메뉴 건너뛰기




Volumn 126, Issue 11, 2016, Pages 4205-4218

Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy

Author keywords

[No Author keywords available]

Indexed keywords

LONG UNTRANSLATED RNA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; TAURINE UPREGULATED GENE 1; UNCLASSIFIED DRUG; LONG NON-CODING RNA TUG1, MOUSE; PPARGC1A PROTEIN, MOUSE;

EID: 84994608640     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI87927     Document Type: Article
Times cited : (327)

References (68)
  • 1
    • 84865757142 scopus 로고    scopus 로고
    • Landscape of transcription in human cells
    • Djebali S, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101-108
    • (2012) Nature , vol.489 , Issue.7414 , pp. 101-108
    • Djebali, S.1
  • 2
    • 84946196880 scopus 로고    scopus 로고
    • The emerging role of lncRNAs in cancer
    • Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253-1261
    • (2015) Nat Med , vol.21 , Issue.11 , pp. 1253-1261
    • Huarte, M.1
  • 3
    • 84924134321 scopus 로고    scopus 로고
    • Long noncoding RNAs in cardiovascular diseases
    • Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116(4):737-750
    • (2015) Circ Res , vol.116 , Issue.4 , pp. 737-750
    • Uchida, S.1    Dimmeler, S.2
  • 4
    • 84949432853 scopus 로고    scopus 로고
    • Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution
    • Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron. 2015;88(5):861-877
    • (2015) Neuron , vol.88 , Issue.5 , pp. 861-877
    • Briggs, J.A.1    Wolvetang, E.J.2    Mattick, J.S.3    Rinn, J.L.4    Barry, G.5
  • 5
    • 84871069553 scopus 로고    scopus 로고
    • Epigenetic regulation by long noncoding RNAs
    • Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435-1439
    • (2012) Science , vol.338 , Issue.6113 , pp. 1435-1439
    • Lee, J.T.1
  • 6
    • 84861904178 scopus 로고    scopus 로고
    • Genome regulation by long noncoding RNAs
    • Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145-166
    • (2012) Annu Rev Biochem , vol.81 , pp. 145-166
    • Rinn, J.L.1    Chang, H.Y.2
  • 7
    • 84994611318 scopus 로고    scopus 로고
    • (November 2015) Accessed August 23
    • United States Renal Data System. U.S. Renal Data System Report (November 2015). National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases. https://www. niddk.nih.gov/about-niddk/strategic-plans-reports/ Pages/US-renal-data-system-report.aspx. Accessed August 23, 2016
    • (2016) United States Renal Data System. U.S. Renal Data System Report
  • 8
    • 84887466140 scopus 로고    scopus 로고
    • AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function
    • Dugan LL, et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest. 2013;123(11):4888-4899
    • (2013) J Clin Invest , vol.123 , Issue.11 , pp. 4888-4899
    • Dugan, L.L.1
  • 9
    • 84925284486 scopus 로고    scopus 로고
    • Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development
    • Kang HM, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37-46
    • (2015) Nat Med , vol.21 , Issue.1 , pp. 37-46
    • Kang, H.M.1
  • 10
    • 79952339999 scopus 로고    scopus 로고
    • Mitochondrial biogenesis in kidney disease
    • Weinberg JM. Mitochondrial biogenesis in kidney disease. J Am Soc Nephrol. 2011;22(3):431-436
    • (2011) J Am Soc Nephrol , vol.22 , Issue.3 , pp. 431-436
    • Weinberg, J.M.1
  • 11
    • 84887108045 scopus 로고    scopus 로고
    • Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease
    • Sharma K, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901-1912
    • (2013) J Am Soc Nephrol , vol.24 , Issue.11 , pp. 1901-1912
    • Sharma, K.1
  • 12
    • 84929492282 scopus 로고    scopus 로고
    • Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling
    • Guo K, et al. Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS One. 2015;10(4):e0125176
    • (2015) PLoS One , vol.10 , Issue.4 , pp. e0125176
    • Guo, K.1
  • 13
    • 67651159365 scopus 로고    scopus 로고
    • Transcriptional control of mitochondrial biogenesis and function
    • Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol. 2009;71:177-203
    • (2009) Annu Rev Physiol , vol.71 , pp. 177-203
    • Hock, M.B.1    Kralli, A.2
  • 14
    • 24144463983 scopus 로고    scopus 로고
    • Metabolic control through the PGC-1 family of transcription coactivators
    • Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361-370
    • (2005) Cell Metab , vol.1 , Issue.6 , pp. 361-370
    • Lin, J.1    Handschin, C.2    Spiegelman, B.M.3
  • 15
    • 22144434964 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle
    • Arany Z, et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1(4):259-271
    • (2005) Cell Metab , vol.1 , Issue.4 , pp. 259-271
    • Arany, Z.1
  • 16
    • 5344252327 scopus 로고    scopus 로고
    • Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
    • Lin J, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 2004;119(1):121-135
    • (2004) Cell , vol.119 , Issue.1 , pp. 121-135
    • Lin, J.1
  • 17
    • 21144446106 scopus 로고    scopus 로고
    • PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
    • Leone TC, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3(4):e101
    • (2005) PLoS Biol , vol.3 , Issue.4 , pp. e101
    • Leone, T.C.1
  • 18
    • 36048931015 scopus 로고    scopus 로고
    • Abnormal glucose homeostasis in skeletal muscle-specific PGC-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk
    • Handschin C, et al. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. J Clin Invest. 2007;117(11):3463-3474
    • (2007) J Clin Invest , vol.117 , Issue.11 , pp. 3463-3474
    • Handschin, C.1
  • 19
    • 0033803048 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis
    • Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000;106(7):847-856
    • (2000) J Clin Invest , vol.106 , Issue.7 , pp. 847-856
    • Lehman, J.J.1    Barger, P.M.2    Kovacs, A.3    Saffitz, J.E.4    Medeiros, D.M.5    Kelly, D.P.6
  • 20
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
    • Lin J, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418(6899):797-801
    • (2002) Nature , vol.418 , Issue.6899 , pp. 797-801
    • Lin, J.1
  • 21
    • 33845674997 scopus 로고    scopus 로고
    • The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle
    • Arany Z, et al. The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 2007;5(1):35-46
    • (2007) Cell Metab , vol.5 , Issue.1 , pp. 35-46
    • Arany, Z.1
  • 22
    • 0038810035 scopus 로고    scopus 로고
    • An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle
    • Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A. 2003;100(12):7111-7116
    • (2003) Proc Natl Acad Sci U S A , vol.100 , Issue.12 , pp. 7111-7116
    • Handschin, C.1    Rhee, J.2    Lin, J.3    Tarr, P.T.4    Spiegelman, B.M.5
  • 23
    • 33646782581 scopus 로고    scopus 로고
    • Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: An autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation
    • Hondares E, et al. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology. 2006;147(6):2829-2838
    • (2006) Endocrinology , vol.147 , Issue.6 , pp. 2829-2838
    • Hondares, E.1
  • 24
    • 84870921992 scopus 로고    scopus 로고
    • A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy
    • Ruas JL, et al. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell. 2012;151(6):1319-1331
    • (2012) Cell , vol.151 , Issue.6 , pp. 1319-1331
    • Ruas, J.L.1
  • 26
    • 67650921949 scopus 로고    scopus 로고
    • Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression
    • Khalil AM, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667-11672
    • (2009) Proc Natl Acad Sci U S A , vol.106 , Issue.28 , pp. 11667-11672
    • Khalil, A.M.1
  • 27
    • 81055140863 scopus 로고    scopus 로고
    • NcRNA-and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs
    • Yang L, et al. ncRNA-and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell. 2011;147(4):773-788
    • (2011) Cell , vol.147 , Issue.4 , pp. 773-788
    • Yang, L.1
  • 28
    • 0037477855 scopus 로고    scopus 로고
    • Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
    • Patti ME, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100(14):8466-8471
    • (2003) Proc Natl Acad Sci U S A , vol.100 , Issue.14 , pp. 8466-8471
    • Patti, M.E.1
  • 29
    • 0038054341 scopus 로고    scopus 로고
    • PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
    • Mootha VK, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267-273
    • (2003) Nat Genet , vol.34 , Issue.3 , pp. 267-273
    • Mootha, V.K.1
  • 30
    • 80054756754 scopus 로고    scopus 로고
    • Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions
    • Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell. 2011;44(4):667-678
    • (2011) Mol Cell , vol.44 , Issue.4 , pp. 667-678
    • Chu, C.1    Qu, K.2    Zhong, F.L.3    Artandi, S.E.4    Chang, H.Y.5
  • 31
    • 53849146020 scopus 로고    scopus 로고
    • Model-based analysis of ChIP-Seq (MACS)
    • Zhang Y, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137
    • (2008) Genome Biol , vol.9 , Issue.9 , pp. R137
    • Zhang, Y.1
  • 32
    • 84908204795 scopus 로고    scopus 로고
    • The structure, function and evolution of proteins that bind DNA and RNA
    • Hudson WH, Ortlund EA. The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Biol. 2014;15(11):749-760
    • (2014) Nat Rev Mol Cell Biol , vol.15 , Issue.11 , pp. 749-760
    • Hudson, W.H.1    Ortlund, E.A.2
  • 33
    • 14744290800 scopus 로고    scopus 로고
    • RS domains contact the pre-mRNA throughout spliceosome assembly
    • Hertel KJ, Graveley BR. RS domains contact the pre-mRNA throughout spliceosome assembly. Trends Biochem Sci. 2005;30(3):115-118
    • (2005) Trends Biochem Sci , vol.30 , Issue.3 , pp. 115-118
    • Hertel, K.J.1    Graveley, B.R.2
  • 34
    • 33644660537 scopus 로고    scopus 로고
    • PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease
    • Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116(3):615-622
    • (2006) J Clin Invest , vol.116 , Issue.3 , pp. 615-622
    • Finck, B.N.1    Kelly, D.P.2
  • 35
    • 33845596500 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism
    • Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 2006;27(7):728-735
    • (2006) Endocr Rev , vol.27 , Issue.7 , pp. 728-735
    • Handschin, C.1    Spiegelman, B.M.2
  • 36
    • 0033638283 scopus 로고    scopus 로고
    • Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1
    • Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell. 2000;6(2):307-316
    • (2000) Mol Cell , vol.6 , Issue.2 , pp. 307-316
    • Monsalve, M.1    Wu, Z.2    Adelmant, G.3    Puigserver, P.4    Fan, M.5    Spiegelman, B.M.6
  • 37
    • 0344413490 scopus 로고    scopus 로고
    • Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha
    • Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol Cell. 2003;12(5):1137-1149
    • (2003) Mol Cell , vol.12 , Issue.5 , pp. 1137-1149
    • Wallberg, A.E.1    Yamamura, S.2    Malik, S.3    Spiegelman, B.M.4    Roeder, R.G.5
  • 38
    • 84863023552 scopus 로고    scopus 로고
    • Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells
    • Wang W, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 2012;15(2):186-200
    • (2012) Cell Metab , vol.15 , Issue.2 , pp. 186-200
    • Wang, W.1
  • 39
    • 0035856980 scopus 로고    scopus 로고
    • Biochemistry and molecular cell biology of diabetic complications
    • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813-820
    • (2001) Nature , vol.414 , Issue.6865 , pp. 813-820
    • Brownlee, M.1
  • 40
    • 84863116324 scopus 로고    scopus 로고
    • MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways
    • Chau BN, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012;4(121):121ra18
    • (2012) Sci Transl Med , vol.4 , Issue.121 , pp. 121ra18
    • Chau, B.N.1
  • 41
    • 85015621502 scopus 로고    scopus 로고
    • Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy [published online ahead of print January 29, 2016]
    • Ayanga BA, et al. Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy [published online ahead of print January 29, 2016]. J Am Soc Nephrol. doi: 10.1681/ ASN.2015101096
    • J Am Soc Nephrol
    • Ayanga, B.A.1
  • 42
    • 84900387354 scopus 로고    scopus 로고
    • Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1α in db/db mice
    • Hong YA, et al. Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1α in db/db mice. PLoS One. 2014;9(5):e96147
    • (2014) PLoS One , vol.9 , Issue.5 , pp. e96147
    • Hong, Y.A.1
  • 43
    • 84938213275 scopus 로고    scopus 로고
    • Activation of FoxO1/ PGC-1α prevents mitochondrial dysfunction and ameliorates mesangial cell injury in diabetic rats
    • Wu L, et al. Activation of FoxO1/ PGC-1α prevents mitochondrial dysfunction and ameliorates mesangial cell injury in diabetic rats. Mol Cell Endocrinol. 2015;413:1-12
    • (2015) Mol Cell Endocrinol , vol.413 , pp. 1-12
    • Wu, L.1
  • 44
    • 84897845228 scopus 로고    scopus 로고
    • Rap1 ameliorates renal tubular injury in diabetic nephropathy
    • Xiao L, et al. Rap1 ameliorates renal tubular injury in diabetic nephropathy. Diabetes. 2014;63(4):1366-1380
    • (2014) Diabetes , vol.63 , Issue.4 , pp. 1366-1380
    • Xiao, L.1
  • 45
    • 84866377470 scopus 로고    scopus 로고
    • Activation of peroxisome proliferator-activated receptor-γ coactivator 1α ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury
    • Yuan Y, et al. Activation of peroxisome proliferator-activated receptor-γ coactivator 1α ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury. Kidney Int. 2012;82(7):771-789
    • (2012) Kidney Int , vol.82 , Issue.7 , pp. 771-789
    • Yuan, Y.1
  • 46
    • 79957815267 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-α is renoprotective in doxorubicin-induced glomerular injury
    • Zhou Y, et al. Peroxisome proliferator-activated receptor-α is renoprotective in doxorubicin-induced glomerular injury. Kidney Int. 2011;79(12):1302-1311
    • (2011) Kidney Int , vol.79 , Issue.12 , pp. 1302-1311
    • Zhou, Y.1
  • 47
    • 80053402552 scopus 로고    scopus 로고
    • PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice
    • Tran M, et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest. 2011;121(10):4003-4014
    • (2011) J Clin Invest , vol.121 , Issue.10 , pp. 4003-4014
    • Tran, M.1
  • 48
    • 84961724213 scopus 로고    scopus 로고
    • PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection
    • Tran MT, et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature. 2016;531(7595):528-532
    • (2016) Nature , vol.531 , Issue.7595 , pp. 528-532
    • Tran, M.T.1
  • 49
    • 84874025014 scopus 로고    scopus 로고
    • The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus
    • Gomez JA, et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell. 2013;152(4):743-754
    • (2013) Cell , vol.152 , Issue.4 , pp. 743-754
    • Gomez, J.A.1
  • 50
    • 84901954135 scopus 로고    scopus 로고
    • LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint
    • Dimitrova N, et al. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 2014;54(5):777-790
    • (2014) Mol Cell , vol.54 , Issue.5 , pp. 777-790
    • Dimitrova, N.1
  • 51
    • 84891757415 scopus 로고    scopus 로고
    • Multiple knockout mouse models reveal lincRNAs are required for life and brain development
    • Sauvageau M, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. 2013;2:e01749
    • (2013) Elife , vol.2 , pp. e01749
    • Sauvageau, M.1
  • 52
    • 84908482957 scopus 로고    scopus 로고
    • Physiological roles of long noncoding RNAs: Insight from knockout mice
    • Li L, Chang HY. Physiological roles of long noncoding RNAs: insight from knockout mice. Trends Cell Biol. 2014;24(10):594-602
    • (2014) Trends Cell Biol , vol.24 , Issue.10 , pp. 594-602
    • Li, L.1    Chang, H.Y.2
  • 53
    • 84937956963 scopus 로고    scopus 로고
    • MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures
    • Mondal T, et al. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nat Commun. 2015;6:7743
    • (2015) Nat Commun , vol.6 , pp. 7743
    • Mondal, T.1
  • 54
    • 84898010302 scopus 로고    scopus 로고
    • The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity
    • Lu X, et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol. 2014;21(4):423-425
    • (2014) Nat Struct Mol Biol , vol.21 , Issue.4 , pp. 423-425
    • Lu, X.1
  • 55
    • 0033515637 scopus 로고    scopus 로고
    • A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex
    • Lanz RB, et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell. 1999;97(1):17-27
    • (1999) Cell , vol.97 , Issue.1 , pp. 17-27
    • Lanz, R.B.1
  • 56
    • 79959756263 scopus 로고    scopus 로고
    • Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters
    • Hung T, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011;43(7):621-629
    • (2011) Nat Genet , vol.43 , Issue.7 , pp. 621-629
    • Hung, T.1
  • 57
    • 77955323879 scopus 로고    scopus 로고
    • A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response
    • Huarte M, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409-419
    • (2010) Cell , vol.142 , Issue.3 , pp. 409-419
    • Huarte, M.1
  • 58
    • 84875183056 scopus 로고    scopus 로고
    • Structure and function of long noncoding RNAs in epigenetic regulation
    • Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20(3):300-307
    • (2013) Nat Struct Mol Biol , vol.20 , Issue.3 , pp. 300-307
    • Mercer, T.R.1    Mattick, J.S.2
  • 59
    • 84890559595 scopus 로고    scopus 로고
    • Long non-coding RNAs: New players in cell differentiation and development
    • Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7-21
    • (2014) Nat Rev Genet , vol.15 , Issue.1 , pp. 7-21
    • Fatica, A.1    Bozzoni, I.2
  • 60
    • 84943347915 scopus 로고    scopus 로고
    • Double-negative feedback loop between long non-coding RNA TUG1 and MIR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells
    • Pt B
    • Tan J, Qiu K, Li M, Liang Y. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett. 2015;589(20 Pt B):3175-3181
    • (2015) FEBS Lett , vol.589 , Issue.20 , pp. 3175-3181
    • Tan, J.1    Qiu, K.2    Li, M.3    Liang, Y.4
  • 61
    • 84939242358 scopus 로고    scopus 로고
    • The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting MIR-144
    • Cai H, et al. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget. 2015;6(23):19759-19779
    • (2015) Oncotarget , vol.6 , Issue.23 , pp. 19759-19779
    • Cai, H.1
  • 62
    • 84891711873 scopus 로고    scopus 로고
    • Extensive localization of long noncoding RNAs to the cytosol and monoand polyribosomal complexes
    • van Heesch S, et al. Extensive localization of long noncoding RNAs to the cytosol and monoand polyribosomal complexes. Genome Biol. 2014;15(1):R6
    • (2014) Genome Biol , vol.15 , Issue.1 , pp. R6
    • Van Heesch, S.1
  • 63
    • 33646950265 scopus 로고    scopus 로고
    • PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling
    • Lin X, et al. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell. 2006;125(5):915-928
    • (2006) Cell , vol.125 , Issue.5 , pp. 915-928
    • Lin, X.1
  • 64
    • 84885374473 scopus 로고    scopus 로고
    • The imprinted H19 lncRNA antagonizes let-7 microRNAs
    • Kallen AN, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52(1):101-112
    • (2013) Mol Cell , vol.52 , Issue.1 , pp. 101-112
    • Kallen, A.N.1
  • 65
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-823
    • (2013) Science , vol.339 , Issue.6121 , pp. 819-823
    • Cong, L.1
  • 66
    • 84922535144 scopus 로고    scopus 로고
    • Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector
    • Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 2014;42(19):e147
    • (2014) Nucleic Acids Res , vol.42 , Issue.19 , pp. e147
    • Kabadi, A.M.1    Ousterout, D.G.2    Hilton, I.B.3    Gersbach, C.A.4
  • 67
    • 77954572735 scopus 로고    scopus 로고
    • Long noncoding RNA as modular scaffold of histone modification complexes
    • Tsai MC, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689-693
    • (2010) Science , vol.329 , Issue.5992 , pp. 689-693
    • Tsai, M.C.1
  • 68
    • 84905401266 scopus 로고    scopus 로고
    • Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia
    • Trimarchi T, et al. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell. 2014;158(3):593-606
    • (2014) Cell , vol.158 , Issue.3 , pp. 593-606
    • Trimarchi, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.