메뉴 건너뛰기




Volumn 26, Issue 3, 2009, Pages 416-421

A note on application of integral operator in learning theory

Author keywords

[No Author keywords available]

Indexed keywords


EID: 62549100873     PISSN: 10635203     EISSN: 1096603X     Source Type: Journal    
DOI: 10.1016/j.acha.2008.10.002     Document Type: Letter
Times cited : (40)

References (21)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950) 337-404
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 2
    • 0022863898 scopus 로고
    • Mixing properties of Harris chains and autoregressive processes
    • Athreya K.B., and Pantula S.G. Mixing properties of Harris chains and autoregressive processes. J. Appl. Probab. 23 (1986) 880-892
    • (1986) J. Appl. Probab. , vol.23 , pp. 880-892
    • Athreya, K.B.1    Pantula, S.G.2
  • 4
    • 0036003734 scopus 로고    scopus 로고
    • Mixing and moment properties of various GARCH and stochastic volatility models
    • Carrasco M., and Chen X. Mixing and moment properties of various GARCH and stochastic volatility models. Econom. Theory 18 (2002) 17-39
    • (2002) Econom. Theory , vol.18 , pp. 17-39
    • Carrasco, M.1    Chen, X.2
  • 7
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou T., Pontil M., and Poggio T. Regularization networks and support vector machines. Adv. Comput. Math. 13 (2000) 1-50
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 9
    • 34250967722 scopus 로고
    • Über monotone Matrixfunktionen
    • Lowner K. Über monotone Matrixfunktionen. Math. Z. 38 (1934) 177-216
    • (1934) Math. Z. , vol.38 , pp. 177-216
    • Lowner, K.1
  • 10
    • 0000973081 scopus 로고    scopus 로고
    • Minimum complexity regression estimation with weakly dependent observations
    • Modha D.S. Minimum complexity regression estimation with weakly dependent observations. IEEE Trans. Inform. Theory 42 (1996) 2133-2145
    • (1996) IEEE Trans. Inform. Theory , vol.42 , pp. 2133-2145
    • Modha, D.S.1
  • 11
    • 84968496220 scopus 로고
    • Some operator monotone functions
    • Pedersen G.K. Some operator monotone functions. Proc. Amer. Math. Soc. 36 (1972) 309-310
    • (1972) Proc. Amer. Math. Soc. , vol.36 , pp. 309-310
    • Pedersen, G.K.1
  • 12
    • 0037749769 scopus 로고    scopus 로고
    • Estimating the approximation error in learning theory
    • Smale S., and Zhou D.X. Estimating the approximation error in learning theory. Anal. Appl. 1 (2003) 17C41
    • (2003) Anal. Appl. , vol.1
    • Smale, S.1    Zhou, D.X.2
  • 13
    • 27844555491 scopus 로고    scopus 로고
    • Shannon sampling II: Connections to learning theory
    • Smale S., and Zhou D.X. Shannon sampling II: Connections to learning theory. Appl. Comput. Harmon. Anal. 19 (2005) 285-302
    • (2005) Appl. Comput. Harmon. Anal. , vol.19 , pp. 285-302
    • Smale, S.1    Zhou, D.X.2
  • 14
    • 34547455409 scopus 로고    scopus 로고
    • Learning theory estimates via integral operators and their approximations
    • Smale S., and Zhou D.X. Learning theory estimates via integral operators and their approximations. Constr. Approx. 26 (2007) 153-172
    • (2007) Constr. Approx. , vol.26 , pp. 153-172
    • Smale, S.1    Zhou, D.X.2
  • 15
    • 67649954573 scopus 로고    scopus 로고
    • Online learning with Markov sampling
    • in press
    • S. Smale, D.X. Zhou, Online learning with Markov sampling, Anal. Appl., in press
    • Anal. Appl
    • Smale, S.1    Zhou, D.X.2
  • 16
    • 77951769307 scopus 로고    scopus 로고
    • H.W. Sun, Q. Wu, Regularized least square regression with dependent samples, Adv. Comput. Math. (2008), doi:10.1007/s10444-008-9099-y, in press
    • H.W. Sun, Q. Wu, Regularized least square regression with dependent samples, Adv. Comput. Math. (2008), doi:10.1007/s10444-008-9099-y, in press
  • 18
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings
    • White H. Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings. Neural Networks 3 (1990) 535-549
    • (1990) Neural Networks , vol.3 , pp. 535-549
    • White, H.1
  • 19
    • 33744772341 scopus 로고    scopus 로고
    • Learning rates of least-square regularized regression
    • Wu Q., Ying Y.M., and Zhou D.X. Learning rates of least-square regularized regression. Found. Comput. Math. 6 (2006) 171-192
    • (2006) Found. Comput. Math. , vol.6 , pp. 171-192
    • Wu, Q.1    Ying, Y.M.2    Zhou, D.X.3
  • 20
    • 40949097762 scopus 로고    scopus 로고
    • Learning rates of regularized regression for exponentially strongly mixing sequence
    • Xu Y.L., and Chen D.R. Learning rates of regularized regression for exponentially strongly mixing sequence. J. Statist. Plann. 138 7 (2008) 2180-2189
    • (2008) J. Statist. Plann. , vol.138 , Issue.7 , pp. 2180-2189
    • Xu, Y.L.1    Chen, D.R.2
  • 21
    • 0042879446 scopus 로고    scopus 로고
    • Leave-one-out bounds for kernel methods
    • Zhang T. Leave-one-out bounds for kernel methods. Neural Comput. 15 (2003) 1397-1437
    • (2003) Neural Comput. , vol.15 , pp. 1397-1437
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.