-
1
-
-
1942421209
-
Hidden Markov support vector machines
-
Washington, DC
-
Y. Altun, I. Tsochantaridis, and T. Hofmann, Hidden Markov support vector machines, in 20th International Conference on Machine Learning ICML-2004, Washington, DC, 2003.
-
(2003)
20th International Conference on Machine Learning ICML-2004
-
-
Altun, Y.1
Tsochantaridis, I.2
Hofmann, T.3
-
2
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.
-
(1950)
Trans. Amer. Math. Soc
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
3
-
-
14544301605
-
-
Pitman, Boston, MA
-
J. Burbea and P. Masani, Banach and Hilbert Spaces of Vector-Valued Functions, Vol. 90, Pitman, Boston, MA, 1984.
-
(1984)
Banach and Hilbert Spaces of Vector-Valued Functions
, vol.90
-
-
Burbea, J.1
Masani, P.2
-
4
-
-
34548540193
-
Reproducing kernel Hilbert spaces and the Mercer theorem
-
to appear
-
C. Carmeli, A. De Vito, and E. Toigo, Reproducing kernel Hilbert spaces and the Mercer theorem, Anal. Appl. (2006), to appear.
-
(2006)
Anal. Appl
-
-
Carmeli, C.1
De Vito, A.2
Toigo, E.3
-
5
-
-
0036436325
-
Best choices for regularization parameters in learning theory: On the bias-variance problem
-
F. Cucker and S. Smale, Best choices for regularization parameters in learning theory: On the bias-variance problem, Found. Comput. Math. 2 (2002), 413-428.
-
(2002)
Found. Comput. Math
, vol.2
, pp. 413-428
-
-
Cucker, F.1
Smale, S.2
-
6
-
-
0036071370
-
On the mathematical foundations of learning
-
F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. (N.S.) 39(1) (2002), 1-49.
-
(2002)
Bull. Amer. Math. Soc. (N.S.)
, vol.39
, Issue.1
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
7
-
-
36549086319
-
Risk bounds for the regularized least-squares algorithm with operator-valued kernels
-
Technical report, Massachusetts Institute of Technology, Cambridge, MA, May, CBCL Paper #249/AI Memo #2005-015
-
E. De Vito and A. Caponnetto, Risk bounds for the regularized least-squares algorithm with operator-valued kernels, Technical report, Massachusetts Institute of Technology, Cambridge, MA, May 2005. CBCL Paper #249/AI Memo #2005-015.
-
(2005)
-
-
De Vito, E.1
Caponnetto, A.2
-
8
-
-
24944432318
-
Model selection for the regularized least-squares algorithm in learning theory
-
E. De Vito, A. Caponnetto, and L. Rosasco, Model selection for the regularized least-squares algorithm in learning theory, Found. Comput. Math. 5(1) (2005), 59-85.
-
(2005)
Found. Comput. Math
, vol.5
, Issue.1
, pp. 59-85
-
-
De Vito, E.1
Caponnetto, A.2
Rosasco, L.3
-
9
-
-
21844447610
-
Learning from examples as an inverse problem
-
E. De Vito, L Rosasco, A. Caponnetto, U. De Giovannini, and F. Odone, Learning from examples as an inverse problem, J. Mach. Learn. Res. 6 (2005), 883-904.
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 883-904
-
-
De Vito, E.1
Rosasco, L.2
Caponnetto, A.3
De Giovannini, U.4
Odone, F.5
-
10
-
-
30344472633
-
Mathematical methods for supervised learning
-
R. DeVore, G. Kerkyacharian, D. Picard, and V. Temlyakov, Mathematical methods for supervised learning, IMI Preprints 22 (2004), 1-51.
-
(2004)
IMI Preprints
, vol.22
, pp. 1-51
-
-
DeVore, R.1
Kerkyacharian, G.2
Picard, D.3
Temlyakov, V.4
-
11
-
-
0004019773
-
-
Springer-Verlag, New York
-
L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition, Applications of Mathematics, Vol. 31, Springer-Verlag, New York, 1996.
-
(1996)
A Probabilistic Theory of Pattern Recognition, Applications of Mathematics
, vol.31
-
-
Devroye, L.1
Györfi, L.2
Lugosi, G.3
-
12
-
-
84876643131
-
-
R. M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, 74, Cambridge University Press, Cambridge, UK, 2002. Revised reprint of the 1989 original.
-
R. M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, Vol. 74, Cambridge University Press, Cambridge, UK, 2002. Revised reprint of the 1989 original.
-
-
-
-
13
-
-
0003531188
-
-
Kluwer Academic, Dordrecht
-
H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, Vol. 375, Kluwer Academic, Dordrecht, 1996.
-
(1996)
Regularization of Inverse Problems, Mathematics and its Applications
, vol.375
-
-
Engl, H.W.1
Hanke, M.2
Neubauer, A.3
-
14
-
-
21844456299
-
Learning multiple tasks with kernel methods
-
T. Evgeniou, C. A. Micchelli, and M. Pontil, Learning multiple tasks with kernel methods, J. Mach. Learn. Res. 6 (2005), 615-637.
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 615-637
-
-
Evgeniou, T.1
Micchelli, C.A.2
Pontil, M.3
-
15
-
-
0034419669
-
Regularization networks and support vector machines
-
T. Evgeniou, M. Pontil, and T. Poggio, Regularization networks and support vector machines, Adv. Comput. Math. 13 (2000), 1-50.
-
(2000)
Adv. Comput. Math
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
16
-
-
0003834431
-
-
Pitman, Boston, MA
-
C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Research Notes in Mathematics, Vol. 105, Pitman, Boston, MA, 1984.
-
(1984)
The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Research Notes in Mathematics
, vol.105
-
-
Groetsch, C.W.1
-
17
-
-
0003624357
-
A Distribution-Free Theory of Non-parametric Regression
-
Springer-Verlag, New York
-
L. Györfi, M. Kohler, A. Krzyzak, and H. Walk, A Distribution-Free Theory of Non-parametric Regression, Springer Series in Statistics, Springer-Verlag, New York, 2002.
-
(2002)
Springer Series in Statistics
-
-
Györfi, L.1
Kohler, M.2
Krzyzak, A.3
Walk, H.4
-
18
-
-
0035504044
-
Nonparametric regression estimation using penalized least squares
-
M. Kohler and A. Krzyżak, Nonparametric regression estimation using penalized least squares, IEEE Trans. Inform. Theory 47(7) (2001), 3054-3058.
-
(2001)
IEEE Trans. Inform. Theory
, vol.47
, Issue.7
, pp. 3054-3058
-
-
Kohler, M.1
Krzyżak, A.2
-
19
-
-
3142722249
-
On the performance of kernel classes
-
S. Mendelson, On the performance of kernel classes, J. Mach. Learn. Res. 4 (2003), 759-771.
-
(2003)
J. Mach. Learn. Res
, vol.4
, pp. 759-771
-
-
Mendelson, S.1
-
20
-
-
14544299611
-
On learning vector-valued functions
-
C. A. Micchelli and M. Pontil, On learning vector-valued functions, Neural Comput. 17 (2005), 177-204.
-
(2005)
Neural Comput
, vol.17
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.2
-
21
-
-
0000631438
-
Remarks on inequalities for probabilities of large deviations
-
I. F. Pinelis and A. I. Sakhanenko, Remarks on inequalities for probabilities of large deviations, Theory Probab. Appl. 30(1) (1985), 143-148.
-
(1985)
Theory Probab. Appl
, vol.30
, Issue.1
, pp. 143-148
-
-
Pinelis, I.F.1
Sakhanenko, A.I.2
-
22
-
-
0042049518
-
A theory of networks for approximation and learning
-
C. Lau, ed, IEEE Press, Piscataway, NJ
-
T. Poggio and F. Girosi, A theory of networks for approximation and learning, in C. Lau, ed., Foundation of Neural Networks, pp. 91-106, IEEE Press, Piscataway, NJ, 1992.
-
(1992)
Foundation of Neural Networks
, pp. 91-106
-
-
Poggio, T.1
Girosi, F.2
-
23
-
-
0242705996
-
The mathematics of learning: Dealing with data
-
T. Poggio and S. Smale, The mathematics of learning: Dealing with data, Notices Amer. Math. Soc. 50(5) (2003), 537-544.
-
(2003)
Notices Amer. Math. Soc
, vol.50
, Issue.5
, pp. 537-544
-
-
Poggio, T.1
Smale, S.2
-
25
-
-
51649141644
-
Sous-espaces Hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)
-
L. Schwartz, Sous-espaces Hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants), J. Analyse Math. 13 (1964), 115-256.
-
(1964)
J. Analyse Math
, vol.13
, pp. 115-256
-
-
Schwartz, L.1
-
26
-
-
27844555491
-
-
S. Smale and D. Zhou, Shannon sampling II: Connections to learning theory, to appear in Appl. Comput. Harmon. Anal. 19 (2005), 285-302.
-
S. Smale and D. Zhou, Shannon sampling II: Connections to learning theory, to appear in Appl. Comput. Harmon. Anal. 19 (2005), 285-302.
-
-
-
-
28
-
-
21144435474
-
Nonlinear methods of approximation
-
V. N. Temlyakov, Nonlinear methods of approximation, Found. Comput. Math. 3 (2003), 33-107.
-
(2003)
Found. Comput. Math
, vol.3
, pp. 33-107
-
-
Temlyakov, V.N.1
-
29
-
-
30344433672
-
Approximation in learning theory
-
V. N. Temlyakov, Approximation in learning theory, IMI Preprints 5 (2005), 1-42.
-
(2005)
IMI Preprints
, vol.5
, pp. 1-42
-
-
Temlyakov, V.N.1
-
31
-
-
0003679019
-
Weak Convergence and Empirical Processes
-
Springer-Verlag, New York, With Applications to Statistics
-
A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes, Springer Series in Statistics, Springer-Verlag, New York, 1996. With Applications to Statistics.
-
(1996)
Springer Series in Statistics
-
-
van der Vaart, A.W.1
Wellner, J.A.2
-
32
-
-
0003991806
-
-
Wiley, New York, A Wiley-Interscience Publication
-
V. N. Vapnik, Statistical Learning Theory, Adaptive and Learning Systems for Signal Processing, Communications, and Control, Wiley, New York, 1998. A Wiley-Interscience Publication.
-
(1998)
Statistical Learning Theory, Adaptive and Learning Systems for Signal Processing, Communications, and Control
-
-
Vapnik, V.N.1
-
33
-
-
0003241881
-
Spline Models for Observational Data
-
SIAM, Philadelphia, PA
-
G. Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 59, SIAM, Philadelphia, PA, 1990.
-
(1990)
CBMS-NSF Regional Conference Series in Applied Mathematics
, vol.59
-
-
Wahba, G.1
-
34
-
-
84898971943
-
Kernel dependency estimation
-
S. Thrun, S. Becker, and K. Obermayer, eds, MIT Press, Cambridge, MA
-
J. Weston, O. Chapelle, A. Elisseeff, B. Schoelkopf, and V. Vapnik, Kernel dependency estimation, in S. Thrun, S. Becker, and K. Obermayer, eds., Advances in Neural Information Processing Systems, Vol. 15, pp. 873-880, MIT Press, Cambridge, MA, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 873-880
-
-
Weston, J.1
Chapelle, O.2
Elisseeff, A.3
Schoelkopf, B.4
Vapnik, V.5
-
35
-
-
0040289741
-
Sums and Gaussian Vectors
-
Springer-Verlag, Berlin
-
V. Yurinsky, Sums and Gaussian Vectors, Lecture Notes in Mathematics, Vol. 1617, Springer-Verlag, Berlin, 1995.
-
(1995)
Lecture Notes in Mathematics
, vol.1617
-
-
Yurinsky, V.1
-
36
-
-
85140618492
-
Effective dimension and generalization, of kernel learning
-
T. Zhang, Effective dimension and generalization, of kernel learning, NIPS 2002, pp. 454-461.
-
(2002)
NIPS
, pp. 454-461
-
-
Zhang, T.1
-
37
-
-
0042879446
-
Leave-one-out bounds for kernel methods
-
T. Zhang, Leave-one-out bounds for kernel methods, Neural Comput. 13 (2003), 1397-1437.
-
(2003)
Neural Comput
, vol.13
, pp. 1397-1437
-
-
Zhang, T.1
|