scopus 로고
    • http://cmrr.ucsd.edu/smart


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.