-
1
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2:121-167.
-
(1998)
Data Min. Knowl. Discov.
, vol.2
, pp. 121-167
-
-
Burges, C.1
-
7
-
-
77952669532
-
Kernel subclass convex hull sample selection method for SVM on face recognition
-
Zhou X., Jiang W., Tian Y., Shi Y. Kernel subclass convex hull sample selection method for SVM on face recognition. Neurocomputing 2010, 73:2234-2246.
-
(2010)
Neurocomputing
, vol.73
, pp. 2234-2246
-
-
Zhou, X.1
Jiang, W.2
Tian, Y.3
Shi, Y.4
-
8
-
-
84884205226
-
Regularized least squares fisher linear discriminant with applications to image recognition
-
Chen X., Yang J., Mao Q., Han F. Regularized least squares fisher linear discriminant with applications to image recognition. Neurocomputing 2013, 122:521-534.
-
(2013)
Neurocomputing
, vol.122
, pp. 521-534
-
-
Chen, X.1
Yang, J.2
Mao, Q.3
Han, F.4
-
9
-
-
0000636553
-
Text categorization with support vector machines: learning with many relevant features
-
Joachims T. Text categorization with support vector machines: learning with many relevant features. Mach. Learn.: ECML 1998, 98:137-142.
-
(1998)
Mach. Learn.: ECML
, vol.98
, pp. 137-142
-
-
Joachims, T.1
-
10
-
-
77958589560
-
Jayadeva, hybrid independent component analysis and twin support vector machine learning scheme for subtle gesture recognition
-
Naik G.R., Kumar D.K. Jayadeva, hybrid independent component analysis and twin support vector machine learning scheme for subtle gesture recognition. Biomed. Tech./Biomed. Eng. 2010, 55:301-307.
-
(2010)
Biomed. Tech./Biomed. Eng.
, vol.55
, pp. 301-307
-
-
Naik, G.R.1
Kumar, D.K.2
-
11
-
-
77949765237
-
Jayadeva, twin SVM for Gesture classification using the surface electromyogram
-
Naik G.R., Kumar D.K. Jayadeva, twin SVM for Gesture classification using the surface electromyogram. IEEE Trans. Inf. Technol. BioMed. 2010, 14(2):301-308.
-
(2010)
IEEE Trans. Inf. Technol. BioMed.
, vol.14
, Issue.2
, pp. 301-308
-
-
Naik, G.R.1
Kumar, D.K.2
-
12
-
-
84893651255
-
Fast prediction of protein-protein interaction sites based on Extreme Learning Machines, fast prediction of protein-protein interaction sites based on Extreme Learning Machines
-
Wang D.D., Wang R., Yan H. Fast prediction of protein-protein interaction sites based on Extreme Learning Machines, fast prediction of protein-protein interaction sites based on Extreme Learning Machines. Neurocomputing 2014, 128(27):258-266.
-
(2014)
Neurocomputing
, vol.128
, Issue.27
, pp. 258-266
-
-
Wang, D.D.1
Wang, R.2
Yan, H.3
-
13
-
-
0037381038
-
Support vector machines experts for time series forecasting
-
Cao L. Support vector machines experts for time series forecasting. Neurocomputing 2003, 51:321-339.
-
(2003)
Neurocomputing
, vol.51
, pp. 321-339
-
-
Cao, L.1
-
14
-
-
84865318461
-
Recursive robust least squares support vector regression based on maximum correntropy criterion
-
Chen X., Yang J., Liang J., Ye Q. Recursive robust least squares support vector regression based on maximum correntropy criterion. Neurocomputing 2012, 97:63-73.
-
(2012)
Neurocomputing
, vol.97
, pp. 63-73
-
-
Chen, X.1
Yang, J.2
Liang, J.3
Ye, Q.4
-
15
-
-
84881257396
-
Twin least squares support vector regression
-
Zhao Y., Zhao J., Zhao M. Twin least squares support vector regression. Neurocomputing 2013, 118:225-236.
-
(2013)
Neurocomputing
, vol.118
, pp. 225-236
-
-
Zhao, Y.1
Zhao, J.2
Zhao, M.3
-
16
-
-
79958810411
-
Recursive projection twin support vector machine via within-class variance minimization
-
Chen X., Yang J., Ye Q., Liang J. Recursive projection twin support vector machine via within-class variance minimization. Pattern Recognit. 2011, 44:2643-2655.
-
(2011)
Pattern Recognit.
, vol.44
, pp. 2643-2655
-
-
Chen, X.1
Yang, J.2
Ye, Q.3
Liang, J.4
-
17
-
-
0035789613
-
Proximal support vector machine classifiers
-
F. Provost, R. Srikant, Eds., Proceedings of the Knowledge Discovery and Data Mining
-
G. Fung, O.L. Mangasarian, Proximal support vector machine classifiers, in: F. Provost, R. Srikant, Eds., Proceedings of the Knowledge Discovery and Data Mining, 2001 pp. 77-86.
-
(2001)
, pp. 77-86
-
-
Fung, G.1
Mangasarian, O.L.2
-
18
-
-
33644830072
-
Multisurface proximal support vector classification via generalize eigenvalues
-
Mangasarian O., Wild E. Multisurface proximal support vector classification via generalize eigenvalues. IEEE. Trans. Pattern. Anal. Mach. Intell. 2006, 28(1):69-74.
-
(2006)
IEEE. Trans. Pattern. Anal. Mach. Intell.
, vol.28
, Issue.1
, pp. 69-74
-
-
Mangasarian, O.1
Wild, E.2
-
20
-
-
60249095678
-
Least squares twin support vector machines for pattern classification
-
Arun Kumar M., Gopal M. Least squares twin support vector machines for pattern classification. Expert Syst. Appl. 2009, 36:7535-7543.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 7535-7543
-
-
Arun Kumar, M.1
Gopal, M.2
-
21
-
-
79957988400
-
Improvements on Twin Support Vector Machines
-
Shao Y., Zhang C., Wang X., Deng N. Improvements on Twin Support Vector Machines. IEEE Trans. Neural Netw. 2011, 22(6):962-968.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.6
, pp. 962-968
-
-
Shao, Y.1
Zhang, C.2
Wang, X.3
Deng, N.4
-
22
-
-
78650241155
-
Localized twin SVM via convex minimization
-
Ye Q., Zhao C., Ye N., Chen X. Localized twin SVM via convex minimization. Neurocomputing 2011, 74:580-587.
-
(2011)
Neurocomputing
, vol.74
, pp. 580-587
-
-
Ye, Q.1
Zhao, C.2
Ye, N.3
Chen, X.4
-
23
-
-
77956058730
-
Multi-weight vector projection support vector machines
-
Ye Q., Zhao C., Ye N., Chen Y. Multi-weight vector projection support vector machines. Pattern Recognit. Lett. 2010, 31(13):2006-2011.
-
(2010)
Pattern Recognit. Lett.
, vol.31
, Issue.13
, pp. 2006-2011
-
-
Ye, Q.1
Zhao, C.2
Ye, N.3
Chen, Y.4
-
24
-
-
84857059738
-
Least squares recursive projection twin support vector machine for classification
-
Shao Y., Deng N., Yang Z. Least squares recursive projection twin support vector machine for classification. Pattern Recognition 2012, 45:2299-2307.
-
(2012)
Pattern Recognition
, vol.45
, pp. 2299-2307
-
-
Shao, Y.1
Deng, N.2
Yang, Z.3
-
25
-
-
0036887673
-
Linear programming support vector machines
-
Zhou W.D., Zhang L., Jiao L.C. Linear programming support vector machines. Pattern Recognit. 2002, 35(12):2927-2936.
-
(2002)
Pattern Recognit.
, vol.35
, Issue.12
, pp. 2927-2936
-
-
Zhou, W.D.1
Zhang, L.2
Jiao, L.C.3
-
26
-
-
84906070638
-
An improved 1-norm SVM for simultaneous classification and variable selection
-
Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics
-
H. Zou, An improved 1-norm SVM for simultaneous classification and variable selection, in: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, 2007.
-
(2007)
-
-
Zou, H.1
-
28
-
-
84859799805
-
A feature selection method for nonparallel plane support vector machine classification
-
Ye Q., Zhao C., Ye N., Zheng H., Chen X. A feature selection method for nonparallel plane support vector machine classification. Optim. Methods Softw. 2012, 27(3):431-443.
-
(2012)
Optim. Methods Softw.
, vol.27
, Issue.3
, pp. 431-443
-
-
Ye, Q.1
Zhao, C.2
Ye, N.3
Zheng, H.4
Chen, X.5
-
29
-
-
77952551649
-
Quotient vs difference: comparison between the two discriminant criteria
-
Tao Y., Yang J. Quotient vs difference: comparison between the two discriminant criteria. Neurocomputing 2010, 73:1808-1817.
-
(2010)
Neurocomputing
, vol.73
, pp. 1808-1817
-
-
Tao, Y.1
Yang, J.2
-
31
-
-
3543109140
-
A feature selection Newton method for support vector machine classification
-
Fung G., Mangasarian O.L. A feature selection Newton method for support vector machine classification. Comput. Optim. Appl. 2004, 28(2):185-202.
-
(2004)
Comput. Optim. Appl.
, vol.28
, Issue.2
, pp. 185-202
-
-
Fung, G.1
Mangasarian, O.L.2
-
32
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Müller K.R., Mika S., Ratsch G. An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 2001, 12(2):181-202.
-
(2001)
IEEE Trans. Neural Netw.
, vol.12
, Issue.2
, pp. 181-202
-
-
Müller, K.R.1
Mika, S.2
Ratsch, G.3
-
33
-
-
84867864172
-
Bi-density twin support vector machines for pattern recognition
-
Peng X.i., Xu D. Bi-density twin support vector machines for pattern recognition. Neurocomputing 2013, 99:134-143.
-
(2013)
Neurocomputing
, vol.99
, pp. 134-143
-
-
Peng, X.1
Xu, D.2
-
34
-
-
84916886108
-
Graph-based Learning via auto-grouped sparse regularization and kernelized extension
-
10.1109/TKDE.2014.2312322
-
Fang Y., Wang R., Dai B., Wu X. Graph-based Learning via auto-grouped sparse regularization and kernelized extension. IEEE Trans. Knowl. Data Eng. 2013, 25. 10.1109/TKDE.2014.2312322.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
-
-
Fang, Y.1
Wang, R.2
Dai, B.3
Wu, X.4
-
35
-
-
0003408496
-
UCI Repository of Machine Learning Databases
-
Department of Information and Computer Sciences, University of California, Irvine
-
C. Blake, C. Merz, UCI Repository of Machine Learning Databases, Department of Information and Computer Sciences, University of California, Irvine, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
(1998)
-
-
Blake, C.1
Merz, C.2
-
36
-
-
84906070630
-
-
NDC: Normally Distributed Clustered Datasets
-
D.R. Musicant, NDC: Normally Distributed Clustered Datasets, 1998. http://www.cs.wisc.edu/dmi/svm/ndc/.
-
(1998)
-
-
Musicant, D.R.1
|