-
1
-
-
84865757142
-
Landscape of transcription in human cells
-
Djebali S, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101-108
-
(2012)
Nature
, vol.489
, Issue.7414
, pp. 101-108
-
-
Djebali, S.1
-
2
-
-
84946196880
-
The emerging role of lncRNAs in cancer
-
Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253-1261
-
(2015)
Nat Med
, vol.21
, Issue.11
, pp. 1253-1261
-
-
Huarte, M.1
-
3
-
-
84924134321
-
Long noncoding RNAs in cardiovascular diseases
-
Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116(4):737-750
-
(2015)
Circ Res
, vol.116
, Issue.4
, pp. 737-750
-
-
Uchida, S.1
Dimmeler, S.2
-
4
-
-
84949432853
-
Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution
-
Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron. 2015;88(5):861-877
-
(2015)
Neuron
, vol.88
, Issue.5
, pp. 861-877
-
-
Briggs, J.A.1
Wolvetang, E.J.2
Mattick, J.S.3
Rinn, J.L.4
Barry, G.5
-
5
-
-
84871069553
-
Epigenetic regulation by long noncoding RNAs
-
Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435-1439
-
(2012)
Science
, vol.338
, Issue.6113
, pp. 1435-1439
-
-
Lee, J.T.1
-
6
-
-
84861904178
-
Genome regulation by long noncoding RNAs
-
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145-166
-
(2012)
Annu Rev Biochem
, vol.81
, pp. 145-166
-
-
Rinn, J.L.1
Chang, H.Y.2
-
7
-
-
84994611318
-
-
(November 2015) Accessed August 23
-
United States Renal Data System. U.S. Renal Data System Report (November 2015). National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases. https://www. niddk.nih.gov/about-niddk/strategic-plans-reports/ Pages/US-renal-data-system-report.aspx. Accessed August 23, 2016
-
(2016)
United States Renal Data System. U.S. Renal Data System Report
-
-
-
8
-
-
84887466140
-
AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function
-
Dugan LL, et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest. 2013;123(11):4888-4899
-
(2013)
J Clin Invest
, vol.123
, Issue.11
, pp. 4888-4899
-
-
Dugan, L.L.1
-
9
-
-
84925284486
-
Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development
-
Kang HM, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37-46
-
(2015)
Nat Med
, vol.21
, Issue.1
, pp. 37-46
-
-
Kang, H.M.1
-
10
-
-
79952339999
-
Mitochondrial biogenesis in kidney disease
-
Weinberg JM. Mitochondrial biogenesis in kidney disease. J Am Soc Nephrol. 2011;22(3):431-436
-
(2011)
J Am Soc Nephrol
, vol.22
, Issue.3
, pp. 431-436
-
-
Weinberg, J.M.1
-
11
-
-
84887108045
-
Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease
-
Sharma K, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901-1912
-
(2013)
J Am Soc Nephrol
, vol.24
, Issue.11
, pp. 1901-1912
-
-
Sharma, K.1
-
12
-
-
84929492282
-
Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling
-
Guo K, et al. Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS One. 2015;10(4):e0125176
-
(2015)
PLoS One
, vol.10
, Issue.4
, pp. e0125176
-
-
Guo, K.1
-
13
-
-
67651159365
-
Transcriptional control of mitochondrial biogenesis and function
-
Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol. 2009;71:177-203
-
(2009)
Annu Rev Physiol
, vol.71
, pp. 177-203
-
-
Hock, M.B.1
Kralli, A.2
-
14
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361-370
-
(2005)
Cell Metab
, vol.1
, Issue.6
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
15
-
-
22144434964
-
Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle
-
Arany Z, et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1(4):259-271
-
(2005)
Cell Metab
, vol.1
, Issue.4
, pp. 259-271
-
-
Arany, Z.1
-
16
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
-
Lin J, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 2004;119(1):121-135
-
(2004)
Cell
, vol.119
, Issue.1
, pp. 121-135
-
-
Lin, J.1
-
17
-
-
21144446106
-
PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
-
Leone TC, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3(4):e101
-
(2005)
PLoS Biol
, vol.3
, Issue.4
, pp. e101
-
-
Leone, T.C.1
-
18
-
-
36048931015
-
Abnormal glucose homeostasis in skeletal muscle-specific PGC-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk
-
Handschin C, et al. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. J Clin Invest. 2007;117(11):3463-3474
-
(2007)
J Clin Invest
, vol.117
, Issue.11
, pp. 3463-3474
-
-
Handschin, C.1
-
19
-
-
0033803048
-
Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis
-
Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000;106(7):847-856
-
(2000)
J Clin Invest
, vol.106
, Issue.7
, pp. 847-856
-
-
Lehman, J.J.1
Barger, P.M.2
Kovacs, A.3
Saffitz, J.E.4
Medeiros, D.M.5
Kelly, D.P.6
-
20
-
-
0037102256
-
Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
-
Lin J, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418(6899):797-801
-
(2002)
Nature
, vol.418
, Issue.6899
, pp. 797-801
-
-
Lin, J.1
-
21
-
-
33845674997
-
The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle
-
Arany Z, et al. The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 2007;5(1):35-46
-
(2007)
Cell Metab
, vol.5
, Issue.1
, pp. 35-46
-
-
Arany, Z.1
-
22
-
-
0038810035
-
An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle
-
Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A. 2003;100(12):7111-7116
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, Issue.12
, pp. 7111-7116
-
-
Handschin, C.1
Rhee, J.2
Lin, J.3
Tarr, P.T.4
Spiegelman, B.M.5
-
23
-
-
33646782581
-
Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: An autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation
-
Hondares E, et al. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology. 2006;147(6):2829-2838
-
(2006)
Endocrinology
, vol.147
, Issue.6
, pp. 2829-2838
-
-
Hondares, E.1
-
24
-
-
84870921992
-
A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy
-
Ruas JL, et al. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell. 2012;151(6):1319-1331
-
(2012)
Cell
, vol.151
, Issue.6
, pp. 1319-1331
-
-
Ruas, J.L.1
-
25
-
-
80052875303
-
Transcriptome analysis of human diabetic kidney disease
-
Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K. Transcriptome analysis of human diabetic kidney disease. Diabetes. 2011;60(9):2354-2369
-
(2011)
Diabetes
, vol.60
, Issue.9
, pp. 2354-2369
-
-
Woroniecka, K.I.1
Park, A.S.2
Mohtat, D.3
Thomas, D.B.4
Pullman, J.M.5
Susztak, K.6
-
26
-
-
67650921949
-
Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression
-
Khalil AM, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667-11672
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, Issue.28
, pp. 11667-11672
-
-
Khalil, A.M.1
-
27
-
-
81055140863
-
NcRNA-and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs
-
Yang L, et al. ncRNA-and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell. 2011;147(4):773-788
-
(2011)
Cell
, vol.147
, Issue.4
, pp. 773-788
-
-
Yang, L.1
-
28
-
-
0037477855
-
Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
-
Patti ME, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100(14):8466-8471
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, Issue.14
, pp. 8466-8471
-
-
Patti, M.E.1
-
29
-
-
0038054341
-
PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
-
Mootha VK, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267-273
-
(2003)
Nat Genet
, vol.34
, Issue.3
, pp. 267-273
-
-
Mootha, V.K.1
-
30
-
-
80054756754
-
Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions
-
Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell. 2011;44(4):667-678
-
(2011)
Mol Cell
, vol.44
, Issue.4
, pp. 667-678
-
-
Chu, C.1
Qu, K.2
Zhong, F.L.3
Artandi, S.E.4
Chang, H.Y.5
-
31
-
-
53849146020
-
Model-based analysis of ChIP-Seq (MACS)
-
Zhang Y, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137
-
(2008)
Genome Biol
, vol.9
, Issue.9
, pp. R137
-
-
Zhang, Y.1
-
32
-
-
84908204795
-
The structure, function and evolution of proteins that bind DNA and RNA
-
Hudson WH, Ortlund EA. The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Biol. 2014;15(11):749-760
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, Issue.11
, pp. 749-760
-
-
Hudson, W.H.1
Ortlund, E.A.2
-
33
-
-
14744290800
-
RS domains contact the pre-mRNA throughout spliceosome assembly
-
Hertel KJ, Graveley BR. RS domains contact the pre-mRNA throughout spliceosome assembly. Trends Biochem Sci. 2005;30(3):115-118
-
(2005)
Trends Biochem Sci
, vol.30
, Issue.3
, pp. 115-118
-
-
Hertel, K.J.1
Graveley, B.R.2
-
34
-
-
33644660537
-
PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease
-
Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116(3):615-622
-
(2006)
J Clin Invest
, vol.116
, Issue.3
, pp. 615-622
-
-
Finck, B.N.1
Kelly, D.P.2
-
35
-
-
33845596500
-
Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism
-
Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 2006;27(7):728-735
-
(2006)
Endocr Rev
, vol.27
, Issue.7
, pp. 728-735
-
-
Handschin, C.1
Spiegelman, B.M.2
-
36
-
-
0033638283
-
Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1
-
Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell. 2000;6(2):307-316
-
(2000)
Mol Cell
, vol.6
, Issue.2
, pp. 307-316
-
-
Monsalve, M.1
Wu, Z.2
Adelmant, G.3
Puigserver, P.4
Fan, M.5
Spiegelman, B.M.6
-
37
-
-
0344413490
-
Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha
-
Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol Cell. 2003;12(5):1137-1149
-
(2003)
Mol Cell
, vol.12
, Issue.5
, pp. 1137-1149
-
-
Wallberg, A.E.1
Yamamura, S.2
Malik, S.3
Spiegelman, B.M.4
Roeder, R.G.5
-
38
-
-
84863023552
-
Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells
-
Wang W, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 2012;15(2):186-200
-
(2012)
Cell Metab
, vol.15
, Issue.2
, pp. 186-200
-
-
Wang, W.1
-
39
-
-
0035856980
-
Biochemistry and molecular cell biology of diabetic complications
-
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813-820
-
(2001)
Nature
, vol.414
, Issue.6865
, pp. 813-820
-
-
Brownlee, M.1
-
40
-
-
84863116324
-
MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways
-
Chau BN, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012;4(121):121ra18
-
(2012)
Sci Transl Med
, vol.4
, Issue.121
, pp. 121ra18
-
-
Chau, B.N.1
-
41
-
-
85015621502
-
Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy [published online ahead of print January 29, 2016]
-
Ayanga BA, et al. Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy [published online ahead of print January 29, 2016]. J Am Soc Nephrol. doi: 10.1681/ ASN.2015101096
-
J Am Soc Nephrol
-
-
Ayanga, B.A.1
-
42
-
-
84900387354
-
Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1α in db/db mice
-
Hong YA, et al. Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1α in db/db mice. PLoS One. 2014;9(5):e96147
-
(2014)
PLoS One
, vol.9
, Issue.5
, pp. e96147
-
-
Hong, Y.A.1
-
43
-
-
84938213275
-
Activation of FoxO1/ PGC-1α prevents mitochondrial dysfunction and ameliorates mesangial cell injury in diabetic rats
-
Wu L, et al. Activation of FoxO1/ PGC-1α prevents mitochondrial dysfunction and ameliorates mesangial cell injury in diabetic rats. Mol Cell Endocrinol. 2015;413:1-12
-
(2015)
Mol Cell Endocrinol
, vol.413
, pp. 1-12
-
-
Wu, L.1
-
44
-
-
84897845228
-
Rap1 ameliorates renal tubular injury in diabetic nephropathy
-
Xiao L, et al. Rap1 ameliorates renal tubular injury in diabetic nephropathy. Diabetes. 2014;63(4):1366-1380
-
(2014)
Diabetes
, vol.63
, Issue.4
, pp. 1366-1380
-
-
Xiao, L.1
-
45
-
-
84866377470
-
Activation of peroxisome proliferator-activated receptor-γ coactivator 1α ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury
-
Yuan Y, et al. Activation of peroxisome proliferator-activated receptor-γ coactivator 1α ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury. Kidney Int. 2012;82(7):771-789
-
(2012)
Kidney Int
, vol.82
, Issue.7
, pp. 771-789
-
-
Yuan, Y.1
-
46
-
-
79957815267
-
Peroxisome proliferator-activated receptor-α is renoprotective in doxorubicin-induced glomerular injury
-
Zhou Y, et al. Peroxisome proliferator-activated receptor-α is renoprotective in doxorubicin-induced glomerular injury. Kidney Int. 2011;79(12):1302-1311
-
(2011)
Kidney Int
, vol.79
, Issue.12
, pp. 1302-1311
-
-
Zhou, Y.1
-
47
-
-
80053402552
-
PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice
-
Tran M, et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest. 2011;121(10):4003-4014
-
(2011)
J Clin Invest
, vol.121
, Issue.10
, pp. 4003-4014
-
-
Tran, M.1
-
48
-
-
84961724213
-
PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection
-
Tran MT, et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature. 2016;531(7595):528-532
-
(2016)
Nature
, vol.531
, Issue.7595
, pp. 528-532
-
-
Tran, M.T.1
-
49
-
-
84874025014
-
The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus
-
Gomez JA, et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell. 2013;152(4):743-754
-
(2013)
Cell
, vol.152
, Issue.4
, pp. 743-754
-
-
Gomez, J.A.1
-
50
-
-
84901954135
-
LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint
-
Dimitrova N, et al. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 2014;54(5):777-790
-
(2014)
Mol Cell
, vol.54
, Issue.5
, pp. 777-790
-
-
Dimitrova, N.1
-
51
-
-
84891757415
-
Multiple knockout mouse models reveal lincRNAs are required for life and brain development
-
Sauvageau M, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. 2013;2:e01749
-
(2013)
Elife
, vol.2
, pp. e01749
-
-
Sauvageau, M.1
-
52
-
-
84908482957
-
Physiological roles of long noncoding RNAs: Insight from knockout mice
-
Li L, Chang HY. Physiological roles of long noncoding RNAs: insight from knockout mice. Trends Cell Biol. 2014;24(10):594-602
-
(2014)
Trends Cell Biol
, vol.24
, Issue.10
, pp. 594-602
-
-
Li, L.1
Chang, H.Y.2
-
53
-
-
84937956963
-
MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures
-
Mondal T, et al. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nat Commun. 2015;6:7743
-
(2015)
Nat Commun
, vol.6
, pp. 7743
-
-
Mondal, T.1
-
54
-
-
84898010302
-
The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity
-
Lu X, et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol. 2014;21(4):423-425
-
(2014)
Nat Struct Mol Biol
, vol.21
, Issue.4
, pp. 423-425
-
-
Lu, X.1
-
55
-
-
0033515637
-
A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex
-
Lanz RB, et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell. 1999;97(1):17-27
-
(1999)
Cell
, vol.97
, Issue.1
, pp. 17-27
-
-
Lanz, R.B.1
-
56
-
-
79959756263
-
Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters
-
Hung T, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011;43(7):621-629
-
(2011)
Nat Genet
, vol.43
, Issue.7
, pp. 621-629
-
-
Hung, T.1
-
57
-
-
77955323879
-
A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response
-
Huarte M, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409-419
-
(2010)
Cell
, vol.142
, Issue.3
, pp. 409-419
-
-
Huarte, M.1
-
58
-
-
84875183056
-
Structure and function of long noncoding RNAs in epigenetic regulation
-
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20(3):300-307
-
(2013)
Nat Struct Mol Biol
, vol.20
, Issue.3
, pp. 300-307
-
-
Mercer, T.R.1
Mattick, J.S.2
-
59
-
-
84890559595
-
Long non-coding RNAs: New players in cell differentiation and development
-
Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7-21
-
(2014)
Nat Rev Genet
, vol.15
, Issue.1
, pp. 7-21
-
-
Fatica, A.1
Bozzoni, I.2
-
60
-
-
84943347915
-
Double-negative feedback loop between long non-coding RNA TUG1 and MIR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells
-
Pt B
-
Tan J, Qiu K, Li M, Liang Y. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett. 2015;589(20 Pt B):3175-3181
-
(2015)
FEBS Lett
, vol.589
, Issue.20
, pp. 3175-3181
-
-
Tan, J.1
Qiu, K.2
Li, M.3
Liang, Y.4
-
61
-
-
84939242358
-
The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting MIR-144
-
Cai H, et al. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget. 2015;6(23):19759-19779
-
(2015)
Oncotarget
, vol.6
, Issue.23
, pp. 19759-19779
-
-
Cai, H.1
-
62
-
-
84891711873
-
Extensive localization of long noncoding RNAs to the cytosol and monoand polyribosomal complexes
-
van Heesch S, et al. Extensive localization of long noncoding RNAs to the cytosol and monoand polyribosomal complexes. Genome Biol. 2014;15(1):R6
-
(2014)
Genome Biol
, vol.15
, Issue.1
, pp. R6
-
-
Van Heesch, S.1
-
63
-
-
33646950265
-
PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling
-
Lin X, et al. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell. 2006;125(5):915-928
-
(2006)
Cell
, vol.125
, Issue.5
, pp. 915-928
-
-
Lin, X.1
-
64
-
-
84885374473
-
The imprinted H19 lncRNA antagonizes let-7 microRNAs
-
Kallen AN, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52(1):101-112
-
(2013)
Mol Cell
, vol.52
, Issue.1
, pp. 101-112
-
-
Kallen, A.N.1
-
65
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-823
-
(2013)
Science
, vol.339
, Issue.6121
, pp. 819-823
-
-
Cong, L.1
-
66
-
-
84922535144
-
Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector
-
Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 2014;42(19):e147
-
(2014)
Nucleic Acids Res
, vol.42
, Issue.19
, pp. e147
-
-
Kabadi, A.M.1
Ousterout, D.G.2
Hilton, I.B.3
Gersbach, C.A.4
-
67
-
-
77954572735
-
Long noncoding RNA as modular scaffold of histone modification complexes
-
Tsai MC, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689-693
-
(2010)
Science
, vol.329
, Issue.5992
, pp. 689-693
-
-
Tsai, M.C.1
-
68
-
-
84905401266
-
Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia
-
Trimarchi T, et al. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell. 2014;158(3):593-606
-
(2014)
Cell
, vol.158
, Issue.3
, pp. 593-606
-
-
Trimarchi, T.1
|