메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 73-99

Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces

Author keywords

Conditional independence; Dimensionality reduction; Feature selection; Kernel methods; Regression; Variable selection

Indexed keywords

FEATURE EXTRACTION; HILBERT SPACES; OPTIMIZATION; VECTOR SPACES;

EID: 4544371135     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (509)

References (36)
  • 5
    • 84898934907 scopus 로고    scopus 로고
    • Learning graphical models with Mercer kernels
    • S. Becker, S. Thrun, and K. Obermayer, editors, MIT Press
    • Francis R. Bach and Michael I. Jordan. Learning graphical models with Mercer kernels. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15. MIT Press, 2003b.
    • (2003) Advances in Neural Information Processing Systems 15
    • Bach, F.R.1    Jordan, M.I.2
  • 9
    • 84950771789 scopus 로고
    • Estimating optimal transformations for multiple regression and correlation
    • Leo Breiman and Jerome H. Friedman. Estimating optimal transformations for multiple regression and correlation. Journal of the American Statistical Association, 80:580-598, 1985.
    • (1985) Journal of the American Statistical Association , vol.80 , pp. 580-598
    • Breiman, L.1    Friedman, J.H.2
  • 13
    • 0012657603 scopus 로고    scopus 로고
    • Dimension reduction and visualization in discriminant analysis (with discussion)
    • R. Dennis Cook and Xiangrong Yin. Dimension reduction and visualization in discriminant analysis (with discussion). Australian & New Zealand Journal of Statistics, 43(2):147-199, 2001.
    • (2001) Australian & New Zealand Journal of Statistics , vol.43 , Issue.2 , pp. 147-199
    • Dennis Cook, R.1    Yin, X.2
  • 15
    • 0036822251 scopus 로고    scopus 로고
    • Dimension reduction based on canonical correlation
    • Wing Kam Fung, Xuming He, Li Liu, and Peide Shi. Dimension reduction based on canonical correlation. Statistica Sinica, 12(4):1093-1114, 2002.
    • (2002) Statistica Sinica , vol.12 , Issue.4 , pp. 1093-1114
    • Fung, W.K.1    He, X.2    Liu, L.3    Shi, P.4
  • 17
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3:1157-1182, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 19
  • 23
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction (with discussion)
    • Ker-Chau Li. Sliced inverse regression for dimension reduction (with discussion). Journal of the American Statistical Association, 86:316-342, 1991.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 316-342
    • Li, K.-C.1
  • 24
    • 84950441056 scopus 로고
    • On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma
    • Ker-Chau Li. On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma. Journal of the American Statistical Association, 87:1025-1039, 1992.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 1025-1039
    • Li, K.-C.1
  • 25
    • 1542637237 scopus 로고    scopus 로고
    • Interactive tree-structured regression via principal Hessian directions
    • Ker-Chau Li, Heng-Hui Lue, and Chun-Houh Chen. Interactive tree-structured regression via principal Hessian directions. Journal of the American Statistical Association, 95(450):547-560, 2000.
    • (2000) Journal of the American Statistical Association , vol.95 , Issue.450 , pp. 547-560
    • Li, K.-C.1    Lue, H.-H.2    Chen, C.-H.3
  • 26
    • 0003408496 scopus 로고
    • Technical report, University of California, Irvine, Department of Information and Computer Science
    • Patrick M. Murphy and David W. Aha. UCI repository of machine learning databases. Technical report, University of California, Irvine, Department of Information and Computer Science. http://www.ics.uci.edu/~mlearn/MLRepository.html, 1994.
    • (1994) UCI Repository of Machine Learning Databases
    • Murphy, P.M.1    Aha, D.W.2
  • 28
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Danh V. Nguyen and David M. Rocke. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics, 18(1):39-50, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 30
    • 21144467148 scopus 로고
    • Exploring regression structure using nonparametric functional estimation
    • Alexander M. Samarov. Exploring regression structure using nonparametric functional estimation. Journal of the American Statistical Association, 88(423):836-847, 1993.
    • (1993) Journal of the American Statistical Association , vol.88 , Issue.423 , pp. 836-847
    • Samarov, A.M.1
  • 31
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 32
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • Kari Torkkola. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research, 3:1415-1438, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 34
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • M. Mozer, M. Jordan, and T. Petsche, editors, MIT Press
    • Vladimir N. Vapnik, Steven E. Golowich, and Alexander J. Smola. Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 281-287. MIT Press, 1997.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 281-287
    • Vapnik, V.N.1    Golowich, S.E.2    Smola, A.J.3
  • 35
    • 84869164437 scopus 로고    scopus 로고
    • Discovering hidden features with Gaussian process regression
    • Michael Kearns, Sara Solla, and David Cohn, editors, MIT Press
    • Francesco Vivarelli and Christopher K. I. Williams. Discovering hidden features with Gaussian process regression. In Michael Kearns, Sara Solla, and David Cohn, editors, Advances in Neural Processing Systems, volume 11, pages 613-619. MIT Press, 1999.
    • (1999) Advances in Neural Processing Systems , vol.11 , pp. 613-619
    • Vivarelli, F.1    Williams, C.K.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.