메뉴 건너뛰기




Volumn 134, Issue , 2014, Pages 173-180

Sparse Ridgelet Kernel Regressor and its online sequential extreme learning

Author keywords

Multiscale geometric analysis; Online Sequential Extreme Learning Algorithm; Sparse Ridgelet Kernel Regressor

Indexed keywords

LEARNING ALGORITHMS;

EID: 84896544553     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.12.066     Document Type: Article
Times cited : (5)

References (52)
  • 8
    • 33747454027 scopus 로고
    • The method of potential functions for the problem of restoring the characteristic of a function converter from randomly observed points
    • Aizerman M.A., Braverman E.M., Rozonoer L.I. The method of potential functions for the problem of restoring the characteristic of a function converter from randomly observed points. Autom. Remote Control 1964, 25(12):1546-1556.
    • (1964) Autom. Remote Control , vol.25 , Issue.12 , pp. 1546-1556
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.I.3
  • 9
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • Kimeldorf G., Wahba G. Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 1971, 33:82-95.
    • (1971) J. Math. Anal. Appl. , vol.33 , pp. 82-95
    • Kimeldorf, G.1    Wahba, G.2
  • 11
    • 61549123164 scopus 로고
    • An RKHS approach to detection and estimation theory: Some parameter estimation problems
    • Duttweiler D.L., Kailath T. (1973) An RKHS approach to detection and estimation theory: Some parameter estimation problems (Part V). IEEE Trans. Inf. Theory 1973, 19(1):29-37.
    • (1973) IEEE Trans. Inf. Theory 1973 , vol.19 , Issue.1 PART V , pp. 29-37
    • Duttweiler, D.L.1    Kailath, T.2
  • 15
    • 0141765796 scopus 로고    scopus 로고
    • Accurate on-line support vector regression
    • Ma J., James T., Simon P. Accurate on-line support vector regression. Neural Comput. 2003, 15(11):2683-2703.
    • (2003) Neural Comput. , vol.15 , Issue.11 , pp. 2683-2703
    • Ma, J.1    James, T.2    Simon, P.3
  • 16
    • 84896548349 scopus 로고    scopus 로고
    • Ridgelets and Their Derivatives: Representation of Images with Edges, Curves and Surfaces, Report
    • E.J. Candès, Ridgelets and Their Derivatives: Representation of Images with Edges, Curves and Surfaces, Report.
    • Candès, E.J.1
  • 17
    • 0036045780 scopus 로고    scopus 로고
    • Ridgelets and the Representation of Mutilated Sobolev Functions
    • Candès E.J. Ridgelets and the Representation of Mutilated Sobolev Functions. SIAM J. Math. Anal. 2002, 33(2):347-368.
    • (2002) SIAM J. Math. Anal. , vol.33 , Issue.2 , pp. 347-368
    • Candès, E.J.1
  • 22
    • 0034323731 scopus 로고    scopus 로고
    • Support vector machine techniques for nonlinear equalization
    • Sebald D.J., Bucklew J.A. Support vector machine techniques for nonlinear equalization. IEEE Trans. Signal Process. 2000, 48:3217-3226.
    • (2000) IEEE Trans. Signal Process. , vol.48 , pp. 3217-3226
    • Sebald, D.J.1    Bucklew, J.A.2
  • 24
    • 0034323731 scopus 로고    scopus 로고
    • Support vector machine techniques for nonlinear equalization
    • Sebald D.J., Bucklew J.A. Support vector machine techniques for nonlinear equalization. IEEE Trans. Signal Process. 2000, 48(11):3217-3226.
    • (2000) IEEE Trans. Signal Process. , vol.48 , Issue.11 , pp. 3217-3226
    • Sebald, D.J.1    Bucklew, J.A.2
  • 25
    • 40449132749 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • Advances in Neural Information Processing Systems (NIPS)
    • G. Cauwenberghs, T. Poggio, Incremental and decremental support vector machine learning, in: Advances in Neural Information Processing Systems (NIPS) , 2000.
    • (2000)
    • Cauwenberghs, G.1    Poggio, T.2
  • 26
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: Analysis, implementation and applications
    • Laskov P., Gehl C., Krüger S., Müller K.-R. Incremental support vector learning: Analysis, implementation and applications. J. Mach. Learn. Res. 2006, 7:1909-1936.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1909-1936
    • Laskov, P.1    Gehl, C.2    Krüger, S.3    Müller, K.-R.4
  • 27
    • 3543096272 scopus 로고    scopus 로고
    • The kernel recursive least-squares algorithm
    • Engel Y., Mannor S., Meir R. The kernel recursive least-squares algorithm. IEEE Trans. Signal Process. 2004, 52(8):2275-2285.
    • (2004) IEEE Trans. Signal Process. , vol.52 , Issue.8 , pp. 2275-2285
    • Engel, Y.1    Mannor, S.2    Meir, R.3
  • 28
    • 33646811886 scopus 로고    scopus 로고
    • Kernelized set-membership approach to nonlinear adaptive filtering
    • Malipatil A.V., Huang Y.-F., Andra S., Bennett K. Kernelized set-membership approach to nonlinear adaptive filtering. Proc. IEEE ICASSP 2005, IV:149-152.
    • (2005) Proc. IEEE ICASSP , vol.4 , pp. 149-152
    • Malipatil, A.V.1    Huang, Y.-F.2    Andra, S.3    Bennett, K.4
  • 30
    • 84862600000 scopus 로고    scopus 로고
    • Online (and offline) on an even tighter budget
    • Robert G. Cowell, Zoubin Ghahramani, (Eds.)
    • J. Weston, A. Bordes, L. Bottou, Online (and offline) on an even tighter budget, in: Robert G.Cowell, Zoubin Ghahramani, (Eds.), Proceedings of AISTATS, 2005, pp. 413-420.
    • (2005) Proceedings of AISTATS , pp. 413-420
    • Weston, J.1    Bordes, A.2    Bottou, L.3
  • 33
    • 55249109544 scopus 로고    scopus 로고
    • The Forgetron: a kernel-based perceptron on a budget
    • Dekel O., Shwartz S.S., Singer Y. The Forgetron: a kernel-based perceptron on a budget. SIAM J. Comput. 2007, 37(5):1342-1372.
    • (2007) SIAM J. Comput. , vol.37 , Issue.5 , pp. 1342-1372
    • Dekel, O.1    Shwartz, S.S.2    Singer, Y.3
  • 37
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Huang G.B., Ding X., Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74:155-163.
    • (2010) Neurocomputing , vol.74 , pp. 155-163
    • Huang, G.B.1    Ding, X.2    Zhou, H.3
  • 38
    • 33751281398 scopus 로고    scopus 로고
    • On-line sequential extreme learning machine, in: International Conference on Computational Intelligence (CI)
    • Calgary, Canada, July 4-6
    • G.B. Huang, N.Y. Liang, H.J. Rong, P. Saratchandran, N. Sundararajan, On-line sequential extreme learning machine, in: International Conference on Computational Intelligence (CI) , Calgary, Canada, July 4-6, 2005.
    • (2005)
    • Huang, G.B.1    Liang, N.Y.2    Rong, H.J.3    Saratchandran, P.4    Sundararajan, N.5
  • 39
    • 85008039450 scopus 로고    scopus 로고
    • On-line sequential fuzzy extreme learning machine for function approximation and classification problems
    • Rong H.J., Huang G.B., Saratchandran P., Sundararajan N. On-line sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans. Syst. Man Cybern.: Pt. B 2009, 39(4):1067-1072.
    • (2009) IEEE Trans. Syst. Man Cybern.: Pt. B , vol.39 , Issue.4 , pp. 1067-1072
    • Rong, H.J.1    Huang, G.B.2    Saratchandran, P.3    Sundararajan, N.4
  • 40
    • 77954299719 scopus 로고    scopus 로고
    • Ensemble of online sequential extreme learning machine
    • Lan Y., Soh Y.C., Huang G.B. Ensemble of online sequential extreme learning machine. Neurocomputing 2009, 72:3391-3395.
    • (2009) Neurocomputing , vol.72 , pp. 3391-3395
    • Lan, Y.1    Soh, Y.C.2    Huang, G.B.3
  • 42
    • 77249093592 scopus 로고    scopus 로고
    • Insulator condition analysis for overhead distribution lines using combined wavelet support vector machine (SVM)
    • Murthy V.S., Tarakanath K., Mohanta D.K., Gupta S. Insulator condition analysis for overhead distribution lines using combined wavelet support vector machine (SVM). IEEE Trans. Dielectr. Electr. Insul. 2010, 17(1):89-99.
    • (2010) IEEE Trans. Dielectr. Electr. Insul. , vol.17 , Issue.1 , pp. 89-99
    • Murthy, V.S.1    Tarakanath, K.2    Mohanta, D.K.3    Gupta, S.4
  • 43
    • 84865804696 scopus 로고    scopus 로고
    • Ridgelets: Estimating with Ridge Functions
    • Techinal Report
    • Candès, Ridgelets: Estimating with Ridge Functions, Techinal Report, 2003.
    • (2003)
    • Candès1
  • 44
    • 33751003477 scopus 로고    scopus 로고
    • Geometrical multi-resolution network based on ridgelet frame
    • Yang S.Y., Wang M., Jiao L.C. Geometrical multi-resolution network based on ridgelet frame. Signal Process. 2007, 87(4):750-761.
    • (2007) Signal Process. , vol.87 , Issue.4 , pp. 750-761
    • Yang, S.Y.1    Wang, M.2    Jiao, L.C.3
  • 45
    • 70350712157 scopus 로고    scopus 로고
    • A linear ridgelet neural network
    • Yang S.Y., Wang M., Jiao L.C. A linear ridgelet neural network. NeuroComputing 2009, 73(1-3):468-477.
    • (2009) NeuroComputing , vol.73 , Issue.1-3 , pp. 468-477
    • Yang, S.Y.1    Wang, M.2    Jiao, L.C.3
  • 46
    • 55949087424 scopus 로고    scopus 로고
    • Incremental constructive ridgelet neural network
    • Yang S.Y., Wang M., Jiao L.C. Incremental constructive ridgelet neural network. NeuroComputing 2008, 72(1-3):367-377.
    • (2008) NeuroComputing , vol.72 , Issue.1-3 , pp. 367-377
    • Yang, S.Y.1    Wang, M.2    Jiao, L.C.3
  • 49
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm: explosion, stability, and convergence in a multidimensional complex space
    • Clerc M., Kennedy J. The particle swarm: explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6:58-73.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 50
    • 84896545306 scopus 로고    scopus 로고
    • IEEE Std 1159-1995, IEEE Recommended Practice for Monitoring Electric Power Quality
    • IEEE Std 1159-1995, IEEE Recommended Practice for Monitoring Electric Power Quality.
  • 52
    • 41249090047 scopus 로고    scopus 로고
    • Recognition of power quality events by using multiwavelet-based neural networks
    • Kaewarsa S., et al. Recognition of power quality events by using multiwavelet-based neural networks. Electr. Power Energy Syst. 2008, 30:254-260.
    • (2008) Electr. Power Energy Syst. , vol.30 , pp. 254-260
    • Kaewarsa, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.