-
5
-
-
84898934907
-
Learning graphical models with Mercer kernels
-
S. Becker, S. Thrun, and K. Obermayer, editors, MIT Press
-
Francis R. Bach and Michael I. Jordan. Learning graphical models with Mercer kernels. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15. MIT Press, 2003b.
-
(2003)
Advances in Neural Information Processing Systems 15
-
-
Bach, F.R.1
Jordan, M.I.2
-
8
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler, editor, ACM Press
-
Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. In D. Haussler, editor, Fifth Annual ACM Workshop on Computational Learning Theory, pages 144-152. ACM Press, 1992.
-
(1992)
Fifth Annual ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
9
-
-
84950771789
-
Estimating optimal transformations for multiple regression and correlation
-
Leo Breiman and Jerome H. Friedman. Estimating optimal transformations for multiple regression and correlation. Journal of the American Statistical Association, 80:580-598, 1985.
-
(1985)
Journal of the American Statistical Association
, vol.80
, pp. 580-598
-
-
Breiman, L.1
Friedman, J.H.2
-
13
-
-
0012657603
-
Dimension reduction and visualization in discriminant analysis (with discussion)
-
R. Dennis Cook and Xiangrong Yin. Dimension reduction and visualization in discriminant analysis (with discussion). Australian & New Zealand Journal of Statistics, 43(2):147-199, 2001.
-
(2001)
Australian & New Zealand Journal of Statistics
, vol.43
, Issue.2
, pp. 147-199
-
-
Dennis Cook, R.1
Yin, X.2
-
15
-
-
0036822251
-
Dimension reduction based on canonical correlation
-
Wing Kam Fung, Xuming He, Li Liu, and Peide Shi. Dimension reduction based on canonical correlation. Statistica Sinica, 12(4):1093-1114, 2002.
-
(2002)
Statistica Sinica
, vol.12
, Issue.4
, pp. 1093-1114
-
-
Fung, W.K.1
He, X.2
Liu, L.3
Shi, P.4
-
22
-
-
0035528162
-
Structure adaptive approach for dimension reduction
-
Marian Hristache, Anatoli Juditsky, Jörg Polzehl, and Vladimir Spokoiny. Structure adaptive approach for dimension reduction. The Annals of Statistics, 29(6):1537-1566, 2001.
-
(2001)
The Annals of Statistics
, vol.29
, Issue.6
, pp. 1537-1566
-
-
Hristache, M.1
Juditsky, A.2
Polzehl, J.3
Spokoiny, V.4
-
23
-
-
84945116550
-
Sliced inverse regression for dimension reduction (with discussion)
-
Ker-Chau Li. Sliced inverse regression for dimension reduction (with discussion). Journal of the American Statistical Association, 86:316-342, 1991.
-
(1991)
Journal of the American Statistical Association
, vol.86
, pp. 316-342
-
-
Li, K.-C.1
-
24
-
-
84950441056
-
On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma
-
Ker-Chau Li. On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma. Journal of the American Statistical Association, 87:1025-1039, 1992.
-
(1992)
Journal of the American Statistical Association
, vol.87
, pp. 1025-1039
-
-
Li, K.-C.1
-
25
-
-
1542637237
-
Interactive tree-structured regression via principal Hessian directions
-
Ker-Chau Li, Heng-Hui Lue, and Chun-Houh Chen. Interactive tree-structured regression via principal Hessian directions. Journal of the American Statistical Association, 95(450):547-560, 2000.
-
(2000)
Journal of the American Statistical Association
, vol.95
, Issue.450
, pp. 547-560
-
-
Li, K.-C.1
Lue, H.-H.2
Chen, C.-H.3
-
26
-
-
0003408496
-
-
Technical report, University of California, Irvine, Department of Information and Computer Science
-
Patrick M. Murphy and David W. Aha. UCI repository of machine learning databases. Technical report, University of California, Irvine, Department of Information and Computer Science. http://www.ics.uci.edu/~mlearn/MLRepository.html, 1994.
-
(1994)
UCI Repository of Machine Learning Databases
-
-
Murphy, P.M.1
Aha, D.W.2
-
28
-
-
0036166439
-
Tumor classification by partial least squares using microarray gene expression data
-
Danh V. Nguyen and David M. Rocke. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics, 18(1):39-50, 2002.
-
(2002)
Bioinformatics
, vol.18
, Issue.1
, pp. 39-50
-
-
Nguyen, D.V.1
Rocke, D.M.2
-
30
-
-
21144467148
-
Exploring regression structure using nonparametric functional estimation
-
Alexander M. Samarov. Exploring regression structure using nonparametric functional estimation. Journal of the American Statistical Association, 88(423):836-847, 1993.
-
(1993)
Journal of the American Statistical Association
, vol.88
, Issue.423
, pp. 836-847
-
-
Samarov, A.M.1
-
31
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
32
-
-
1942450610
-
Feature extraction by non-parametric mutual information maximization
-
Kari Torkkola. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research, 3:1415-1438, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1415-1438
-
-
Torkkola, K.1
-
34
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
M. Mozer, M. Jordan, and T. Petsche, editors, MIT Press
-
Vladimir N. Vapnik, Steven E. Golowich, and Alexander J. Smola. Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 281-287. MIT Press, 1997.
-
(1997)
Advances in Neural Information Processing Systems 9
, pp. 281-287
-
-
Vapnik, V.N.1
Golowich, S.E.2
Smola, A.J.3
-
35
-
-
84869164437
-
Discovering hidden features with Gaussian process regression
-
Michael Kearns, Sara Solla, and David Cohn, editors, MIT Press
-
Francesco Vivarelli and Christopher K. I. Williams. Discovering hidden features with Gaussian process regression. In Michael Kearns, Sara Solla, and David Cohn, editors, Advances in Neural Processing Systems, volume 11, pages 613-619. MIT Press, 1999.
-
(1999)
Advances in Neural Processing Systems
, vol.11
, pp. 613-619
-
-
Vivarelli, F.1
Williams, C.K.I.2
|