메뉴 건너뛰기




Volumn 12, Issue 6, 1999, Pages 783-789

Improving support vector machine classifiers by modifying kernel functions

Author keywords

Information geometry; Kernel Adatron; Kernel function; Nonlinear classification; Pattern classification; Radial basis function; Riemannian geometry; Support vector machine

Indexed keywords

COMPUTATIONAL GEOMETRY; COMPUTER SIMULATION; CONFORMAL MAPPING; NEURAL NETWORKS;

EID: 0032786569     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(99)00032-5     Document Type: Article
Times cited : (871)

References (14)
  • 1
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman M.A., Braverman E.M., Rozonoer L.I. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control. 25:1964;821-837.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.I.3
  • 2
    • 0000759079 scopus 로고
    • The Adatron: An adaptive perceptron algorithm
    • Anlauf J.K., Biehl M. The Adatron: an adaptive perceptron algorithm. Europhysics Letters. 10:1989;687-692.
    • (1989) Europhysics Letters , vol.10 , pp. 687-692
    • Anlauf, J.K.1    Biehl, M.2
  • 4
    • 0002615660 scopus 로고    scopus 로고
    • Geometry and invariance in kernel based methods
    • In B. Schölkopf et al. (Eds.), MIT Press
    • Burges, C. J. C. (1999). Geometry and invariance in kernel based methods. In B. Schölkopf et al. (Eds.), Advances in Kernel methods: support vector learning (pp. 89-116). MIT Press.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 89-116
    • Burges, C.J.C.1
  • 5
  • 7
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • Girosi F. An equivalence between sparse approximation and support vector machines. Neural Computation. 20:1998;1455-1480.
    • (1998) Neural Computation , vol.20 , pp. 1455-1480
    • Girosi, F.1
  • 8
    • 0001219859 scopus 로고
    • Regularization theory and neural network architectures
    • Girosi F., Jones M., Poggio T. Regularization theory and neural network architectures. Neural Computation. 7:1995;219-269.
    • (1995) Neural Computation , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 9
    • 0010935923 scopus 로고
    • Asymptotic theory of sequential estimation: Differential geometrical approach
    • Okamoto I., Amari S., Takeuchi K. Asymptotic theory of sequential estimation: differential geometrical approach. Annals of Statistics. 19:1991;961-981.
    • (1991) Annals of Statistics , vol.19 , pp. 961-981
    • Okamoto, I.1    Amari, S.2    Takeuchi, K.3
  • 11
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola A.J., Schölkopf B., Müller K.R. The connection between regularization operators and support vector kernels. Neural Networks. 11:1998;637-649.
    • (1998) Neural Networks , vol.11 , pp. 637-649
    • Smola, A.J.1    Schölkopf, B.2    Müller, K.R.3
  • 12
    • 0002814440 scopus 로고    scopus 로고
    • Neural networks in medical diagnosis: Comparison with other methods
    • In A. Bulsari et al. (Eds.)
    • Ster, B., Dobnikar, A. (1996). Neural networks in medical diagnosis: comparison with other methods. In A. Bulsari et al. (Eds.), Proceedings of the International Conference EANN'96, p. 427-430.
    • (1996) Proceedings of the International Conference EANN'96 , pp. 427-430
    • Ster, B.1    Dobnikar, A.2
  • 14
    • 10944235139 scopus 로고    scopus 로고
    • Sequential support vector classifiers and regression
    • in press
    • Vijayakumar, S., & Wu, S. (1999). Sequential support vector classifiers and regression. Soft Computing, in press.
    • (1999) Soft Computing
    • Vijayakumar, S.1    Wu, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.