메뉴 건너뛰기




Volumn 126, Issue 11, 2016, Pages 4372-4386

ChREBP regulates fructose-induced glucose production independently of insulin signaling

Author keywords

[No Author keywords available]

Indexed keywords

BINDING PROTEIN; CARBOHYDRATE RESPONSIVE ELEMENT BINDING PROTEIN; FRUCTOSE; GLUCOSE 6 PHOSPHATASE; HEXOSE PHOSPHATE; INSULIN; UNCLASSIFIED DRUG; BASIC HELIX LOOP HELIX LEUCINE ZIPPER TRANSCRIPTION FACTOR; FOXO1 PROTEIN, HUMAN; FOXO1 PROTEIN, MOUSE; GLUCOSE; MLXIPL PROTEIN, HUMAN; MLXIPL PROTEIN, MOUSE; NUCLEAR PROTEIN; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR FKHR;

EID: 84994666911     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI81993     Document Type: Article
Times cited : (156)

References (68)
  • 1
    • 0037116641 scopus 로고    scopus 로고
    • Prevalence of the metabolic syndrome among US adults: Findings from the third National Health and Nutrition Examination Survey
    • Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287(3):356-359
    • (2002) JAMA , vol.287 , Issue.3 , pp. 356-359
    • Ford, E.S.1    Giles, W.H.2    Dietz, W.H.3
  • 2
    • 38649116056 scopus 로고    scopus 로고
    • Selective versus total insulin resistance: A pathogenic paradox
    • Brown MS, Goldstein JL. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 2008;7(2):95-96
    • (2008) Cell Metab , vol.7 , Issue.2 , pp. 95-96
    • Brown, M.S.1    Goldstein, J.L.2
  • 3
    • 0033636780 scopus 로고    scopus 로고
    • Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice
    • Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell. 2000;6(1):77-86
    • (2000) Mol Cell , vol.6 , Issue.1 , pp. 77-86
    • Shimomura, I.1    Matsuda, M.2    Hammer, R.E.3    Bashmakov, Y.4    Brown, M.S.5    Goldstein, J.L.6
  • 4
    • 84882245596 scopus 로고    scopus 로고
    • Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability
    • Pajvani UB, Qiang L, Kangsamaksin T, Kitajewski J, Ginsberg HN, Accili D. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nat Med. 2013;19(8):1054-1060
    • (2013) Nat Med , vol.19 , Issue.8 , pp. 1054-1060
    • Pajvani, U.B.1    Qiang, L.2    Kangsamaksin, T.3    Kitajewski, J.4    Ginsberg, H.N.5    Accili, D.6
  • 5
    • 77649264504 scopus 로고    scopus 로고
    • Bifurcation of insulin signaling pathway in rat liver: MTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis
    • Li S, Brown MS, Goldstein JL. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci U S A. 2010;107(8):3441-3446
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.8 , pp. 3441-3446
    • Li, S.1    Brown, M.S.2    Goldstein, J.L.3
  • 6
    • 14644426519 scopus 로고    scopus 로고
    • Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism
    • Taniguchi CM, Ueki K, Kahn R. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Invest. 2005;115(3):718-727
    • (2005) J Clin Invest , vol.115 , Issue.3 , pp. 718-727
    • Taniguchi, C.M.1    Ueki, K.2    Kahn, R.3
  • 7
    • 3543029821 scopus 로고    scopus 로고
    • Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease
    • Samuel VT, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345-32353
    • (2004) J Biol Chem , vol.279 , Issue.31 , pp. 32345-32353
    • Samuel, V.T.1
  • 8
    • 84922709227 scopus 로고    scopus 로고
    • Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes
    • Perry RJ, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160(4):745-758
    • (2015) Cell , vol.160 , Issue.4 , pp. 745-758
    • Perry, R.J.1
  • 9
    • 84969951733 scopus 로고    scopus 로고
    • Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production
    • Titchenell PM, et al. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab. 2016;23(6):1154-1166
    • (2016) Cell Metab , vol.23 , Issue.6 , pp. 1154-1166
    • Titchenell, P.M.1
  • 10
    • 0029969117 scopus 로고    scopus 로고
    • A comparison of the effects of selective increases in peripheral or portal insulin on hepatic glucose production in the conscious dog
    • Sindelar DK, Balcom JH, Chu CA, Neal DW, Cherrington AD. A comparison of the effects of selective increases in peripheral or portal insulin on hepatic glucose production in the conscious dog. Diabetes. 1996;45(11):1594-1604
    • (1996) Diabetes , vol.45 , Issue.11 , pp. 1594-1604
    • Sindelar, D.K.1    Balcom, J.H.2    Chu, C.A.3    Neal, D.W.4    Cherrington, A.D.5
  • 11
    • 32444434587 scopus 로고    scopus 로고
    • Insulin's direct effects on the liver dominate the control of hepatic glucose production
    • Edgerton DS, et al. Insulin's direct effects on the liver dominate the control of hepatic glucose production. J Clin Invest. 2006;116(2):521-527
    • (2006) J Clin Invest , vol.116 , Issue.2 , pp. 521-527
    • Edgerton, D.S.1
  • 12
    • 67749142348 scopus 로고    scopus 로고
    • Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes
    • Samuel VT, et al. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes. Proc Natl Acad Sci U S A. 2009;106(29):12121-12126
    • (2009) Proc Natl Acad Sci U S A , vol.106 , Issue.29 , pp. 12121-12126
    • Samuel, V.T.1
  • 13
    • 0037216466 scopus 로고    scopus 로고
    • Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets
    • Schwarz JM, Linfoot P, Dare D, Aghajanian K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr. 2003;77(1):43-50
    • (2003) Am J Clin Nutr , vol.77 , Issue.1 , pp. 43-50
    • Schwarz, J.M.1    Linfoot, P.2    Dare, D.3    Aghajanian, K.4
  • 14
    • 18244382304 scopus 로고    scopus 로고
    • Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease
    • Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343-1351
    • (2005) J Clin Invest , vol.115 , Issue.5 , pp. 1343-1351
    • Donnelly, K.L.1    Smith, C.I.2    Schwarzenberg, S.J.3    Jessurun, J.4    Boldt, M.D.5    Parks, E.J.6
  • 15
    • 0032553323 scopus 로고    scopus 로고
    • Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats
    • Trinh KY, O'Doherty RM, Anderson P, Lange AJ, Newgard CB. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats. J Biol Chem. 1998;273(47):31615-31620
    • (1998) J Biol Chem , vol.273 , Issue.47 , pp. 31615-31620
    • Trinh, K.Y.1    O'Doherty, R.M.2    Anderson, P.3    Lange, A.J.4    Newgard, C.B.5
  • 16
    • 84921818351 scopus 로고    scopus 로고
    • Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids
    • Vatner DF, et al. Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci U S A. 2015;112(4):1143-1148
    • (2015) Proc Natl Acad Sci U S A , vol.112 , Issue.4 , pp. 1143-1148
    • Vatner, D.F.1
  • 17
    • 84872679540 scopus 로고    scopus 로고
    • High-carbohydrate diets induce hepatic insulin resistance to protect the liver from substrate overload
    • Agius L. High-carbohydrate diets induce hepatic insulin resistance to protect the liver from substrate overload. Biochem Pharmacol. 2013;85(3):306-312
    • (2013) Biochem Pharmacol , vol.85 , Issue.3 , pp. 306-312
    • Agius, L.1
  • 18
    • 84905381985 scopus 로고    scopus 로고
    • Pathway-selective insulin resistance and metabolic disease: The importance of nutrient flux
    • Otero YF, Stafford JM, McGuinness OP. Pathway-selective insulin resistance and metabolic disease: the importance of nutrient flux. J Biol Chem. 2014;289(30):20462-20469
    • (2014) J Biol Chem , vol.289 , Issue.30 , pp. 20462-20469
    • Otero, Y.F.1    Stafford, J.M.2    McGuinness, O.P.3
  • 19
    • 84862023939 scopus 로고    scopus 로고
    • Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression
    • Haas JT, et al. Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab. 2012;15(6):873-884
    • (2012) Cell Metab , vol.15 , Issue.6 , pp. 873-884
    • Haas, J.T.1
  • 20
    • 15244358817 scopus 로고    scopus 로고
    • GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization
    • Kotani K, Peroni OD, Minokoshi Y, Boss O, Kahn BB. GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization. J Clin Invest. 2004;114(11):1666-1675
    • (2004) J Clin Invest , vol.114 , Issue.11 , pp. 1666-1675
    • Kotani, K.1    Peroni, O.D.2    Minokoshi, Y.3    Boss, O.4    Kahn, B.B.5
  • 21
    • 33749370739 scopus 로고    scopus 로고
    • Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice
    • Dentin R, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 2006;55(8):2159-2170
    • (2006) Diabetes , vol.55 , Issue.8 , pp. 2159-2170
    • Dentin, R.1
  • 22
    • 2442435802 scopus 로고    scopus 로고
    • Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis
    • Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A. 2004;101(19):7281-7286
    • (2004) Proc Natl Acad Sci U S A , vol.101 , Issue.19 , pp. 7281-7286
    • Iizuka, K.1    Bruick, R.K.2    Liang, G.3    Horton, J.D.4    Uyeda, K.5
  • 23
    • 84858327557 scopus 로고    scopus 로고
    • Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes
    • Arden C, et al. Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes. Biochem J. 2012;443(1):111-123
    • (2012) Biochem J , vol.443 , Issue.1 , pp. 111-123
    • Arden, C.1
  • 24
    • 33749407193 scopus 로고    scopus 로고
    • ChREBP Mlx is the principal mediator of glucose-induced gene expression in the liver
    • Ma L, Robinson LN, Towle HC. ChREBP Mlx is the principal mediator of glucose-induced gene expression in the liver. J Biol Chem. 2006;281(39):28721-28730
    • (2006) J Biol Chem , vol.281 , Issue.39 , pp. 28721-28730
    • Ma, L.1    Robinson, L.N.2    Towle, H.C.3
  • 25
    • 33745896223 scopus 로고    scopus 로고
    • Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice
    • Iizuka K, Miller B, Uyeda K. Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice. Am J Physiol Endocrinol Metab. 2006;291(2):E358-E364
    • (2006) Am J Physiol Endocrinol Metab , vol.291 , Issue.2 , pp. E358-E364
    • Iizuka, K.1    Miller, B.2    Uyeda, K.3
  • 26
    • 78049514311 scopus 로고    scopus 로고
    • Sex differences in lipid and glucose kinetics after ingestion of an acute oral fructose load
    • Tran C, et al. Sex differences in lipid and glucose kinetics after ingestion of an acute oral fructose load. Br J Nutr. 2010;104(8):1139-1147
    • (2010) Br J Nutr , vol.104 , Issue.8 , pp. 1139-1147
    • Tran, C.1
  • 27
    • 0021503277 scopus 로고
    • Metabolic effects of oral fructose in the liver of fasted rats
    • Niewoehner CB, Gilboe DP, Nuttall GA, Nuttall FQ. Metabolic effects of oral fructose in the liver of fasted rats. Am J Physiol. 1984;247(4 Pt 1):E505-E512
    • (1984) Am J Physiol , vol.247 , Issue.4 , pp. E505-E512
    • Niewoehner, C.B.1    Gilboe, D.P.2    Nuttall, G.A.3    Nuttall, F.Q.4
  • 28
    • 78650920491 scopus 로고    scopus 로고
    • Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis
    • Malik VS, Popkin BM, Bray GA, Després JP, Willett WC, Hu FB. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care. 2010;33(11):2477-2483
    • (2010) Diabetes Care , vol.33 , Issue.11 , pp. 2477-2483
    • Malik, V.S.1    Popkin, B.M.2    Bray, G.A.3    Després, J.P.4    Willett, W.C.5    Hu, F.B.6
  • 29
    • 66449093225 scopus 로고    scopus 로고
    • Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans
    • Stanhope KL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322-1334
    • (2009) J Clin Invest , vol.119 , Issue.5 , pp. 1322-1334
    • Stanhope, K.L.1
  • 31
    • 84930809200 scopus 로고    scopus 로고
    • Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat
    • Schwarz JM, et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J Clin Endocrinol Metab. 2015;100(6):2434-2442
    • (2015) J Clin Endocrinol Metab , vol.100 , Issue.6 , pp. 2434-2442
    • Schwarz, J.M.1
  • 32
    • 84871709488 scopus 로고    scopus 로고
    • The role of the carbohydrate response element-binding protein in Male fructose-fed rats
    • Erion DM, et al. The role of the carbohydrate response element-binding protein in male fructose-fed rats. Endocrinology. 2013;154(1):36-44
    • (2013) Endocrinology , vol.154 , Issue.1 , pp. 36-44
    • Erion, D.M.1
  • 33
    • 42749092583 scopus 로고    scopus 로고
    • Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver
    • Koo HY, Wallig MA, Chung BH, Nara TY, Cho BH, Nakamura MT. Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochim Biophys Acta. 2008;1782(5):341-348
    • (2008) Biochim Biophys Acta , vol.1782 , Issue.5 , pp. 341-348
    • Koo, H.Y.1    Wallig, M.A.2    Chung, B.H.3    Nara, T.Y.4    Cho, B.H.5    Nakamura, M.T.6
  • 34
    • 84952912438 scopus 로고    scopus 로고
    • Tissue specific effects of dietary carbohydrates and obesity on ChREBPα and ChREBPβ expression
    • Stamatikos AD, et al. Tissue specific effects of dietary carbohydrates and obesity on ChREBPα and ChREBPβ expression. Lipids. 2016;51(1):95-104
    • (2016) Lipids , vol.51 , Issue.1 , pp. 95-104
    • Stamatikos, A.D.1
  • 35
    • 58949094416 scopus 로고    scopus 로고
    • Atorvastatin prevents carbohydrate response element binding protein activation in the fructose-fed rat by activating protein kinase A
    • Rodríguez-Calvo R, et al. Atorvastatin prevents carbohydrate response element binding protein activation in the fructose-fed rat by activating protein kinase A. Hepatology. 2009;49(1):106-115
    • (2009) Hepatology , vol.49 , Issue.1 , pp. 106-115
    • Rodríguez-Calvo, R.1
  • 36
    • 84859921736 scopus 로고    scopus 로고
    • A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
    • Herman MA, et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature. 2012;484(7394):333-338
    • (2012) Nature , vol.484 , Issue.7394 , pp. 333-338
    • Herman, M.A.1
  • 37
    • 0036251153 scopus 로고    scopus 로고
    • SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver
    • Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125-1131
    • (2002) J Clin Invest , vol.109 , Issue.9 , pp. 1125-1131
    • Horton, J.D.1    Goldstein, J.L.2    Brown, M.S.3
  • 38
    • 0028962776 scopus 로고
    • A noninvasive method to measure splanchnic glucose uptake after oral glucose administration
    • Ludvik B, et al. A noninvasive method to measure splanchnic glucose uptake after oral glucose administration. J Clin Invest. 1995;95(5):2232-2238
    • (1995) J Clin Invest , vol.95 , Issue.5 , pp. 2232-2238
    • Ludvik, B.1
  • 39
    • 49649099805 scopus 로고    scopus 로고
    • Glucokinase and molecular aspects of liver glycogen metabolism
    • Agius L. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J. 2008;414(1):1-18
    • (2008) Biochem J , vol.414 , Issue.1 , pp. 1-18
    • Agius, L.1
  • 40
    • 79958266213 scopus 로고    scopus 로고
    • Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors
    • Poupeau A, Postic C. Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochim Biophys Acta. 2011;1812(8):995-1006
    • (2011) Biochim Biophys Acta , vol.1812 , Issue.8 , pp. 995-1006
    • Poupeau, A.1    Postic, C.2
  • 41
    • 0035923516 scopus 로고    scopus 로고
    • Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/ dephosphorylation of the carbohydrate response element binding protein
    • Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/ dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci U S A. 2001;98(24):13710-13715
    • (2001) Proc Natl Acad Sci U S A , vol.98 , Issue.24 , pp. 13710-13715
    • Kawaguchi, T.1    Takenoshita, M.2    Kabashima, T.3    Uyeda, K.4
  • 42
    • 73449089383 scopus 로고    scopus 로고
    • Coordinate regulation/localization of the carbohydrate responsive binding protein (ChREBP) by two nuclear export signal sites: Discovery of a new leucine-rich nuclear export signal site
    • Fukasawa M, Ge Q, Wynn RM, Ishii S, Uyeda K. Coordinate regulation/localization of the carbohydrate responsive binding protein (ChREBP) by two nuclear export signal sites: discovery of a new leucine-rich nuclear export signal site. Biochem Biophys Res Commun. 2010;391(2):1166-1169
    • (2010) Biochem Biophys Res Commun , vol.391 , Issue.2 , pp. 1166-1169
    • Fukasawa, M.1    Ge, Q.2    Wynn, R.M.3    Ishii, S.4    Uyeda, K.5
  • 43
    • 84861809881 scopus 로고    scopus 로고
    • The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans
    • Benhamed F, et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest. 2012;122(6):2176-2194
    • (2012) J Clin Invest , vol.122 , Issue.6 , pp. 2176-2194
    • Benhamed, F.1
  • 44
    • 53049106773 scopus 로고    scopus 로고
    • Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity
    • Davies MN, O'Callaghan BL, Towle HC. Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity. J Biol Chem. 2008;283(35):24029-24038
    • (2008) J Biol Chem , vol.283 , Issue.35 , pp. 24029-24038
    • Davies, M.N.1    O'Callaghan, B.L.2    Towle, H.C.3
  • 45
    • 46349101190 scopus 로고    scopus 로고
    • Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14-3-3
    • Li MV, Chen W, Poungvarin N, Imamura M, Chan L. Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14-3-3. Mol Endocrinol. 2008;22(7):1658-1672
    • (2008) Mol Endocrinol , vol.22 , Issue.7 , pp. 1658-1672
    • Li, M.V.1    Chen, W.2    Poungvarin, N.3    Imamura, M.4    Chan, L.5
  • 46
    • 84863115976 scopus 로고    scopus 로고
    • Discovery of (S)-6-(3-cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl) propanamido)nicotinic acid as a hepatoselective glucokinase activator clinical candidate for treating type 2 diabetes mellitus
    • Pfefferkorn JA, et al. Discovery of (S)-6-(3-cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl) propanamido)nicotinic acid as a hepatoselective glucokinase activator clinical candidate for treating type 2 diabetes mellitus. J Med Chem. 2012;55(3):1318-1333
    • (2012) J Med Chem , vol.55 , Issue.3 , pp. 1318-1333
    • Pfefferkorn, J.A.1
  • 47
    • 83555160898 scopus 로고    scopus 로고
    • Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver
    • Dentin R, et al. Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J Hepatol. 2012;56(1):199-209
    • (2012) J Hepatol , vol.56 , Issue.1 , pp. 199-209
    • Dentin, R.1
  • 48
    • 0035185021 scopus 로고    scopus 로고
    • The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression
    • Nakae J, Kitamura T, Silver DL, Accili D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 2001;108(9):1359-1367
    • (2001) J Clin Invest , vol.108 , Issue.9 , pp. 1359-1367
    • Nakae, J.1    Kitamura, T.2    Silver, D.L.3    Accili, D.4
  • 49
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
    • Puigserver P, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003;423(6939):550-555
    • (2003) Nature , vol.423 , Issue.6939 , pp. 550-555
    • Puigserver, P.1
  • 50
    • 34548349302 scopus 로고    scopus 로고
    • Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver
    • Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 2007;6(3):208-216
    • (2007) Cell Metab , vol.6 , Issue.3 , pp. 208-216
    • Matsumoto, M.1    Pocai, A.2    Rossetti, L.3    Depinho, R.A.4    Accili, D.5
  • 51
    • 38649084407 scopus 로고    scopus 로고
    • Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides
    • Kooner JS, et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet. 2008;40(2):149-151
    • (2008) Nat Genet , vol.40 , Issue.2 , pp. 149-151
    • Kooner, J.S.1
  • 52
    • 78751519853 scopus 로고    scopus 로고
    • Genetic determinants of plasma triglycerides
    • Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res. 2011;52(2):189-206
    • (2011) J Lipid Res , vol.52 , Issue.2 , pp. 189-206
    • Johansen, C.T.1    Kathiresan, S.2    Hegele, R.A.3
  • 53
    • 33746536677 scopus 로고    scopus 로고
    • Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis
    • Uyeda K, Repa JJ. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 2006;4(2):107-110
    • (2006) Cell Metab , vol.4 , Issue.2 , pp. 107-110
    • Uyeda, K.1    Repa, J.J.2
  • 54
    • 0028338590 scopus 로고
    • Short-term control of glucokinase activity: Role of a regulatory protein
    • Van Schaftingen E, Detheux M, Veiga Cunha M. Short-term control of glucokinase activity: role of a regulatory protein. FASEB J. 1994;8(6):414-419
    • (1994) FASEB J , vol.8 , Issue.6 , pp. 414-419
    • Van Schaftingen, E.1    Detheux, M.2    Veiga Cunha, M.3
  • 55
    • 0024543929 scopus 로고
    • A protein from rat liver confers to glucokinase the property of being antagonistically regulated by fructose 6-phosphate and fructose 1-phosphate
    • Van Schaftingen E. A protein from rat liver confers to glucokinase the property of being antagonistically regulated by fructose 6-phosphate and fructose 1-phosphate. Eur J Biochem. 1989;179(1):179-184
    • (1989) Eur J Biochem , vol.179 , Issue.1 , pp. 179-184
    • Van Schaftingen, E.1
  • 57
    • 84874600898 scopus 로고    scopus 로고
    • De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health
    • Eissing L, et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat Commun. 2013;4:1528
    • (2013) Nat Commun , vol.4 , pp. 1528
    • Eissing, L.1
  • 58
    • 84874428179 scopus 로고    scopus 로고
    • Decreased transcription of ChREBP-α/β isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: Associations with insulin resistance and hyperglycemia
    • Kursawe R, et al. Decreased transcription of ChREBP-α/β isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia. Diabetes. 2013;62(3):837-844
    • (2013) Diabetes , vol.62 , Issue.3 , pp. 837-844
    • Kursawe, R.1
  • 59
    • 79959962745 scopus 로고    scopus 로고
    • Hormonal regulation of hepatic glucose production in health and disease
    • Lin HV, Accili D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 2011;14(1):9-19
    • (2011) Cell Metab , vol.14 , Issue.1 , pp. 9-19
    • Lin, H.V.1    Accili, D.2
  • 60
    • 84891797370 scopus 로고    scopus 로고
    • Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis
    • Wilamowitz-Moellendorff A, et al. Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis. Diabetes. 2013;62(12):4070-4082
    • (2013) Diabetes , vol.62 , Issue.12 , pp. 4070-4082
    • Wilamowitz-Moellendorff, A.1
  • 61
    • 84904054218 scopus 로고    scopus 로고
    • FOXO1-mediated activation of Akt plays a critical role in vascular homeostasis
    • Dharaneeswaran H, et al. FOXO1-mediated activation of Akt plays a critical role in vascular homeostasis. Circ Res. 2014;115(2):238-251
    • (2014) Circ Res , vol.115 , Issue.2 , pp. 238-251
    • Dharaneeswaran, H.1
  • 62
    • 0023741493 scopus 로고
    • Micro-method for preparing perchloric extracts of blood
    • Humphreys SM, Frayn KN. Micro-method for preparing perchloric extracts of blood. Clin Chem. 1988;34(8):1657
    • (1988) Clin Chem , vol.34 , Issue.8 , pp. 1657
    • Humphreys, S.M.1    Frayn, K.N.2
  • 63
    • 63149156356 scopus 로고    scopus 로고
    • An enzymatic fluorimetric assay for glucose-6-phosphate: Application in an in vitro Warburg-like effect
    • Zhu A, Romero R, Petty HR. An enzymatic fluorimetric assay for glucose-6-phosphate: application in an in vitro Warburg-like effect. Anal Biochem. 2009;388(1):97-101
    • (2009) Anal Biochem , vol.388 , Issue.1 , pp. 97-101
    • Zhu, A.1    Romero, R.2    Petty, H.R.3
  • 64
    • 70449158340 scopus 로고
    • A simple method for the isolation and purification of total lipides from animal tissues
    • Folch J, Lees M, Sloane SGH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497-509
    • (1957) J Biol Chem , vol.226 , Issue.1 , pp. 497-509
    • Folch, J.1    Lees, M.2    Sloane, S.G.H.3
  • 65
    • 0023683758 scopus 로고
    • Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction
    • Alegre M, Ciudad CJ, Fillat C, Guinovart JJ. Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Anal Biochem. 1988;173(1):185-189
    • (1988) Anal Biochem , vol.173 , Issue.1 , pp. 185-189
    • Alegre, M.1    Ciudad, C.J.2    Fillat, C.3    Guinovart, J.J.4
  • 66
    • 84892660787 scopus 로고    scopus 로고
    • Novel mechanism of positive versus negative regulation by thyroid hormone receptor β1 (TRβ1) identified by genome-wide profiling of binding sites in mouse liver
    • Ramadoss P, et al. Novel mechanism of positive versus negative regulation by thyroid hormone receptor β1 (TRβ1) identified by genome-wide profiling of binding sites in mouse liver. J Biol Chem. 2014;289(3):1313-1328
    • (2014) J Biol Chem , vol.289 , Issue.3 , pp. 1313-1328
    • Ramadoss, P.1
  • 67
    • 73349137958 scopus 로고    scopus 로고
    • Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo
    • Kim JK. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. Methods Mol Biol. 2009;560:221-238
    • (2009) Methods Mol Biol , vol.560 , pp. 221-238
    • Kim, J.K.1
  • 68
    • 77952985821 scopus 로고    scopus 로고
    • Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites
    • Buescher JM, Moco S, Sauer U, Zamboni N. Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem. 2010;82(11):4403-4412
    • (2010) Anal Chem , vol.82 , Issue.11 , pp. 4403-4412
    • Buescher, J.M.1    Moco, S.2    Sauer, U.3    Zamboni, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.