-
1
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
Aizerman M.A., Braverman E.M., Rozonoer L.I. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control. 25:1964;821-837.
-
(1964)
Automation and Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.A.1
Braverman, E.M.2
Rozonoer, L.I.3
-
2
-
-
0000759079
-
The Adatron: An adaptive perceptron algorithm
-
Anlauf J.K., Biehl M. The Adatron: an adaptive perceptron algorithm. Europhysics Letters. 10:1989;687-692.
-
(1989)
Europhysics Letters
, vol.10
, pp. 687-692
-
-
Anlauf, J.K.1
Biehl, M.2
-
4
-
-
0002615660
-
Geometry and invariance in kernel based methods
-
In B. Schölkopf et al. (Eds.), MIT Press
-
Burges, C. J. C. (1999). Geometry and invariance in kernel based methods. In B. Schölkopf et al. (Eds.), Advances in Kernel methods: support vector learning (pp. 89-116). MIT Press.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 89-116
-
-
Burges, C.J.C.1
-
6
-
-
0000897328
-
The Kernel-Adatron algorithm: A fast and simple learning procedure for support vector machines
-
Los Altos, CA: Morgan-Kaufman
-
Friess T.T., Cristianini N., Campbell C. The Kernel-Adatron algorithm: a fast and simple learning procedure for support vector machines. Proceedings of the 15th International Conference on Machine Learning, Madison. 1998;Morgan-Kaufman, Los Altos, CA.
-
(1998)
Proceedings of the 15th International Conference on Machine Learning, Madison
-
-
Friess, T.T.1
Cristianini, N.2
Campbell, C.3
-
7
-
-
0000249788
-
An equivalence between sparse approximation and support vector machines
-
Girosi F. An equivalence between sparse approximation and support vector machines. Neural Computation. 20:1998;1455-1480.
-
(1998)
Neural Computation
, vol.20
, pp. 1455-1480
-
-
Girosi, F.1
-
8
-
-
0001219859
-
Regularization theory and neural network architectures
-
Girosi F., Jones M., Poggio T. Regularization theory and neural network architectures. Neural Computation. 7:1995;219-269.
-
(1995)
Neural Computation
, vol.7
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
9
-
-
0010935923
-
Asymptotic theory of sequential estimation: Differential geometrical approach
-
Okamoto I., Amari S., Takeuchi K. Asymptotic theory of sequential estimation: differential geometrical approach. Annals of Statistics. 19:1991;961-981.
-
(1991)
Annals of Statistics
, vol.19
, pp. 961-981
-
-
Okamoto, I.1
Amari, S.2
Takeuchi, K.3
-
10
-
-
0003470186
-
-
A.I.Memo 1599, M.I.T. AI Labs.
-
Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V. (1996). Comparing support vector machines with gaussian kernels to radial basis function classifiers. A.I.Memo 1599, M.I.T. AI Labs.
-
(1996)
Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers
-
-
Schölkopf, B.1
Sung, K.2
Burges, C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.7
-
11
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
Smola A.J., Schölkopf B., Müller K.R. The connection between regularization operators and support vector kernels. Neural Networks. 11:1998;637-649.
-
(1998)
Neural Networks
, vol.11
, pp. 637-649
-
-
Smola, A.J.1
Schölkopf, B.2
Müller, K.R.3
-
12
-
-
0002814440
-
Neural networks in medical diagnosis: Comparison with other methods
-
In A. Bulsari et al. (Eds.)
-
Ster, B., Dobnikar, A. (1996). Neural networks in medical diagnosis: comparison with other methods. In A. Bulsari et al. (Eds.), Proceedings of the International Conference EANN'96, p. 427-430.
-
(1996)
Proceedings of the International Conference EANN'96
, pp. 427-430
-
-
Ster, B.1
Dobnikar, A.2
-
14
-
-
10944235139
-
Sequential support vector classifiers and regression
-
in press
-
Vijayakumar, S., & Wu, S. (1999). Sequential support vector classifiers and regression. Soft Computing, in press.
-
(1999)
Soft Computing
-
-
Vijayakumar, S.1
Wu, S.2
|