-
1
-
-
84939217199
-
Multi-target regression with rule ensembles
-
Aho T, Ženko B, Džeroski S, Elomaa T. Multi-target regression with rule ensembles. J Mach Learn Res 2009, 373:2055-2066.
-
(2009)
J Mach Learn Res
, vol.373
, pp. 2055-2066
-
-
Aho, T.1
Ženko, B.2
Džeroski, S.3
Elomaa, T.4
-
3
-
-
62249107327
-
Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition
-
Kocev D, Džeroski S, White MD, Newell GR, Griffioen P. Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition. Ecol Model 2009, 220:1159-1168.
-
(2009)
Ecol Model
, vol.220
, pp. 1159-1168
-
-
Kocev, D.1
Džeroski, S.2
White, M.D.3
Newell, G.R.4
Griffioen, P.5
-
4
-
-
84907009060
-
Multi-label classification methods for multi-target regression
-
arXiv preprint arXiv:1211.6581. Cornell University Library.
-
Spyromitros-Xioufis E, Groves W, Tsoumakas G, Vlahavas I. Multi-label classification methods for multi-target regression, arXiv preprint arXiv:1211.6581, 2012, 1159-1168. Cornell University Library.
-
(2012)
, pp. 1159-1168
-
-
Spyromitros-Xioufis, E.1
Groves, W.2
Tsoumakas, G.3
Vlahavas, I.4
-
5
-
-
84907017477
-
Multi-target regression via random linear target combinations.
-
Nancy, France. Springer Verlag.
-
Tsoumakas G, Spyromitros-Xioufis E, Vrekou A, and Vlahavas I. Multi-target regression via random linear target combinations. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Nancy, France, 2014, 225-240. Springer Verlag.
-
(2014)
Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
, pp. 225-240
-
-
Tsoumakas, G.1
Spyromitros-Xioufis, E.2
Vrekou, A.3
Vlahavas, I.4
-
7
-
-
0002799895
-
Adaptive multivariate ridge regression
-
Brown PJ, Zidek JV. Adaptive multivariate ridge regression. Ann Stat 1980, 8:64-74.
-
(1980)
Ann Stat
, vol.8
, pp. 64-74
-
-
Brown, P.J.1
Zidek, J.V.2
-
8
-
-
0009036438
-
On multivariate ridge regression
-
Haitovsky Y. On multivariate ridge regression. Biometrika 1987, 74:563-570.
-
(1987)
Biometrika
, vol.74
, pp. 563-570
-
-
Haitovsky, Y.1
-
9
-
-
14544299611
-
On learning vector-valued functions
-
Micchelli CA, Pontil M. On learning vector-valued functions. Neural Comput 2005, 17:177-204.
-
(2005)
Neural Comput
, vol.17
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.2
-
10
-
-
34548232392
-
Input selection and shrinkage in multiresponse linear regression
-
Similä T, Tikka J. Input selection and shrinkage in multiresponse linear regression. Comput Stat Data Anal 2007, 52:406-422.
-
(2007)
Comput Stat Data Anal
, vol.52
, pp. 406-422
-
-
Similä, T.1
Tikka, J.2
-
11
-
-
84861617363
-
An extensive experimental comparison of methods for multi-label learning
-
Madjarov G, Kocevb D, Gjorgjevikja D, Džeroskib S. An extensive experimental comparison of methods for multi-label learning. Pattern Recogn 2012, 45:705-727.
-
(2012)
Pattern Recogn
, vol.45
, pp. 705-727
-
-
Madjarov, G.1
Kocevb, D.2
Gjorgjevikja, D.3
Džeroskib, S.4
-
13
-
-
84897109377
-
A review on multi-label learning algorithms
-
Zhang M, Zhou Z. A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 2014, 26:1819-1837.
-
(2014)
IEEE Trans Knowl Data Eng
, vol.26
, pp. 1819-1837
-
-
Zhang, M.1
Zhou, Z.2
-
14
-
-
79955550286
-
Multi-dimensional classification with Bayesian networks
-
Bielza C, Li G, Larrañaga P. Multi-dimensional classification with Bayesian networks. Int J Approx Reason 2011, 52:705-727.
-
(2011)
Int J Approx Reason
, vol.52
, pp. 705-727
-
-
Bielza, C.1
Li, G.2
Larrañaga, P.3
-
16
-
-
84907016944
-
Curve prediction with kernel regression.
-
Bled, Slovenia
-
Kuznar D, Mozina M, BratkoI I. Curve prediction with kernel regression. In: Proceedings of the ECML/PKDD 2009 Workshop on Learning from Multi-Label Data, Bled, Slovenia, 2009, 61-68.
-
(2009)
Proceedings of the ECML/PKDD 2009 Workshop on Learning from Multi-Label Data
, pp. 61-68
-
-
Kuznar, D.1
Mozina, M.2
BratkoI, I.3
-
17
-
-
84867569231
-
Real time prediction for converter gas tank levels based on multi-output least square support vector regressor
-
Han Z, Liu Y, Zhao J, Wang W. Real time prediction for converter gas tank levels based on multi-output least square support vector regressor. Control Eng Pract 2012, 20:1400-1409.
-
(2012)
Control Eng Pract
, vol.20
, pp. 1400-1409
-
-
Han, Z.1
Liu, Y.2
Zhao, J.3
Wang, W.4
-
18
-
-
79959689358
-
Multioutput support vector regression for remote sensing biophysical parameter estimation
-
Tuia D, Verrelst J, Alonso L, Pérez-Cruz F, Camps-Valls G. Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci Remote Sens Lett 2011, 8:804-808.
-
(2011)
IEEE Geosci Remote Sens Lett
, vol.8
, pp. 804-808
-
-
Tuia, D.1
Verrelst, J.2
Alonso, L.3
Pérez-Cruz, F.4
Camps-Valls, G.5
-
19
-
-
3543143021
-
SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems
-
Sánchez-Fernández M, de-Prado-Cumplido M, Arenas-Garca J, Pérez-Cruz F. SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems. IEEE Trans Signal Process 2004, 52:2298-2307.
-
(2004)
IEEE Trans Signal Process
, vol.52
, pp. 2298-2307
-
-
Sánchez-Fernández, M.1
de-Prado-Cumplido, M.2
Arenas-Garca, J.3
Pérez-Cruz, F.4
-
20
-
-
0031187873
-
A Bayesian/information theoretic model of learning to learn via multiple task sampling
-
Baxter J. A Bayesian/information theoretic model of learning to learn via multiple task sampling. Mach Learn 1997, 28:7-39.
-
(1997)
Mach Learn
, vol.28
, pp. 7-39
-
-
Baxter, J.1
-
21
-
-
0031189914
-
Multitask learning
-
Caruana R. Multitask learning. Mach Learn 1997, 28:41-75.
-
(1997)
Mach Learn
, vol.28
, pp. 41-75
-
-
Caruana, R.1
-
23
-
-
85162062975
-
A dirty model for multi-task learning.
-
Vancouver, Canada
-
Jalali A, Sanghavi S, Ruan C, Ravikumar PK. A dirty model for multi-task learning. In: Proceedings of the Advances in Neural Information Processing Systems 23, Vancouver, Canada, 2010, 964-972.
-
(2010)
Proceedings of the Advances in Neural Information Processing Systems
, vol.23
, pp. 964-972
-
-
Jalali, A.1
Sanghavi, S.2
Ruan, C.3
Ravikumar, P.K.4
-
24
-
-
84905727965
-
Full Bayesian multi-task learning for multi-output brain decoding and accommodating missing data.
-
Tübingen, Germany. IEEE Press.
-
Marquand AF, Williams SCR, Doyle OM, Rosa MJ. Full Bayesian multi-task learning for multi-output brain decoding and accommodating missing data. In: Proceedings of the 2014 International Workshop on Pattern Recognition in Neuroimaging, Tübingen, Germany, 2014, 1-4. IEEE Press.
-
(2014)
Proceedings of the 2014 International Workshop on Pattern Recognition in Neuroimaging
, pp. 1-4
-
-
Marquand, A.F.1
Williams, S.C.R.2
Doyle, O.M.3
Rosa, M.J.4
-
25
-
-
84942484786
-
Ridge regression: biased estimation for nonorthogonal problems
-
Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12:55-67.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
26
-
-
84899013173
-
Support vector regression machines.
-
Denver, CO
-
Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V. Support vector regression machines. In: Proceedings of the Advances in Neural Information Processing Systems 9, Denver, CO, 1997, 155-161.
-
(1997)
Proceedings of the Advances in Neural Information Processing Systems
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
27
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach Learn 1997, 24:123-140.
-
(1997)
Mach Learn
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
28
-
-
0037186544
-
Stochastic gradient boosting
-
Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal 2002, 38:367-378.
-
(2002)
Comput Stat Data Anal
, vol.38
, pp. 367-378
-
-
Friedman, J.H.1
-
30
-
-
0026692226
-
Stacked generalization
-
Wolpert DH. Stacked generalization. Neural Netw 1992, 5:241-259.
-
(1992)
Neural Netw
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
-
31
-
-
83155175374
-
Classifier chains for multi-label classification
-
Read J, Pfahringer B, Holmes G, Frank E. Classifier chains for multi-label classification. Mach Learn 2011, 85:333-359.
-
(2011)
Mach Learn
, vol.85
, pp. 333-359
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
32
-
-
84866684297
-
Multi-output LS-SVR machine in extended feature space.
-
Tianjin, China
-
Zhang W, Liu X, Ding Y, Shi D. Multi-output LS-SVR machine in extended feature space. In: Proceedings of the 2012 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, Tianjin, China, 2012, 130-134.
-
(2012)
Proceedings of the 2012 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications
, pp. 130-134
-
-
Zhang, W.1
Liu, X.2
Ding, Y.3
Shi, D.4
-
33
-
-
0016511949
-
Reduced-rank regression for the multivariate linear model
-
Izenman AJ. Reduced-rank regression for the multivariate linear model. J Multivar Anal 1975, 5:248-264.
-
(1975)
J Multivar Anal
, vol.5
, pp. 248-264
-
-
Izenman, A.J.1
-
34
-
-
0002961424
-
Multivariate regression analysis and canonical variates
-
van der Merwe A, Zidek JV. Multivariate regression analysis and canonical variates. Can J Stat 1980, 8:27-39.
-
(1980)
Can J Stat
, vol.8
, pp. 27-39
-
-
van der Merwe, A.1
Zidek, J.V.2
-
35
-
-
84886576179
-
Position preserving multi-output prediction.
-
Prague, Czech Republic. Springer Verlag.
-
Abraham Z, Tan P, Perdinan P, Winkler J, Zhong S, Liszewska M. Position preserving multi-output prediction. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Prague, Czech Republic, 2013, 320-335. Springer Verlag.
-
(2013)
Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
, pp. 320-335
-
-
Abraham, Z.1
Tan, P.2
Perdinan, P.3
Winkler, J.4
Zhong, S.5
Liszewska, M.6
-
39
-
-
84874043892
-
Multi- and single-output support vector regression for spectral reflectance recovery.
-
Sorrento, Italy. IEEE Press.
-
Deger F, Mansouri A, Pedersen M, Hardeberg JY. Multi- and single-output support vector regression for spectral reflectance recovery. In: Proceedings of the Eighth International Conference on Signal Image Technology and Internet Based Systems, Sorrento, Italy, 2012, 139-148. IEEE Press.
-
(2012)
Proceedings of the Eighth International Conference on Signal Image Technology and Internet Based Systems
, pp. 139-148
-
-
Deger, F.1
Mansouri, A.2
Pedersen, M.3
Hardeberg, J.Y.4
-
40
-
-
70449392466
-
SVM+ regression and multi-task learning.
-
Atlanta, GA, IEEE Press.
-
Cai F, Cherkassky V. SVM+ regression and multi-task learning. In: Proceedings of the 2009 International Joint Conference on Neural Networks, Atlanta, GA, 2009, 418-424. IEEE Press.
-
(2009)
Proceedings of the 2009 International Joint Conference on Neural Networks
, pp. 418-424
-
-
Cai, F.1
Cherkassky, V.2
-
41
-
-
67649387956
-
Multi-output regression on the output manifold
-
Liu G, Lin Z, Yu Y. Multi-output regression on the output manifold. Pattern Recogn 2009, 42:2737-2743.
-
(2009)
Pattern Recogn
, vol.42
, pp. 2737-2743
-
-
Liu, G.1
Lin, Z.2
Yu, Y.3
-
43
-
-
84876129188
-
Multi-output least-squares support vector regression machines
-
Xu S, An X, Qiao X, Zhu L, Li L. Multi-output least-squares support vector regression machines. Pattern Recogn Lett 2013, 34:1078-1084.
-
(2013)
Pattern Recogn Lett
, vol.34
, pp. 1078-1084
-
-
Xu, S.1
An, X.2
Qiao, X.3
Zhu, L.4
Li, L.5
-
44
-
-
84862001051
-
Multi-output learning via spectral filtering
-
Baldassarre L, Rosasco L, Barla A, Verri A. Multi-output learning via spectral filtering. Mach Learn 2012, 87:259-301.
-
(2012)
Mach Learn
, vol.87
, pp. 259-301
-
-
Baldassarre, L.1
Rosasco, L.2
Barla, A.3
Verri, A.4
-
49
-
-
0011153447
-
Multivariate regression trees: a new technique for modeling species-environment relationships
-
De'ath G. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 2002, 83:1105-1117.
-
(2002)
Ecology
, vol.83
, pp. 1105-1117
-
-
De'ath, G.1
-
51
-
-
3042583485
-
Top-down induction of model trees with regression and splitting nodes
-
Malerba D, Esposito F, Ceci M, Appice A, Pontil M. Top-down induction of model trees with regression and splitting nodes. IEEE Trans Pattern Anal Mach Intell 2004, 26:612-625.
-
(2004)
IEEE Trans Pattern Anal Mach Intell
, vol.26
, pp. 612-625
-
-
Malerba, D.1
Esposito, F.2
Ceci, M.3
Appice, A.4
Pontil, M.5
-
52
-
-
84870255848
-
Tree ensembles for predicting structured outputs
-
Kocev D, Vens C, Struyf J, Džeroski S. Tree ensembles for predicting structured outputs. Pattern Recogn 2012, 46:817-833.
-
(2012)
Pattern Recogn
, vol.46
, pp. 817-833
-
-
Kocev, D.1
Vens, C.2
Struyf, J.3
Džeroski, S.4
-
53
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn 2001, 45:5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
54
-
-
79959305063
-
Incremental multi-target model trees for data streams.
-
Taichung, Taiwan. ACM.
-
Ikonomovska E, Gama J, Džeroski S. Incremental multi-target model trees for data streams. In: Proceedings of the 2011 ACM Symposium on Applied Computing, Taichung, Taiwan, 2011, 988-993. ACM.
-
(2011)
Proceedings of the 2011 ACM Symposium on Applied Computing
, pp. 988-993
-
-
Ikonomovska, E.1
Gama, J.2
Džeroski, S.3
-
55
-
-
84864558206
-
Network regression with predictive clustering trees
-
Stojanova D, Ceci M, Appice A, Džeroski S. Network regression with predictive clustering trees. Data Min Knowl Disc 2012, 25:378-413.
-
(2012)
Data Min Knowl Disc
, vol.25
, pp. 378-413
-
-
Stojanova, D.1
Ceci, M.2
Appice, A.3
Džeroski, S.4
-
56
-
-
84906779919
-
Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering
-
Appice A, Malerba D. Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering. Data Min Knowl Disc 2014, 28:1266-1313.
-
(2014)
Data Min Knowl Disc
, vol.28
, pp. 1266-1313
-
-
Appice, A.1
Malerba, D.2
-
57
-
-
84931058314
-
Semi-supervised learning for multi-target regression.
-
Nancy, France. Springer Verlag.
-
Levatić J, Ceci M, Kocev D, Džeroski S. Semi-supervised learning for multi-target regression. In: Proceedings of the Third International Workshop on New Frontiers In Mining Complex Patterns, Nancy, France, 2014, 110-123. Springer Verlag.
-
(2014)
Proceedings of the Third International Workshop on New Frontiers In Mining Complex Patterns
, pp. 110-123
-
-
Levatić, J.1
Ceci, M.2
Kocev, D.3
Džeroski, S.4
-
58
-
-
77951175762
-
Rule ensembles for multi-target regression.
-
Miami, FL. IEEE Press.
-
Aho T, Ženko B, Džeroski S. Rule ensembles for multi-target regression. In: Proceedings of the Ninth IEEE International Conference on Data Mining, Miami, FL; 2009, 21-30. IEEE Press.
-
(2009)
Proceedings of the Ninth IEEE International Conference on Data Mining
, pp. 21-30
-
-
Aho, T.1
Ženko, B.2
Džeroski, S.3
-
59
-
-
0000245743
-
Statistical modeling: the two cultures
-
Breiman L. Statistical modeling: the two cultures. Stat Sci 2001, 16:199-231.
-
(2001)
Stat Sci
, vol.16
, pp. 199-231
-
-
Breiman, L.1
-
60
-
-
84886567160
-
-
University of California, School of Information and Computer Sciences, Irvine, CA, Available at:. (Accessed May 10, 2015).
-
Bache K, Lichman M. UCI Machine Learning Repository. University of California, School of Information and Computer Sciences, Irvine, CA, 2013. Available at: http://archive.ics.uci.edu/ml. (Accessed May 10, 2015).
-
(2013)
UCI Machine Learning Repository
-
-
Bache, K.1
Lichman, M.2
-
61
-
-
0343391218
-
Predicting chemical parameters of river water quality from bioindicator data
-
Džeroski S, Demšar D, Grbović J. Predicting chemical parameters of river water quality from bioindicator data. Appl Intell 2000, 13:7-17.
-
(2000)
Appl Intell
, vol.13
, pp. 7-17
-
-
Džeroski, S.1
Demšar, D.2
Grbović, J.3
-
62
-
-
0031074323
-
First order regression
-
Karalic A, Bratko I. First order regression. Mach Learn 1997, 26:147-176.
-
(1997)
Mach Learn
, vol.26
, pp. 147-176
-
-
Karalic, A.1
Bratko, I.2
-
63
-
-
77954756986
-
Estimating vegetation height and canopy cover from remotely sensed data with machine learning
-
Stojanova D, Panov P, Gjorgjioski V, Kobler A, Džeroski S. Estimating vegetation height and canopy cover from remotely sensed data with machine learning. Ecol Inform 2010, 5:256-266.
-
(2010)
Ecol Inform
, vol.5
, pp. 256-266
-
-
Stojanova, D.1
Panov, P.2
Gjorgjioski, V.3
Kobler, A.4
Džeroski, S.5
-
64
-
-
28444472696
-
Using multi-objective classification to model communities of soil microarthropods
-
Demšar D, Džeroski S, Larsen T, Struyfc J, Axelsenb J, Pedersenb MB, Kroghb PH. Using multi-objective classification to model communities of soil microarthropods. Ecol Model 2006, 191:131-143.
-
(2006)
Ecol Model
, vol.191
, pp. 131-143
-
-
Demšar, D.1
Džeroski, S.2
Larsen, T.3
Struyfc, J.4
Axelsenb, J.5
Pedersenb, M.B.6
Kroghb, P.H.7
-
65
-
-
80052236046
-
Mulan: a Java library for multi-label learning
-
Tsoumakas G, Spyromitros-Xioufis E, Vilcek J, Vlahavas I. Mulan: a Java library for multi-label learning. J Mach Learn Res 2011, 12:2411-2414.
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2411-2414
-
-
Tsoumakas, G.1
Spyromitros-Xioufis, E.2
Vilcek, J.3
Vlahavas, I.4
-
66
-
-
76749092270
-
The WEKA data mining software: an update
-
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. ACM SIGKDD Explor Newsl 2009, 11:10-18.
-
(2009)
ACM SIGKDD Explor Newsl
, vol.11
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
67
-
-
84912064965
-
MEKA: a multi-label extension to WEKA.
-
Available at: (Accessed May 10)
-
Read J, Reutemann P. MEKA: a multi-label extension to WEKA. Available at: http://meka.sourceforge.net/. (Accessed May 10, 2015).
-
(2015)
-
-
Read, J.1
Reutemann, P.2
-
68
-
-
77953527363
-
MOA: massive online analysis
-
Bifet A, Holmes G, Kirkby R, Pfahringer B. MOA: massive online analysis. J Mach Learn Res 2010, 11:1601-1604.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 1601-1604
-
-
Bifet, A.1
Holmes, G.2
Kirkby, R.3
Pfahringer, B.4
-
70
-
-
84907095419
-
R: A Language and Environment for Statistical Computing
-
Vienna, Available at:. (Accessed May 10, 2015).
-
R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, 2012. Available at: http://www.R-project.org/. (Accessed May 10, 2015).
-
(2012)
R Foundation for Statistical Computing
-
-
-
71
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010, 33:1-22.
-
(2010)
J Stat Softw
, vol.33
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
72
-
-
79959888438
-
mvpart: multivariate partitioning.
-
Available at: (Accessed May 10)
-
De'ath G. mvpart: multivariate partitioning. Available at: http://CRAN.R-project.org/package=mvpart. (Accessed May 10, 2015).
-
(2015)
-
-
De'ath, G.1
-
73
-
-
84908354293
-
rpart: recursive partitioning and regression trees
-
R package version 4.1-9. Available at:. (Accessed May 10)
-
Therneau T, Atkinson B, Ripley B. rpart: recursive partitioning and regression trees, R package version 4.1-9. Available at: http://CRAN.R-project.org/package=rpart. (Accessed May 10, 2015).
-
(2015)
-
-
Therneau, T.1
Atkinson, B.2
Ripley, B.3
-
74
-
-
84939242027
-
-
(Katholieke Universiteit Leuven) and Department of Knowledge Technologies (Jožef Stefan Institute). CLUS system. Available at:. (Accessed May 10)
-
Declarative Languages and Artificial Intelligence Group (Katholieke Universiteit Leuven) and Department of Knowledge Technologies (Jožef Stefan Institute). CLUS system. Available at: https://dtai.cs.kuleuven.be/clus/. (Accessed May 10, 2015).
-
(2015)
-
-
|