-
1
-
-
84863534141
-
Kernels for vector-valued functions: A review
-
Álvarez, M., Rosasco, L., and Lawrence, N. D. Kernels for vector-valued functions: a review. Foundations and Trends in Machine Learning, 4(3):195-266, 2012.
-
(2012)
Foundations and Trends in Machine Learning
, vol.4
, Issue.3
, pp. 195-266
-
-
Álvarez, M.1
Rosasco, L.2
Lawrence, N.D.3
-
3
-
-
36849072723
-
-
MIT Press
-
Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., and Vishwanathan, S. (eds.). Predicting Structured Data. MIT Press, 2007.
-
(2007)
Predicting Structured Data
-
-
Bakir, G.1
Hofmann, T.2
Schölkopf, B.3
Smola, A.4
Taskar, B.5
Vishwanathan, S.6
-
4
-
-
80053456365
-
Semi-supervised penalized output kernel regression for link prediction
-
Brouard, C., d'Alché Buc, F., and Szafranski, M. Semi-supervised penalized output kernel regression for link prediction. In Proc. ICML, pp. 593-600, 2011.
-
(2011)
Proc. ICML
, pp. 593-600
-
-
Brouard, C.1
D'Alché Buc, F.2
Szafranski, M.3
-
6
-
-
48849098893
-
Universal multi-task kernels
-
Caponnetto, A., Micchelli, C., Pontil, M., and Ying, Y. Universal multi-task kernels. Journal of Machine Learning Research, 68:1615-1646, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.68
, pp. 1615-1646
-
-
Caponnetto, A.1
Micchelli, C.2
Pontil, M.3
Ying, Y.4
-
7
-
-
0031189914
-
Multitask Learning
-
Caruana, R. Multitask learning. Machine Learning, 28(1):41-75, 1997. (Pubitemid 127507169)
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
8
-
-
31844441189
-
A general regression technique for learning transductions
-
Cortes, C., Mohri, M., and Weston, J. A general regression technique for learning transductions. In Proc. ICML, pp. 153-160, 2005.
-
(2005)
Proc. ICML
, pp. 153-160
-
-
Cortes, C.1
Mohri, M.2
Weston, J.3
-
10
-
-
21844456299
-
Learning multiple tasks with kernel methods
-
Evgeniou, T., Micchelli, C., and Pontil, M. Learning multiple tasks with kernel methods. Journal of Machine Learning Research, 6:615-637, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 615-637
-
-
Evgeniou, T.1
Micchelli, C.2
Pontil, M.3
-
11
-
-
4544371135
-
Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces
-
Fukumizu, K., Bach, F., and Jordan, M. Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces. Journal of Machine Learning Research, 5:73-99, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 73-99
-
-
Fukumizu, K.1
Bach, F.2
Jordan, M.3
-
12
-
-
29144480967
-
Kernel methods for measuring independence
-
Gretton, A., Herbrich, R., Smola, A., Bousquet, O., and Schölkopf, B. Kernel methods for measuring independence. Journal of Machine Learning Research, 6:1-47, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1-47
-
-
Gretton, A.1
Herbrich, R.2
Smola, A.3
Bousquet, O.4
Schölkopf, B.5
-
13
-
-
84867116447
-
Conditional mean embeddings as regressors
-
Grunewalder, S., Lever, G., Gretton, A., Baldassarre, L., Patterson, S., and Pontil, M. Conditional mean embeddings as regressors. In Proc. ICML, 2012.
-
(2012)
Proc. ICML
-
-
Grunewalder, S.1
Lever, G.2
Gretton, A.3
Baldassarre, L.4
Patterson, S.5
Pontil, M.6
-
14
-
-
84877733341
-
Nonlinear functional regression: A functional RKHS approach
-
Kadri, H., Duflos, E., Preux, P., Canu, S., and Davy, M. Nonlinear functional regression: a functional RKHS approach. In Proc. AISTATS, pp. 111-125, 2010.
-
(2010)
Proc. AISTATS
, pp. 111-125
-
-
Kadri, H.1
Duflos, E.2
Preux, P.3
Canu, S.4
Davy, M.5
-
15
-
-
80053436207
-
Functional regularized least squares classification with operator-valued kernels
-
Kadri, H., Rabaoui, A., Preux, P., Duflos, E., and Rakotomamonjy, A. Functional regularized least squares classification with operator-valued kernels. In Proc. ICML, pp. 993-1000, 2011.
-
(2011)
Proc. ICML
, pp. 993-1000
-
-
Kadri, H.1
Rabaoui, A.2
Preux, P.3
Duflos, E.4
Rakotomamonjy, A.5
-
16
-
-
84897483028
-
-
Technical Report 00695631, INRIA
-
Kadri, H., Ghavamzadeh, M., and Preux, P. A generalized kernel approach to structured output learning. Technical Report 00695631, INRIA, 2012.
-
(2012)
A Generalized Kernel Approach to Structured Output Learning
-
-
Kadri, H.1
Ghavamzadeh, M.2
Preux, P.3
-
17
-
-
14544299611
-
On learning vector-valued functions
-
DOI 10.1162/0899766052530802
-
Micchelli, C. and Pontil, M. On learning vector-valued functions. Neural Computation, 17:177-204, 2005. (Pubitemid 40305887)
-
(2005)
Neural Computation
, vol.17
, Issue.1
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.2
-
20
-
-
0342561506
-
Face recognition under varying poses: The role of texture and shape
-
DOI 10.1016/0042-6989(95)00230-8
-
Troje, N. and Bulthoff, H. Face recognition under varying poses: The role of texture and shape. Vision Research, 36:1761-1771, 1996. (Pubitemid 26166003)
-
(1996)
Vision Research
, vol.36
, Issue.12
, pp. 1761-1771
-
-
Troje, N.F.1
Bulthoff, H.H.2
-
21
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. Large margin methods for structured and interdependent output variables. Journal of machine Learning Research, 6:1453-1484, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
22
-
-
78650171355
-
A kernel regression framework for SMT
-
Wang, Z. and Shawe-Taylor, J. A kernel regression framework for SMT. Machine Translation, 24(2):87-102, 2010.
-
(2010)
Machine Translation
, vol.24
, Issue.2
, pp. 87-102
-
-
Wang, Z.1
Shawe-Taylor, J.2
-
23
-
-
84898971943
-
Kernel dependency estimation
-
Weston, J., Chapelle, O., Elisseeff, A., Scholkopf, B., and Vapnik, V. Kernel dependency estimation. In Advances in Neural Information Processing Systems 15, pp. 873-880, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 873-880
-
-
Weston, J.1
Chapelle, O.2
Elisseeff, A.3
Scholkopf, B.4
Vapnik, V.5
-
24
-
-
84858723616
-
-
MIT Press
-
Weston, J., BakIr, G., Bousquet, O., Schölkopf, B., Mann, T., and Noble, W. Joint Kernel Maps. MIT Press, 2007.
-
(2007)
Joint Kernel Maps
-
-
Weston, J.1
BakIr, G.2
Bousquet, O.3
Schölkopf, B.4
Mann, T.5
Noble, W.6
|