메뉴 건너뛰기




Volumn 7, Issue 3, 2007, Pages 331-368

Optimal rates for the regularized least-squares algorithm

Author keywords

Learning theory; Least squares; Model selection; Optimal rates

Indexed keywords

LEARNING THEORY; LEAST SQUARE; LEAST-SQUARES ALGORITHMS; LEAST-SQUARES ESTIMATOR; MODEL SELECTION; OPTIMAL RATE; REGULARIZATION PARAMETERS; REPRODUCING KERNEL HILBERT SPACES;

EID: 34548537866     PISSN: 16153375     EISSN: 16153383     Source Type: Journal    
DOI: 10.1007/s10208-006-0196-8     Document Type: Article
Times cited : (837)

References (37)
  • 2
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.
    • (1950) Trans. Amer. Math. Soc , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 4
    • 34548540193 scopus 로고    scopus 로고
    • Reproducing kernel Hilbert spaces and the Mercer theorem
    • to appear
    • C. Carmeli, A. De Vito, and E. Toigo, Reproducing kernel Hilbert spaces and the Mercer theorem, Anal. Appl. (2006), to appear.
    • (2006) Anal. Appl
    • Carmeli, C.1    De Vito, A.2    Toigo, E.3
  • 5
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the bias-variance problem
    • F. Cucker and S. Smale, Best choices for regularization parameters in learning theory: On the bias-variance problem, Found. Comput. Math. 2 (2002), 413-428.
    • (2002) Found. Comput. Math , vol.2 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 6
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. (N.S.) 39(1) (2002), 1-49.
    • (2002) Bull. Amer. Math. Soc. (N.S.) , vol.39 , Issue.1 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 7
    • 36549086319 scopus 로고    scopus 로고
    • Risk bounds for the regularized least-squares algorithm with operator-valued kernels
    • Technical report, Massachusetts Institute of Technology, Cambridge, MA, May, CBCL Paper #249/AI Memo #2005-015
    • E. De Vito and A. Caponnetto, Risk bounds for the regularized least-squares algorithm with operator-valued kernels, Technical report, Massachusetts Institute of Technology, Cambridge, MA, May 2005. CBCL Paper #249/AI Memo #2005-015.
    • (2005)
    • De Vito, E.1    Caponnetto, A.2
  • 8
    • 24944432318 scopus 로고    scopus 로고
    • Model selection for the regularized least-squares algorithm in learning theory
    • E. De Vito, A. Caponnetto, and L. Rosasco, Model selection for the regularized least-squares algorithm in learning theory, Found. Comput. Math. 5(1) (2005), 59-85.
    • (2005) Found. Comput. Math , vol.5 , Issue.1 , pp. 59-85
    • De Vito, E.1    Caponnetto, A.2    Rosasco, L.3
  • 12
    • 84876643131 scopus 로고    scopus 로고
    • R. M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, 74, Cambridge University Press, Cambridge, UK, 2002. Revised reprint of the 1989 original.
    • R. M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, Vol. 74, Cambridge University Press, Cambridge, UK, 2002. Revised reprint of the 1989 original.
  • 15
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • T. Evgeniou, M. Pontil, and T. Poggio, Regularization networks and support vector machines, Adv. Comput. Math. 13 (2000), 1-50.
    • (2000) Adv. Comput. Math , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 18
    • 0035504044 scopus 로고    scopus 로고
    • Nonparametric regression estimation using penalized least squares
    • M. Kohler and A. Krzyżak, Nonparametric regression estimation using penalized least squares, IEEE Trans. Inform. Theory 47(7) (2001), 3054-3058.
    • (2001) IEEE Trans. Inform. Theory , vol.47 , Issue.7 , pp. 3054-3058
    • Kohler, M.1    Krzyżak, A.2
  • 19
    • 3142722249 scopus 로고    scopus 로고
    • On the performance of kernel classes
    • S. Mendelson, On the performance of kernel classes, J. Mach. Learn. Res. 4 (2003), 759-771.
    • (2003) J. Mach. Learn. Res , vol.4 , pp. 759-771
    • Mendelson, S.1
  • 20
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • C. A. Micchelli and M. Pontil, On learning vector-valued functions, Neural Comput. 17 (2005), 177-204.
    • (2005) Neural Comput , vol.17 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.2
  • 21
    • 0000631438 scopus 로고
    • Remarks on inequalities for probabilities of large deviations
    • I. F. Pinelis and A. I. Sakhanenko, Remarks on inequalities for probabilities of large deviations, Theory Probab. Appl. 30(1) (1985), 143-148.
    • (1985) Theory Probab. Appl , vol.30 , Issue.1 , pp. 143-148
    • Pinelis, I.F.1    Sakhanenko, A.I.2
  • 22
    • 0042049518 scopus 로고
    • A theory of networks for approximation and learning
    • C. Lau, ed, IEEE Press, Piscataway, NJ
    • T. Poggio and F. Girosi, A theory of networks for approximation and learning, in C. Lau, ed., Foundation of Neural Networks, pp. 91-106, IEEE Press, Piscataway, NJ, 1992.
    • (1992) Foundation of Neural Networks , pp. 91-106
    • Poggio, T.1    Girosi, F.2
  • 23
    • 0242705996 scopus 로고    scopus 로고
    • The mathematics of learning: Dealing with data
    • T. Poggio and S. Smale, The mathematics of learning: Dealing with data, Notices Amer. Math. Soc. 50(5) (2003), 537-544.
    • (2003) Notices Amer. Math. Soc , vol.50 , Issue.5 , pp. 537-544
    • Poggio, T.1    Smale, S.2
  • 25
    • 51649141644 scopus 로고
    • Sous-espaces Hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)
    • L. Schwartz, Sous-espaces Hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants), J. Analyse Math. 13 (1964), 115-256.
    • (1964) J. Analyse Math , vol.13 , pp. 115-256
    • Schwartz, L.1
  • 26
    • 27844555491 scopus 로고    scopus 로고
    • S. Smale and D. Zhou, Shannon sampling II: Connections to learning theory, to appear in Appl. Comput. Harmon. Anal. 19 (2005), 285-302.
    • S. Smale and D. Zhou, Shannon sampling II: Connections to learning theory, to appear in Appl. Comput. Harmon. Anal. 19 (2005), 285-302.
  • 28
    • 21144435474 scopus 로고    scopus 로고
    • Nonlinear methods of approximation
    • V. N. Temlyakov, Nonlinear methods of approximation, Found. Comput. Math. 3 (2003), 33-107.
    • (2003) Found. Comput. Math , vol.3 , pp. 33-107
    • Temlyakov, V.N.1
  • 29
    • 30344433672 scopus 로고    scopus 로고
    • Approximation in learning theory
    • V. N. Temlyakov, Approximation in learning theory, IMI Preprints 5 (2005), 1-42.
    • (2005) IMI Preprints , vol.5 , pp. 1-42
    • Temlyakov, V.N.1
  • 31
    • 0003679019 scopus 로고    scopus 로고
    • Weak Convergence and Empirical Processes
    • Springer-Verlag, New York, With Applications to Statistics
    • A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes, Springer Series in Statistics, Springer-Verlag, New York, 1996. With Applications to Statistics.
    • (1996) Springer Series in Statistics
    • van der Vaart, A.W.1    Wellner, J.A.2
  • 35
    • 0040289741 scopus 로고
    • Sums and Gaussian Vectors
    • Springer-Verlag, Berlin
    • V. Yurinsky, Sums and Gaussian Vectors, Lecture Notes in Mathematics, Vol. 1617, Springer-Verlag, Berlin, 1995.
    • (1995) Lecture Notes in Mathematics , vol.1617
    • Yurinsky, V.1
  • 36
    • 85140618492 scopus 로고    scopus 로고
    • Effective dimension and generalization, of kernel learning
    • T. Zhang, Effective dimension and generalization, of kernel learning, NIPS 2002, pp. 454-461.
    • (2002) NIPS , pp. 454-461
    • Zhang, T.1
  • 37
    • 0042879446 scopus 로고    scopus 로고
    • Leave-one-out bounds for kernel methods
    • T. Zhang, Leave-one-out bounds for kernel methods, Neural Comput. 13 (2003), 1397-1437.
    • (2003) Neural Comput , vol.13 , pp. 1397-1437
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.