메뉴 건너뛰기




Volumn 144, Issue , 2014, Pages 174-183

Feature selection for least squares projection twin support vector machine

Author keywords

Feature selection; Least squares projection twin support vector machine; Twin support vector machine

Indexed keywords

CLASSIFICATION (OF INFORMATION); QUADRATIC PROGRAMMING; SUPPORT VECTOR MACHINES; VECTORS;

EID: 84906064923     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.05.040     Document Type: Article
Times cited : (35)

References (36)
  • 1
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2:121-167.
    • (1998) Data Min. Knowl. Discov. , vol.2 , pp. 121-167
    • Burges, C.1
  • 7
    • 77952669532 scopus 로고    scopus 로고
    • Kernel subclass convex hull sample selection method for SVM on face recognition
    • Zhou X., Jiang W., Tian Y., Shi Y. Kernel subclass convex hull sample selection method for SVM on face recognition. Neurocomputing 2010, 73:2234-2246.
    • (2010) Neurocomputing , vol.73 , pp. 2234-2246
    • Zhou, X.1    Jiang, W.2    Tian, Y.3    Shi, Y.4
  • 8
    • 84884205226 scopus 로고    scopus 로고
    • Regularized least squares fisher linear discriminant with applications to image recognition
    • Chen X., Yang J., Mao Q., Han F. Regularized least squares fisher linear discriminant with applications to image recognition. Neurocomputing 2013, 122:521-534.
    • (2013) Neurocomputing , vol.122 , pp. 521-534
    • Chen, X.1    Yang, J.2    Mao, Q.3    Han, F.4
  • 9
    • 0000636553 scopus 로고    scopus 로고
    • Text categorization with support vector machines: learning with many relevant features
    • Joachims T. Text categorization with support vector machines: learning with many relevant features. Mach. Learn.: ECML 1998, 98:137-142.
    • (1998) Mach. Learn.: ECML , vol.98 , pp. 137-142
    • Joachims, T.1
  • 10
    • 77958589560 scopus 로고    scopus 로고
    • Jayadeva, hybrid independent component analysis and twin support vector machine learning scheme for subtle gesture recognition
    • Naik G.R., Kumar D.K. Jayadeva, hybrid independent component analysis and twin support vector machine learning scheme for subtle gesture recognition. Biomed. Tech./Biomed. Eng. 2010, 55:301-307.
    • (2010) Biomed. Tech./Biomed. Eng. , vol.55 , pp. 301-307
    • Naik, G.R.1    Kumar, D.K.2
  • 11
    • 77949765237 scopus 로고    scopus 로고
    • Jayadeva, twin SVM for Gesture classification using the surface electromyogram
    • Naik G.R., Kumar D.K. Jayadeva, twin SVM for Gesture classification using the surface electromyogram. IEEE Trans. Inf. Technol. BioMed. 2010, 14(2):301-308.
    • (2010) IEEE Trans. Inf. Technol. BioMed. , vol.14 , Issue.2 , pp. 301-308
    • Naik, G.R.1    Kumar, D.K.2
  • 12
    • 84893651255 scopus 로고    scopus 로고
    • Fast prediction of protein-protein interaction sites based on Extreme Learning Machines, fast prediction of protein-protein interaction sites based on Extreme Learning Machines
    • Wang D.D., Wang R., Yan H. Fast prediction of protein-protein interaction sites based on Extreme Learning Machines, fast prediction of protein-protein interaction sites based on Extreme Learning Machines. Neurocomputing 2014, 128(27):258-266.
    • (2014) Neurocomputing , vol.128 , Issue.27 , pp. 258-266
    • Wang, D.D.1    Wang, R.2    Yan, H.3
  • 13
    • 0037381038 scopus 로고    scopus 로고
    • Support vector machines experts for time series forecasting
    • Cao L. Support vector machines experts for time series forecasting. Neurocomputing 2003, 51:321-339.
    • (2003) Neurocomputing , vol.51 , pp. 321-339
    • Cao, L.1
  • 14
    • 84865318461 scopus 로고    scopus 로고
    • Recursive robust least squares support vector regression based on maximum correntropy criterion
    • Chen X., Yang J., Liang J., Ye Q. Recursive robust least squares support vector regression based on maximum correntropy criterion. Neurocomputing 2012, 97:63-73.
    • (2012) Neurocomputing , vol.97 , pp. 63-73
    • Chen, X.1    Yang, J.2    Liang, J.3    Ye, Q.4
  • 15
    • 84881257396 scopus 로고    scopus 로고
    • Twin least squares support vector regression
    • Zhao Y., Zhao J., Zhao M. Twin least squares support vector regression. Neurocomputing 2013, 118:225-236.
    • (2013) Neurocomputing , vol.118 , pp. 225-236
    • Zhao, Y.1    Zhao, J.2    Zhao, M.3
  • 16
    • 79958810411 scopus 로고    scopus 로고
    • Recursive projection twin support vector machine via within-class variance minimization
    • Chen X., Yang J., Ye Q., Liang J. Recursive projection twin support vector machine via within-class variance minimization. Pattern Recognit. 2011, 44:2643-2655.
    • (2011) Pattern Recognit. , vol.44 , pp. 2643-2655
    • Chen, X.1    Yang, J.2    Ye, Q.3    Liang, J.4
  • 17
    • 0035789613 scopus 로고    scopus 로고
    • Proximal support vector machine classifiers
    • F. Provost, R. Srikant, Eds., Proceedings of the Knowledge Discovery and Data Mining
    • G. Fung, O.L. Mangasarian, Proximal support vector machine classifiers, in: F. Provost, R. Srikant, Eds., Proceedings of the Knowledge Discovery and Data Mining, 2001 pp. 77-86.
    • (2001) , pp. 77-86
    • Fung, G.1    Mangasarian, O.L.2
  • 18
    • 33644830072 scopus 로고    scopus 로고
    • Multisurface proximal support vector classification via generalize eigenvalues
    • Mangasarian O., Wild E. Multisurface proximal support vector classification via generalize eigenvalues. IEEE. Trans. Pattern. Anal. Mach. Intell. 2006, 28(1):69-74.
    • (2006) IEEE. Trans. Pattern. Anal. Mach. Intell. , vol.28 , Issue.1 , pp. 69-74
    • Mangasarian, O.1    Wild, E.2
  • 20
    • 60249095678 scopus 로고    scopus 로고
    • Least squares twin support vector machines for pattern classification
    • Arun Kumar M., Gopal M. Least squares twin support vector machines for pattern classification. Expert Syst. Appl. 2009, 36:7535-7543.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 7535-7543
    • Arun Kumar, M.1    Gopal, M.2
  • 21
  • 22
    • 78650241155 scopus 로고    scopus 로고
    • Localized twin SVM via convex minimization
    • Ye Q., Zhao C., Ye N., Chen X. Localized twin SVM via convex minimization. Neurocomputing 2011, 74:580-587.
    • (2011) Neurocomputing , vol.74 , pp. 580-587
    • Ye, Q.1    Zhao, C.2    Ye, N.3    Chen, X.4
  • 23
    • 77956058730 scopus 로고    scopus 로고
    • Multi-weight vector projection support vector machines
    • Ye Q., Zhao C., Ye N., Chen Y. Multi-weight vector projection support vector machines. Pattern Recognit. Lett. 2010, 31(13):2006-2011.
    • (2010) Pattern Recognit. Lett. , vol.31 , Issue.13 , pp. 2006-2011
    • Ye, Q.1    Zhao, C.2    Ye, N.3    Chen, Y.4
  • 24
    • 84857059738 scopus 로고    scopus 로고
    • Least squares recursive projection twin support vector machine for classification
    • Shao Y., Deng N., Yang Z. Least squares recursive projection twin support vector machine for classification. Pattern Recognition 2012, 45:2299-2307.
    • (2012) Pattern Recognition , vol.45 , pp. 2299-2307
    • Shao, Y.1    Deng, N.2    Yang, Z.3
  • 25
    • 0036887673 scopus 로고    scopus 로고
    • Linear programming support vector machines
    • Zhou W.D., Zhang L., Jiao L.C. Linear programming support vector machines. Pattern Recognit. 2002, 35(12):2927-2936.
    • (2002) Pattern Recognit. , vol.35 , Issue.12 , pp. 2927-2936
    • Zhou, W.D.1    Zhang, L.2    Jiao, L.C.3
  • 26
    • 84906070638 scopus 로고    scopus 로고
    • An improved 1-norm SVM for simultaneous classification and variable selection
    • Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics
    • H. Zou, An improved 1-norm SVM for simultaneous classification and variable selection, in: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, 2007.
    • (2007)
    • Zou, H.1
  • 28
    • 84859799805 scopus 로고    scopus 로고
    • A feature selection method for nonparallel plane support vector machine classification
    • Ye Q., Zhao C., Ye N., Zheng H., Chen X. A feature selection method for nonparallel plane support vector machine classification. Optim. Methods Softw. 2012, 27(3):431-443.
    • (2012) Optim. Methods Softw. , vol.27 , Issue.3 , pp. 431-443
    • Ye, Q.1    Zhao, C.2    Ye, N.3    Zheng, H.4    Chen, X.5
  • 29
    • 77952551649 scopus 로고    scopus 로고
    • Quotient vs difference: comparison between the two discriminant criteria
    • Tao Y., Yang J. Quotient vs difference: comparison between the two discriminant criteria. Neurocomputing 2010, 73:1808-1817.
    • (2010) Neurocomputing , vol.73 , pp. 1808-1817
    • Tao, Y.1    Yang, J.2
  • 31
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • Fung G., Mangasarian O.L. A feature selection Newton method for support vector machine classification. Comput. Optim. Appl. 2004, 28(2):185-202.
    • (2004) Comput. Optim. Appl. , vol.28 , Issue.2 , pp. 185-202
    • Fung, G.1    Mangasarian, O.L.2
  • 32
    • 0035272287 scopus 로고    scopus 로고
    • An introduction to kernel-based learning algorithms
    • Müller K.R., Mika S., Ratsch G. An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 2001, 12(2):181-202.
    • (2001) IEEE Trans. Neural Netw. , vol.12 , Issue.2 , pp. 181-202
    • Müller, K.R.1    Mika, S.2    Ratsch, G.3
  • 33
    • 84867864172 scopus 로고    scopus 로고
    • Bi-density twin support vector machines for pattern recognition
    • Peng X.i., Xu D. Bi-density twin support vector machines for pattern recognition. Neurocomputing 2013, 99:134-143.
    • (2013) Neurocomputing , vol.99 , pp. 134-143
    • Peng, X.1    Xu, D.2
  • 34
    • 84916886108 scopus 로고    scopus 로고
    • Graph-based Learning via auto-grouped sparse regularization and kernelized extension
    • 10.1109/TKDE.2014.2312322
    • Fang Y., Wang R., Dai B., Wu X. Graph-based Learning via auto-grouped sparse regularization and kernelized extension. IEEE Trans. Knowl. Data Eng. 2013, 25. 10.1109/TKDE.2014.2312322.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25
    • Fang, Y.1    Wang, R.2    Dai, B.3    Wu, X.4
  • 35
    • 0003408496 scopus 로고    scopus 로고
    • UCI Repository of Machine Learning Databases
    • Department of Information and Computer Sciences, University of California, Irvine
    • C. Blake, C. Merz, UCI Repository of Machine Learning Databases, Department of Information and Computer Sciences, University of California, Irvine, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (1998)
    • Blake, C.1    Merz, C.2
  • 36
    • 84906070630 scopus 로고    scopus 로고
    • NDC: Normally Distributed Clustered Datasets
    • D.R. Musicant, NDC: Normally Distributed Clustered Datasets, 1998. http://www.cs.wisc.edu/dmi/svm/ndc/.
    • (1998)
    • Musicant, D.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.