메뉴 건너뛰기




Volumn 17, Issue 5, 2006, Pages 1126-1140

Generalized core vector machines

Author keywords

Approximation algorithms; Core vector machines (CVMs); Kernel methods; Minimum enclosing ball (MEB); Quadratic programming; Support vector machines (SVMs)

Indexed keywords

CORE VECTOR MACHINES (CVM); DATA SETS; KERNEL METHODS; MINIMUM ENCLOSING BALLS (MEB);

EID: 33750095184     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2006.878123     Document Type: Article
Times cited : (208)

References (38)
  • 2
    • 0036583160 scopus 로고    scopus 로고
    • A parallel mixture of SVMs for very large scale problems
    • May
    • R. Collobert, S. Bengio, and Y. Bengio, "A parallel mixture of SVMs for very large scale problems," Neural Comput., vol. 14, no. 5, pp. 1105-1114, May 2002.
    • (2002) Neural Comput , vol.14 , Issue.5 , pp. 1105-1114
    • Collobert, R.1    Bengio, S.2    Bengio, Y.3
  • 3
    • 84899010839 scopus 로고    scopus 로고
    • C. Williams and M. Seeger, T. Leen, T. Dietterich, and V. Tresp, Eds., Using the Nyström method to speed up kernel machines, in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2001, 13, pp. 682-688.
    • C. Williams and M. Seeger, , T. Leen, T. Dietterich, and V. Tresp, Eds., "Using the Nyström method to speed up kernel machines," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2001, vol. 13, pp. 682-688.
  • 4
    • 0002493574 scopus 로고    scopus 로고
    • Sparse greedy matrix approximation for machine learning
    • Stanford, CA, Jun
    • A. Smola and B. Schölkopf, "Sparse greedy matrix approximation for machine learning," in Proc. 7th Int. Conf. Mach. Learn., Stanford, CA, Jun. 2000, pp. 911-918.
    • (2000) Proc. 7th Int. Conf. Mach. Learn , pp. 911-918
    • Smola, A.1    Schölkopf, B.2
  • 5
    • 84898967665 scopus 로고    scopus 로고
    • Sampling techniques for kernel methods
    • T. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press
    • D. Achlioptas, F. McSherry, and B. Schölkopf, "Sampling techniques for kernel methods," in Advances in Neural Information Processing Systems, T. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002, vol. 14, pp. 335-342.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 335-342
    • Achlioptas, D.1    McSherry, F.2    Schölkopf, B.3
  • 6
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Dec
    • S. Fine and K. Scheinberg, "Efficient SVM training using low-rank kernel representations," J. Mach. Learn. Res., vol. 2, pp. 243-264, Dec. 2001.
    • (2001) J. Mach. Learn. Res , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 9
    • 0030673582 scopus 로고    scopus 로고
    • Training support vector machines: An application to face detection
    • San Juan, PR, Jun
    • E. Osuna, R. Freund, and F. Girosi, "Training support vector machines: An application to face detection," in Proc. Conf. Comput. Vis. Pattern Recognit., San Juan, PR, Jun. 1997, pp. 130-136.
    • (1997) Proc. Conf. Comput. Vis. Pattern Recognit , pp. 130-136
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 10
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • J. Platt, B. Schölkopf, C. Burges, and A. Smola, Eds, Cambridge, MA: MIT Press
    • J. Platt, , B. Schölkopf, C. Burges, and A. Smola, Eds., "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods - Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
  • 12
    • 19344375172 scopus 로고    scopus 로고
    • Rigorous proof of termination of SMO algorithm for support vector machines
    • May
    • N. Takahashi and T. Nishi, "Rigorous proof of termination of SMO algorithm for support vector machines," IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 774-776, May 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.3 , pp. 774-776
    • Takahashi, N.1    Nishi, T.2
  • 13
    • 34147093886 scopus 로고    scopus 로고
    • Scaling-up support vector machines using boosting algorithm
    • Barcelona, Spain, Sep
    • D. Pavlov, J. Mao, and B. Dom, "Scaling-up support vector machines using boosting algorithm," in Proc. Int. Conf. Pattern Recognit., Barcelona, Spain, Sep. 2000, vol. 2, pp. 2219-2222.
    • (2000) Proc. Int. Conf. Pattern Recognit , vol.2 , pp. 2219-2222
    • Pavlov, D.1    Mao, J.2    Dom, B.3
  • 15
    • 0000897328 scopus 로고    scopus 로고
    • The Kernel-Adatron algorithm: A fast and simple learning procedure for support vector machines
    • Madison, WI, Jul
    • T. Friess, N. Cristianini, and C. Campbell, "The Kernel-Adatron algorithm: A fast and simple learning procedure for support vector machines," in Proc. 15th Int. Conf. Mach. Learn., Madison, WI, Jul. 1998, pp. 188-196.
    • (1998) Proc. 15th Int. Conf. Mach. Learn , pp. 188-196
    • Friess, T.1    Cristianini, N.2    Campbell, C.3
  • 16
    • 15344351150 scopus 로고    scopus 로고
    • An improved conjugate gradient scheme to the solution of least squares SVM
    • Mar
    • W. Chu, C. Ong, and S. Keerthi, "An improved conjugate gradient scheme to the solution of least squares SVM," IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 498-501, Mar. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.2 , pp. 498-501
    • Chu, W.1    Ong, C.2    Keerthi, S.3
  • 17
    • 23044525572 scopus 로고    scopus 로고
    • Scaling kernel-based systems to large data sets
    • V. Tresp, "Scaling kernel-based systems to large data sets," Data Mining Knowl. Discovery, vol. 5, no. 3, pp. 197-211, 2001.
    • (2001) Data Mining Knowl. Discovery , vol.5 , Issue.3 , pp. 197-211
    • Tresp, V.1
  • 18
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast SVM training on very large data sets
    • I. W. Tsang, J. T. Kwok, and P.-M. Cheung, "Core vector machines: Fast SVM training on very large data sets," J. Mach. Learn. Res., vol. 6, pp. 363-392, 2005.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 363-392
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.-M.3
  • 19
    • 0000487102 scopus 로고    scopus 로고
    • Estimating the support of a high-dimensional distribution
    • Jul
    • B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson, "Estimating the support of a high-dimensional distribution," Neural Comput., vol. 13, no. 7, pp. 1443-1471, Jul. 2001.
    • (2001) Neural Comput , vol.13 , Issue.7 , pp. 1443-1471
    • Schölkopf, B.1    Platt, J.2    Shawe-Taylor, J.3    Smola, A.4    Williamson, R.5
  • 21
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Aug
    • A. Smola and B. Schölkopf, "A tutorial on support vector regression," Stat. Comput., vol. 14, no. 3, pp. 199-222, Aug. 2004.
    • (2004) Stat. Comput , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.1    Schölkopf, B.2
  • 22
    • 31844443910 scopus 로고    scopus 로고
    • Core vector regression for very large regression problems
    • Bonn, Germany, Aug
    • I. W. Tsang, J. T. Kwok, and K. T. Lai, "Core vector regression for very large regression problems," in Proc. 22nd Int. Conf. Mach. Learn., Bonn, Germany, Aug. 2005, pp. 913-920.
    • (2005) Proc. 22nd Int. Conf. Mach. Learn , pp. 913-920
    • Tsang, I.W.1    Kwok, J.T.2    Lai, K.T.3
  • 25
    • 33244496848 scopus 로고    scopus 로고
    • Geometric approximation via coresets
    • P. Agarwal, S. Har-Peled, and K. Varadarajan, E. Welzl, Ed, Cambridge, U.K, Cambridge Univ. Press
    • P. Agarwal, S. Har-Peled, and K. Varadarajan, , E. Welzl, Ed., "Geometric approximation via coresets," in Current Trends in Combinatorial and Computational Geometry. Cambridge, U.K.: Cambridge Univ. Press, 2005.
    • (2005) Current Trends in Combinatorial and Computational Geometry
  • 26
  • 27
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • D. Tax and R. Duin, "Support vector domain description," Pattern Recognit. Lett., vol. 20, no. 14, pp. 1191-1199, 1999.
    • (1999) Pattern Recognit. Lett , vol.20 , Issue.14 , pp. 1191-1199
    • Tax, D.1    Duin, R.2
  • 28
    • 2342636412 scopus 로고    scopus 로고
    • Shape fitting with outliers
    • S. Har-Peled and Y. Wang, "Shape fitting with outliers," SIAM J. Comput., vol. 33, no. 2, pp. 269-285, 2004.
    • (2004) SIAM J. Comput , vol.33 , Issue.2 , pp. 269-285
    • Har-Peled, S.1    Wang, Y.2
  • 29
    • 0347512512 scopus 로고    scopus 로고
    • Lagrangian support vector machines
    • O. Mangasarian and D. Musicant, "Lagrangian support vector machines," J. Mach. Learn. Res., vol. 1, pp. 161-177, 2001.
    • (2001) J. Mach. Learn. Res , vol.1 , pp. 161-177
    • Mangasarian, O.1    Musicant, D.2
  • 30
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • T. Joachims, B. Schölkopf, C. Burges, and A. Smola, Eds, Cambridge, MA: MIT Press
    • T. Joachims, B. Schölkopf, C. Burges, and A. Smola, Eds., "Making large-scale support vector machine learning practical," in Advances in Kernel Methods - Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 169-184.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
  • 31
    • 2442593945 scopus 로고    scopus 로고
    • Active set support vector regression
    • Mar
    • D. Musicant and A. Feinberg, "Active set support vector regression," IEEE Trans. Neural Netw., vol. 15, no. 2, pp. 268-275, Mar. 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.2 , pp. 268-275
    • Musicant, D.1    Feinberg, A.2
  • 32
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • J. Friedman, "Multivariate adaptive regression splines (with discussion)," Ann. Stat.,vol. 19, no. 1, pp. 1-141, 1991.
    • (1991) Ann. Stat , vol.19 , Issue.1 , pp. 1-141
    • Friedman, J.1
  • 33
    • 33947392369 scopus 로고    scopus 로고
    • K.-K. Sung, Learning and Example Selection for Object and Pattern Recognition, Ph.D. dissertation, Artif. Intell. Lab. and Cntr. Biol. Comput. Learn., MIT, Cambridge, MA, 1996.
    • K.-K. Sung, "Learning and Example Selection for Object and Pattern Recognition," Ph.D. dissertation, Artif. Intell. Lab. and Cntr. Biol. Comput. Learn., MIT, Cambridge, MA, 1996.
  • 34
    • 21844457797 scopus 로고    scopus 로고
    • Dealing with large diagonals in kernel matrices
    • Principles of Data Mining and Knowledge Discovery. Helsinki, Finland: Springer-Verlag
    • J. Weston, B. Schölkopf, E. Eskin, C. Leslie, and S. Noble, "Dealing with large diagonals in kernel matrices," in Principles of Data Mining and Knowledge Discovery. Helsinki, Finland: Springer-Verlag, 2002, vol. 243, Lecture Notes in Computer Science, pp. 494-511.
    • (2002) Lecture Notes in Computer Science , vol.243 , pp. 494-511
    • Weston, J.1    Schölkopf, B.2    Eskin, E.3    Leslie, C.4    Noble, S.5
  • 35
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A. Bradley, "The use of the area under the ROC curve in the evaluation of machine learning algorithms," Pattern Recognit., vol. 30, no. 7, pp. 1145-1159, 1997.
    • (1997) Pattern Recognit , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.1
  • 38
    • 72849123507 scopus 로고    scopus 로고
    • P. Kumar, J. Mitchell, and A. Yildirim, Approximate minimum enclosing balls in high dimensions using core-sets, ACM J. Exp. Algorithmics, 8, p. 1.1, Jan. 2003.
    • P. Kumar, J. Mitchell, and A. Yildirim, "Approximate minimum enclosing balls in high dimensions using core-sets," ACM J. Exp. Algorithmics, vol. 8, p. 1.1, Jan. 2003.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.