메뉴 건너뛰기




Volumn 5, Issue 5, 2015, Pages 216-233

A survey on multi-output regression

Author keywords

[No Author keywords available]

Indexed keywords

OPEN SYSTEMS; PETROLEUM RESERVOIR EVALUATION; REGRESSION ANALYSIS; SURVEYS;

EID: 84939243215     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1157     Document Type: Review
Times cited : (566)

References (74)
  • 3
    • 62249107327 scopus 로고    scopus 로고
    • Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition
    • Kocev D, Džeroski S, White MD, Newell GR, Griffioen P. Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition. Ecol Model 2009, 220:1159-1168.
    • (2009) Ecol Model , vol.220 , pp. 1159-1168
    • Kocev, D.1    Džeroski, S.2    White, M.D.3    Newell, G.R.4    Griffioen, P.5
  • 4
    • 84907009060 scopus 로고    scopus 로고
    • Multi-label classification methods for multi-target regression
    • arXiv preprint arXiv:1211.6581. Cornell University Library.
    • Spyromitros-Xioufis E, Groves W, Tsoumakas G, Vlahavas I. Multi-label classification methods for multi-target regression, arXiv preprint arXiv:1211.6581, 2012, 1159-1168. Cornell University Library.
    • (2012) , pp. 1159-1168
    • Spyromitros-Xioufis, E.1    Groves, W.2    Tsoumakas, G.3    Vlahavas, I.4
  • 6
  • 7
    • 0002799895 scopus 로고
    • Adaptive multivariate ridge regression
    • Brown PJ, Zidek JV. Adaptive multivariate ridge regression. Ann Stat 1980, 8:64-74.
    • (1980) Ann Stat , vol.8 , pp. 64-74
    • Brown, P.J.1    Zidek, J.V.2
  • 8
    • 0009036438 scopus 로고
    • On multivariate ridge regression
    • Haitovsky Y. On multivariate ridge regression. Biometrika 1987, 74:563-570.
    • (1987) Biometrika , vol.74 , pp. 563-570
    • Haitovsky, Y.1
  • 9
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • Micchelli CA, Pontil M. On learning vector-valued functions. Neural Comput 2005, 17:177-204.
    • (2005) Neural Comput , vol.17 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.2
  • 10
    • 34548232392 scopus 로고    scopus 로고
    • Input selection and shrinkage in multiresponse linear regression
    • Similä T, Tikka J. Input selection and shrinkage in multiresponse linear regression. Comput Stat Data Anal 2007, 52:406-422.
    • (2007) Comput Stat Data Anal , vol.52 , pp. 406-422
    • Similä, T.1    Tikka, J.2
  • 11
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • Madjarov G, Kocevb D, Gjorgjevikja D, Džeroskib S. An extensive experimental comparison of methods for multi-label learning. Pattern Recogn 2012, 45:705-727.
    • (2012) Pattern Recogn , vol.45 , pp. 705-727
    • Madjarov, G.1    Kocevb, D.2    Gjorgjevikja, D.3    Džeroskib, S.4
  • 13
    • 84897109377 scopus 로고    scopus 로고
    • A review on multi-label learning algorithms
    • Zhang M, Zhou Z. A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 2014, 26:1819-1837.
    • (2014) IEEE Trans Knowl Data Eng , vol.26 , pp. 1819-1837
    • Zhang, M.1    Zhou, Z.2
  • 14
    • 79955550286 scopus 로고    scopus 로고
    • Multi-dimensional classification with Bayesian networks
    • Bielza C, Li G, Larrañaga P. Multi-dimensional classification with Bayesian networks. Int J Approx Reason 2011, 52:705-727.
    • (2011) Int J Approx Reason , vol.52 , pp. 705-727
    • Bielza, C.1    Li, G.2    Larrañaga, P.3
  • 17
    • 84867569231 scopus 로고    scopus 로고
    • Real time prediction for converter gas tank levels based on multi-output least square support vector regressor
    • Han Z, Liu Y, Zhao J, Wang W. Real time prediction for converter gas tank levels based on multi-output least square support vector regressor. Control Eng Pract 2012, 20:1400-1409.
    • (2012) Control Eng Pract , vol.20 , pp. 1400-1409
    • Han, Z.1    Liu, Y.2    Zhao, J.3    Wang, W.4
  • 20
    • 0031187873 scopus 로고    scopus 로고
    • A Bayesian/information theoretic model of learning to learn via multiple task sampling
    • Baxter J. A Bayesian/information theoretic model of learning to learn via multiple task sampling. Mach Learn 1997, 28:7-39.
    • (1997) Mach Learn , vol.28 , pp. 7-39
    • Baxter, J.1
  • 21
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana R. Multitask learning. Mach Learn 1997, 28:41-75.
    • (1997) Mach Learn , vol.28 , pp. 41-75
    • Caruana, R.1
  • 25
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12:55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 27
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach Learn 1997, 24:123-140.
    • (1997) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 28
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal 2002, 38:367-378.
    • (2002) Comput Stat Data Anal , vol.38 , pp. 367-378
    • Friedman, J.H.1
  • 30
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert DH. Stacked generalization. Neural Netw 1992, 5:241-259.
    • (1992) Neural Netw , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 31
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read J, Pfahringer B, Holmes G, Frank E. Classifier chains for multi-label classification. Mach Learn 2011, 85:333-359.
    • (2011) Mach Learn , vol.85 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 33
    • 0016511949 scopus 로고
    • Reduced-rank regression for the multivariate linear model
    • Izenman AJ. Reduced-rank regression for the multivariate linear model. J Multivar Anal 1975, 5:248-264.
    • (1975) J Multivar Anal , vol.5 , pp. 248-264
    • Izenman, A.J.1
  • 34
    • 0002961424 scopus 로고
    • Multivariate regression analysis and canonical variates
    • van der Merwe A, Zidek JV. Multivariate regression analysis and canonical variates. Can J Stat 1980, 8:27-39.
    • (1980) Can J Stat , vol.8 , pp. 27-39
    • van der Merwe, A.1    Zidek, J.V.2
  • 41
    • 67649387956 scopus 로고    scopus 로고
    • Multi-output regression on the output manifold
    • Liu G, Lin Z, Yu Y. Multi-output regression on the output manifold. Pattern Recogn 2009, 42:2737-2743.
    • (2009) Pattern Recogn , vol.42 , pp. 2737-2743
    • Liu, G.1    Lin, Z.2    Yu, Y.3
  • 43
    • 84876129188 scopus 로고    scopus 로고
    • Multi-output least-squares support vector regression machines
    • Xu S, An X, Qiao X, Zhu L, Li L. Multi-output least-squares support vector regression machines. Pattern Recogn Lett 2013, 34:1078-1084.
    • (2013) Pattern Recogn Lett , vol.34 , pp. 1078-1084
    • Xu, S.1    An, X.2    Qiao, X.3    Zhu, L.4    Li, L.5
  • 49
    • 0011153447 scopus 로고    scopus 로고
    • Multivariate regression trees: a new technique for modeling species-environment relationships
    • De'ath G. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 2002, 83:1105-1117.
    • (2002) Ecology , vol.83 , pp. 1105-1117
    • De'ath, G.1
  • 52
  • 53
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001, 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 56
    • 84906779919 scopus 로고    scopus 로고
    • Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering
    • Appice A, Malerba D. Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering. Data Min Knowl Disc 2014, 28:1266-1313.
    • (2014) Data Min Knowl Disc , vol.28 , pp. 1266-1313
    • Appice, A.1    Malerba, D.2
  • 59
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: the two cultures
    • Breiman L. Statistical modeling: the two cultures. Stat Sci 2001, 16:199-231.
    • (2001) Stat Sci , vol.16 , pp. 199-231
    • Breiman, L.1
  • 60
    • 84886567160 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Sciences, Irvine, CA, Available at:. (Accessed May 10, 2015).
    • Bache K, Lichman M. UCI Machine Learning Repository. University of California, School of Information and Computer Sciences, Irvine, CA, 2013. Available at: http://archive.ics.uci.edu/ml. (Accessed May 10, 2015).
    • (2013) UCI Machine Learning Repository
    • Bache, K.1    Lichman, M.2
  • 61
    • 0343391218 scopus 로고    scopus 로고
    • Predicting chemical parameters of river water quality from bioindicator data
    • Džeroski S, Demšar D, Grbović J. Predicting chemical parameters of river water quality from bioindicator data. Appl Intell 2000, 13:7-17.
    • (2000) Appl Intell , vol.13 , pp. 7-17
    • Džeroski, S.1    Demšar, D.2    Grbović, J.3
  • 62
    • 0031074323 scopus 로고    scopus 로고
    • First order regression
    • Karalic A, Bratko I. First order regression. Mach Learn 1997, 26:147-176.
    • (1997) Mach Learn , vol.26 , pp. 147-176
    • Karalic, A.1    Bratko, I.2
  • 63
    • 77954756986 scopus 로고    scopus 로고
    • Estimating vegetation height and canopy cover from remotely sensed data with machine learning
    • Stojanova D, Panov P, Gjorgjioski V, Kobler A, Džeroski S. Estimating vegetation height and canopy cover from remotely sensed data with machine learning. Ecol Inform 2010, 5:256-266.
    • (2010) Ecol Inform , vol.5 , pp. 256-266
    • Stojanova, D.1    Panov, P.2    Gjorgjioski, V.3    Kobler, A.4    Džeroski, S.5
  • 67
    • 84912064965 scopus 로고    scopus 로고
    • MEKA: a multi-label extension to WEKA.
    • Available at: (Accessed May 10)
    • Read J, Reutemann P. MEKA: a multi-label extension to WEKA. Available at: http://meka.sourceforge.net/. (Accessed May 10, 2015).
    • (2015)
    • Read, J.1    Reutemann, P.2
  • 70
    • 84907095419 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • Vienna, Available at:. (Accessed May 10, 2015).
    • R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, 2012. Available at: http://www.R-project.org/. (Accessed May 10, 2015).
    • (2012) R Foundation for Statistical Computing
  • 71
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010, 33:1-22.
    • (2010) J Stat Softw , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 72
    • 79959888438 scopus 로고    scopus 로고
    • mvpart: multivariate partitioning.
    • Available at: (Accessed May 10)
    • De'ath G. mvpart: multivariate partitioning. Available at: http://CRAN.R-project.org/package=mvpart. (Accessed May 10, 2015).
    • (2015)
    • De'ath, G.1
  • 73
    • 84908354293 scopus 로고    scopus 로고
    • rpart: recursive partitioning and regression trees
    • R package version 4.1-9. Available at:. (Accessed May 10)
    • Therneau T, Atkinson B, Ripley B. rpart: recursive partitioning and regression trees, R package version 4.1-9. Available at: http://CRAN.R-project.org/package=rpart. (Accessed May 10, 2015).
    • (2015)
    • Therneau, T.1    Atkinson, B.2    Ripley, B.3
  • 74
    • 84939242027 scopus 로고    scopus 로고
    • (Katholieke Universiteit Leuven) and Department of Knowledge Technologies (Jožef Stefan Institute). CLUS system. Available at:. (Accessed May 10)
    • Declarative Languages and Artificial Intelligence Group (Katholieke Universiteit Leuven) and Department of Knowledge Technologies (Jožef Stefan Institute). CLUS system. Available at: https://dtai.cs.kuleuven.be/clus/. (Accessed May 10, 2015).
    • (2015)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.