메뉴 건너뛰기




Volumn 78, Issue , 2013, Pages 233-248

Modeling disease progression via multi-task learning

Author keywords

ADAS Cog; Alzheimer's disease; Disease progression; Fused Lasso; MMSE; Multi task learning

Indexed keywords

ALGORITHM; ALZHEIMER DISEASE; ALZHEIMER'S DISEASE ASSESSMENT SCALE COGNITIVE SUBSCALE; ARTICLE; BRAIN SIZE; COGNITION; CONTROLLED STUDY; CORTICAL THICKNESS (BRAIN); DISEASE COURSE; DISEASE MARKER; DISEASE MODEL; ENTORHINAL CORTEX; HIPPOCAMPUS; INTERMETHOD COMPARISON; LONGITUDINAL STUDY; MENTAL PERFORMANCE; MENTAL TASK; MILD COGNITIVE IMPAIRMENT; MINI MENTAL STATE EXAMINATION; NUCLEAR MAGNETIC RESONANCE IMAGING; PREDICTION; PRIORITY JOURNAL; RATING SCALE; SCORING SYSTEM; SINGLE TASK LEARNING ALGORITHM; TEMPORAL CORTEX; WHITE MATTER;

EID: 84877334125     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2013.03.073     Document Type: Article
Times cited : (208)

References (70)
  • 1
    • 77949336151 scopus 로고    scopus 로고
    • 2010 Alzheimer's disease facts and figures
    • A.Association
    • A.Association 2010 Alzheimer's disease facts and figures. Alzheimers Dement. 2010, 6:158-194.
    • (2010) Alzheimers Dement. , vol.6 , pp. 158-194
  • 2
    • 0000171461 scopus 로고
    • Regression analysis when the dependent variable is truncated normal
    • Amemiya T. Regression analysis when the dependent variable is truncated normal. Econometrica 1973, 997-1016.
    • (1973) Econometrica , pp. 997-1016
    • Amemiya, T.1
  • 3
    • 3142702323 scopus 로고    scopus 로고
    • Tobit models: a survey
    • Amemiya T. Tobit models: a survey. J. Econom. 2010, 24(1-2):3-61.
    • (2010) J. Econom. , vol.24 , Issue.1-2 , pp. 3-61
    • Amemiya, T.1
  • 4
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Ando R., Zhang T. A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 2005, 6:1817-1853.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1817-1853
    • Ando, R.1    Zhang, T.2
  • 5
    • 33845404185 scopus 로고    scopus 로고
    • 3D mapping of mini-mental state examination performance in clinical and preclinical Alzheimer disease
    • Apostolova L., et al. 3D mapping of mini-mental state examination performance in clinical and preclinical Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2006, 20(4):224.
    • (2006) Alzheimer Dis. Assoc. Disord. , vol.20 , Issue.4 , pp. 224
    • Apostolova, L.1
  • 6
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • Argyriou A., Evgeniou T., Pontil M. Convex multi-task feature learning. Mach. Learn. 2008, 73(3):243-272.
    • (2008) Mach. Learn. , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 7
    • 0042708780 scopus 로고    scopus 로고
    • Modeling the time-course of Alzheimer dementia
    • Ashford J., Schmitt F. Modeling the time-course of Alzheimer dementia. Curr. Psychiatry Rep. 2001, 3(1):20-28.
    • (2001) Curr. Psychiatry Rep. , vol.3 , Issue.1 , pp. 20-28
    • Ashford, J.1    Schmitt, F.2
  • 8
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • Bakker B., Heskes T. Task clustering and gating for Bayesian multitask learning. J. Mach. Learn. Res. 2003, 4:83-99.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 9
    • 0025863618 scopus 로고
    • Neuropathological stageing of Alzheimer-related changes
    • Braak H., Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82(4):239-259.
    • (1991) Acta Neuropathol. , vol.82 , Issue.4 , pp. 239-259
    • Braak, H.1    Braak, E.2
  • 10
    • 77954035720 scopus 로고    scopus 로고
    • The dynamics of Alzheimer's disease biomarkers in the Alzheimer's disease neuroimaging initiative cohort
    • Caroli A., Frisoni G., et al. The dynamics of Alzheimer's disease biomarkers in the Alzheimer's disease neuroimaging initiative cohort. Neurobiol. Aging 2010, 31(8):1263-1274.
    • (2010) Neurobiol. Aging , vol.31 , Issue.8 , pp. 1263-1274
    • Caroli, A.1    Frisoni, G.2
  • 12
    • 0037330921 scopus 로고    scopus 로고
    • Early diagnosis of Alzheimer's disease: contribution of structural neuroimaging
    • Chetelat G., Baron J. Early diagnosis of Alzheimer's disease: contribution of structural neuroimaging. Neuroimage 2003, 18(2):525-541.
    • (2003) Neuroimage , vol.18 , Issue.2 , pp. 525-541
    • Chetelat, G.1    Baron, J.2
  • 13
    • 0007234813 scopus 로고    scopus 로고
    • Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer's disease
    • Convit A., et al. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer's disease. Neurobiol. Aging 2000, 21(1):19-26.
    • (2000) Neurobiol. Aging , vol.21 , Issue.1 , pp. 19-26
    • Convit, A.1
  • 14
    • 67749130881 scopus 로고    scopus 로고
    • Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index
    • Davatzikos C., Xu F., An Y., Fan Y., Resnick S. Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain 2009, 132(8):2026.
    • (2009) Brain , vol.132 , Issue.8 , pp. 2026
    • Davatzikos, C.1    Xu, F.2    An, Y.3    Fan, Y.4    Resnick, S.5
  • 15
    • 0032894121 scopus 로고    scopus 로고
    • The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease
    • Delacourte A., et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease. Neurology 1999, 52(6):1158.
    • (1999) Neurology , vol.52 , Issue.6 , pp. 1158
    • Delacourte, A.1
  • 16
    • 0035099794 scopus 로고    scopus 로고
    • A method for estimating progression rates in Alzheimer disease
    • Doody R., Massman P., Dunn J. A method for estimating progression rates in Alzheimer disease. Arch. Neurol. 2001, 58(3):449.
    • (2001) Arch. Neurol. , vol.58 , Issue.3 , pp. 449
    • Doody, R.1    Massman, P.2    Dunn, J.3
  • 18
    • 34447322271 scopus 로고    scopus 로고
    • Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria
    • Dubois B., et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007, 6(8):734-746.
    • (2007) Lancet Neurol. , vol.6 , Issue.8 , pp. 734-746
    • Dubois, B.1
  • 19
    • 67651020812 scopus 로고    scopus 로고
    • Relating one-year cognitive change in mild cognitive impairment to baseline MRI features
    • Duchesne S., Caroli A., Geroldi C., Collins D., Frisoni G. Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. Neuroimage 2009, 47(4):1363-1370.
    • (2009) Neuroimage , vol.47 , Issue.4 , pp. 1363-1370
    • Duchesne, S.1    Caroli, A.2    Geroldi, C.3    Collins, D.4    Frisoni, G.5
  • 20
    • 80051683088 scopus 로고    scopus 로고
    • Pathway-driven gene stability selection of two rheumatoid arthritis GWAS identifies and validates new susceptibility genes in receptor mediated signalling pathways
    • Eleftherohorinou H., Hoggart C., Wright V., Levin M., Coin L. Pathway-driven gene stability selection of two rheumatoid arthritis GWAS identifies and validates new susceptibility genes in receptor mediated signalling pathways. Hum. Mol. Genet. 2011, 20(17):3494-3506.
    • (2011) Hum. Mol. Genet. , vol.20 , Issue.17 , pp. 3494-3506
    • Eleftherohorinou, H.1    Hoggart, C.2    Wright, V.3    Levin, M.4    Coin, L.5
  • 21
    • 0037369964 scopus 로고    scopus 로고
    • A Tobit variance-component method for linkage analysis of censored trait data
    • Epstein M.P., Lin X., Boehnke M. A Tobit variance-component method for linkage analysis of censored trait data. Am. J. Hum. Genet. 2003, 72(3):611.
    • (2003) Am. J. Hum. Genet. , vol.72 , Issue.3 , pp. 611
    • Epstein, M.P.1    Lin, X.2    Boehnke, M.3
  • 23
    • 38749138463 scopus 로고    scopus 로고
    • MMSE scores correlate with local ventricular enlargement in the spectrum from cognitively normal to Alzheimer disease
    • Ferrarini L., et al. MMSE scores correlate with local ventricular enlargement in the spectrum from cognitively normal to Alzheimer disease. Neuroimage 2008, 39(4):1832-1838.
    • (2008) Neuroimage , vol.39 , Issue.4 , pp. 1832-1838
    • Ferrarini, L.1
  • 25
    • 0036904784 scopus 로고    scopus 로고
    • Detection of grey matter loss in mild Alzheimer's disease with voxel based morphometry
    • Frisoni G., et al. Detection of grey matter loss in mild Alzheimer's disease with voxel based morphometry. J. Neurol. Neurosurg. Psychiatry 2002, 73(6):657.
    • (2002) J. Neurol. Neurosurg. Psychiatry , vol.73 , Issue.6 , pp. 657
    • Frisoni, G.1
  • 27
    • 0028577742 scopus 로고
    • Stressful life events, gender, and substance use: an application of Tobit regression
    • Frone M.R., Cooper M.L., Russell M. Stressful life events, gender, and substance use: an application of Tobit regression. Psychol. Addict. Behav. 1994, 8(2):59.
    • (1994) Psychol. Addict. Behav. , vol.8 , Issue.2 , pp. 59
    • Frone, M.R.1    Cooper, M.L.2    Russell, M.3
  • 28
    • 73249121028 scopus 로고    scopus 로고
    • Disease progression model for cognitive deterioration from Alzheimer's Disease Neuroimaging Initiative database
    • Ito K., et al. Disease progression model for cognitive deterioration from Alzheimer's Disease Neuroimaging Initiative database. Alzheimers Dement. 2010, 6(1):39-53.
    • (2010) Alzheimers Dement. , vol.6 , Issue.1 , pp. 39-53
    • Ito, K.1
  • 31
  • 32
    • 0037293284 scopus 로고    scopus 로고
    • Neuroimaging and early diagnosis of Alzheimer disease: a look to the future
    • Jeffrey R.P., Coleman R.E., Doraiswamy P.M. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology 2003, 226:315-336.
    • (2003) Radiology , vol.226 , pp. 315-336
    • Jeffrey, R.P.1    Coleman, R.E.2    Doraiswamy, P.M.3
  • 33
    • 70449513127 scopus 로고    scopus 로고
    • Cortical thickness analysis to detect progressive mild cognitive impairment: a reference to Alzheimer's disease
    • Julkunen V., et al. Cortical thickness analysis to detect progressive mild cognitive impairment: a reference to Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 2009, 28(5):404-412.
    • (2009) Dement. Geriatr. Cogn. Disord. , vol.28 , Issue.5 , pp. 404-412
    • Julkunen, V.1
  • 34
    • 0022414054 scopus 로고
    • Diagnosis of Alzheimer's disease
    • Khachaturian Z. Diagnosis of Alzheimer's disease. Arch. Neurol. 1985, 42(11):1097.
    • (1985) Arch. Neurol. , vol.42 , Issue.11 , pp. 1097
    • Khachaturian, Z.1
  • 35
    • 25144511876 scopus 로고    scopus 로고
    • Visual assessment of atrophy on magnetic resonance imaging in the diagnosis of pathologically confirmed young-onset dementias
    • Likeman M., et al. Visual assessment of atrophy on magnetic resonance imaging in the diagnosis of pathologically confirmed young-onset dementias. Arch. Neurol. 2005, 62(9):1410.
    • (2005) Arch. Neurol. , vol.62 , Issue.9 , pp. 1410
    • Likeman, M.1
  • 38
    • 77956466951 scopus 로고    scopus 로고
    • Modeling outcomes with floor or ceiling effects: an introduction to the Tobit model
    • McBee M. Modeling outcomes with floor or ceiling effects: an introduction to the Tobit model. Gift. Child Q. 2010, 54(4):314-320.
    • (2010) Gift. Child Q. , vol.54 , Issue.4 , pp. 314-320
    • McBee, M.1
  • 40
    • 64949166661 scopus 로고    scopus 로고
    • Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment1
    • McEvoy L., et al. Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment1. Radiology 2009, 251(1):195.
    • (2009) Radiology , vol.251 , Issue.1 , pp. 195
    • McEvoy, L.1
  • 41
    • 0021271971 scopus 로고
    • Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease
    • McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984, 34:939-944.
    • (1984) Neurology , vol.34 , pp. 939-944
    • McKhann, G.1    Drachman, D.2    Folstein, M.3    Katzman, R.4    Price, D.5    Stadlan, E.6
  • 43
    • 58149386194 scopus 로고    scopus 로고
    • Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
    • Misra C., Fan Y., Davatzikos C. Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage 2009, 44(4):1415-1422.
    • (2009) Neuroimage , vol.44 , Issue.4 , pp. 1415-1422
    • Misra, C.1    Fan, Y.2    Davatzikos, C.3
  • 44
    • 77957299007 scopus 로고    scopus 로고
    • Six-month atrophy in MTL structures is associated with subsequent memory decline in elderly controls
    • Murphy E., Holland D., Donohue M., McEvoy L., Hagler D., Dale A., Brewer J., et al. Six-month atrophy in MTL structures is associated with subsequent memory decline in elderly controls. Neuroimage 2010, 53(4):1310-1317.
    • (2010) Neuroimage , vol.53 , Issue.4 , pp. 1310-1317
    • Murphy, E.1    Holland, D.2    Donohue, M.3    McEvoy, L.4    Hagler, D.5    Dale, A.6    Brewer, J.7
  • 48
    • 0039943513 scopus 로고
    • LSQR: an algorithm for sparse linear equations and sparse least squares
    • Paige C., Saunders M. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. (TOMS) 1982, 8(1):43-71.
    • (1982) ACM Trans. Math. Softw. (TOMS) , vol.8 , Issue.1 , pp. 43-71
    • Paige, C.1    Saunders, M.2
  • 51
    • 0021520020 scopus 로고
    • A new rating scale for Alzheimer's disease
    • Rosen W., Mohs R., Davis K. A new rating scale for Alzheimer's disease. Am. J. Psychiatry 1984, 141(11):1356.
    • (1984) Am. J. Psychiatry , vol.141 , Issue.11 , pp. 1356
    • Rosen, W.1    Mohs, R.2    Davis, K.3
  • 52
    • 84855282767 scopus 로고    scopus 로고
    • Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty
    • Ryali Z., Chen T., Supekar K., Menon V. Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty. Neuroimage 2012, 59(1):3852-3861.
    • (2012) Neuroimage , vol.59 , Issue.1 , pp. 3852-3861
    • Ryali, Z.1    Chen, T.2    Supekar, K.3    Menon, V.4
  • 55
    • 77952888499 scopus 로고    scopus 로고
    • Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
    • Stonnington C., Chu C., Klöppel S., Jack C., Ashburner J., Frackowiak R. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. Neuroimage 2010, 51(4):1405-1413.
    • (2010) Neuroimage , vol.51 , Issue.4 , pp. 1405-1413
    • Stonnington, C.1    Chu, C.2    Klöppel, S.3    Jack, C.4    Ashburner, J.5    Frackowiak, R.6
  • 56
    • 3242679076 scopus 로고    scopus 로고
    • Mapping hippocampal and ventricular change in Alzheimer disease
    • Thompson P., et al. Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage 2004, 22(4):1754-1766.
    • (2004) Neuroimage , vol.22 , Issue.4 , pp. 1754-1766
    • Thompson, P.1
  • 57
    • 0010687621 scopus 로고    scopus 로고
    • Clustering learning tasks and the selective cross-task transfer of knowledge
    • Thrun S., O'Sullivan J. Clustering learning tasks and the selective cross-task transfer of knowledge. Learning to learn 1998, 181-209.
    • (1998) Learning to learn , pp. 181-209
    • Thrun, S.1    O'Sullivan, J.2
  • 58
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 267-288.
    • (1996) J. R. Stat. Soc. Ser. B Methodol. , pp. 267-288
    • Tibshirani, R.1
  • 59
    • 19344364081 scopus 로고    scopus 로고
    • Test-retest reliable coefficients and 5-year change scores for the MMSE and 3MS
    • Tombaugh T. Test-retest reliable coefficients and 5-year change scores for the MMSE and 3MS. Arch. Clin. Neuropsychol. 2005, 20(4):485-503.
    • (2005) Arch. Clin. Neuropsychol. , vol.20 , Issue.4 , pp. 485-503
    • Tombaugh, T.1
  • 60
    • 68249111164 scopus 로고    scopus 로고
    • MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change
    • Vemuri P., et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 2009, 73(4):294.
    • (2009) Neurology , vol.73 , Issue.4 , pp. 294
    • Vemuri, P.1
  • 61
    • 84856108049 scopus 로고    scopus 로고
    • Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease
    • Vounou M., Janousova E., Wolz R., Stein J., Thompson P., Rueckert D., Montana G. Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease. Neuroimage 2012, 60(1):700-716.
    • (2012) Neuroimage , vol.60 , Issue.1 , pp. 700-716
    • Vounou, M.1    Janousova, E.2    Wolz, R.3    Stein, J.4    Thompson, P.5    Rueckert, D.6    Montana, G.7
  • 62
    • 76749120506 scopus 로고    scopus 로고
    • Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease
    • Walhovd K., et al. Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. Am. J. Neuroradiol. 2010, 31(2):347.
    • (2010) Am. J. Neuroradiol. , vol.31 , Issue.2 , pp. 347
    • Walhovd, K.1
  • 63
    • 84877779785 scopus 로고    scopus 로고
    • High-order multi-task feature learning to identify longitudinal phenotypic markers for Alzheimer's disease progression prediction
    • P. Bartlett, F. Pereira, C. Burges, L. Bottou, K. Weinberger (Eds.)
    • Wang H., Nie F., Huang H., Yan J., Kim S., Risacher S., Saykin A., Shen L. High-order multi-task feature learning to identify longitudinal phenotypic markers for Alzheimer's disease progression prediction. Advances in Neural Information Processing Systems 2012, 25:1286-1294. P. Bartlett, F. Pereira, C. Burges, L. Bottou, K. Weinberger (Eds.).
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 1286-1294
    • Wang, H.1    Nie, F.2    Huang, H.3    Yan, J.4    Kim, S.5    Risacher, S.6    Saykin, A.7    Shen, L.8
  • 65
    • 33846487387 scopus 로고    scopus 로고
    • Multi-task learning for classification with dirichlet process priors
    • Xue Y., Liao X., Carin L., Krishnapuram B. Multi-task learning for classification with dirichlet process priors. J. Mach. Learn. Res. 2007, 8:35-63.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 35-63
    • Xue, Y.1    Liao, X.2    Carin, L.3    Krishnapuram, B.4
  • 66
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M., Lin Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2006, 68(1):49-67.
    • (2006) J. R. Stat. Soc. Ser. B (Stat. Methodol.) , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 67
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
    • Zhang D., Shen D. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. Neuroimage 2011, 59(2):895-907.
    • (2011) Neuroimage , vol.59 , Issue.2 , pp. 895-907
    • Zhang, D.1    Shen, D.2
  • 68
    • 84863351725 scopus 로고    scopus 로고
    • Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
    • Zhang D., Shen D. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS One 2012, 7(3):e33182.
    • (2012) PLoS One , vol.7 , Issue.3
    • Zhang, D.1    Shen, D.2
  • 70
    • 85162400077 scopus 로고    scopus 로고
    • Clustered multi-task learning via alternating structure optimization
    • Zhou J., Chen J., Ye J. Clustered multi-task learning via alternating structure optimization. Adv. Neural Inf. Process. Syst. 2011, 24:702-710.
    • (2011) Adv. Neural Inf. Process. Syst. , vol.24 , pp. 702-710
    • Zhou, J.1    Chen, J.2    Ye, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.