-
1
-
-
0001731811
-
The identification of linear and nonlinear models of a turbocharged automotive diesel engine
-
Billings S., Chen S., and Backhouse R. The identification of linear and nonlinear models of a turbocharged automotive diesel engine. Mechanical Systems and Signal Processing 3 2 (1989) 123-142
-
(1989)
Mechanical Systems and Signal Processing
, vol.3
, Issue.2
, pp. 123-142
-
-
Billings, S.1
Chen, S.2
Backhouse, R.3
-
2
-
-
0000588294
-
Improving the generalization properties of radial basis function neural networks
-
Bishop C. Improving the generalization properties of radial basis function neural networks. Neural Computation 3 4 (1991) 579-581
-
(1991)
Neural Computation
, vol.3
, Issue.4
, pp. 579-581
-
-
Bishop, C.1
-
3
-
-
84949203556
-
-
Chen, S. (2002). Locally regularized orthogonal least squares for the construction of sparse kernel regression models. In Proceeding of 6th int. conf. signal processing: Vol. 2 (pp. 1229-1232)
-
-
-
-
4
-
-
29444447147
-
Local regularization assisted orthogonal least squares regression
-
Chen S. Local regularization assisted orthogonal least squares regression. Neurocomputing 69 (2006) 559-585
-
(2006)
Neurocomputing
, vol.69
, pp. 559-585
-
-
Chen, S.1
-
5
-
-
0024631931
-
Representations of nonlinear systems: The NARMAX model
-
Chen S., and Billings S. Representations of nonlinear systems: The NARMAX model. International Journal of Control 49 3 (1989) 1013-1032
-
(1989)
International Journal of Control
, vol.49
, Issue.3
, pp. 1013-1032
-
-
Chen, S.1
Billings, S.2
-
6
-
-
0024771664
-
Orthogonal least squares methods and their application to non-linear system identification
-
Chen S., Billings S., and Luo W. Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control 50 5 (1989) 1873-1896
-
(1989)
International Journal of Control
, vol.50
, Issue.5
, pp. 1873-1896
-
-
Chen, S.1
Billings, S.2
Luo, W.3
-
7
-
-
0026116468
-
Orthogonal least squares learning algorithm for radial basis function networks
-
Chen S., Cowan C., and Grant P. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 2 (1991) 302-309
-
(1991)
IEEE Transactions on Neural Networks
, vol.2
, pp. 302-309
-
-
Chen, S.1
Cowan, C.2
Grant, P.3
-
8
-
-
0038548172
-
Sparse kernel regression modelling using combined locally regularized orthogonal least squares and D-optimality experimental design
-
Chen S., Hong X., and Harris C. Sparse kernel regression modelling using combined locally regularized orthogonal least squares and D-optimality experimental design. IEEE Transactions on Automatic Control 48 6 (2003) 1029-1036
-
(2003)
IEEE Transactions on Automatic Control
, vol.48
, Issue.6
, pp. 1029-1036
-
-
Chen, S.1
Hong, X.2
Harris, C.3
-
9
-
-
0031632516
-
-
Drezet, P., & Harrison, R. (1998). Support vector machines for system identification. In Proceeding of UKACC int. conf. control'98 (pp. 688-692)
-
-
-
-
10
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman J. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29 5 (2001) 1189-1232
-
(2001)
Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.1
-
11
-
-
34548427112
-
-
Gestel, T., Espinoza, M., Suykens, J., Brasseur, C., & deMoor, B. (2003). Bayesian input selection for nonlinear regression with LS-SVMS. In Proceedings of 13th IFAC symposium on system identification(pp. 27-29)
-
-
-
-
13
-
-
34548401377
-
-
Kruif, B., & Vries, T. (2002). Support-vector-based least squares for learning non-linear dynamics. In Proceedings of 41st IEEE conference on decision and control (pp. 10-13)
-
-
-
-
14
-
-
0001025418
-
Bayesian interpolation
-
MacKay D. Bayesian interpolation. Neural Computation 4 3 (1992) 415-447
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.1
-
16
-
-
33751560009
-
Regularization in the selection of radial basis function centres
-
Orr M. Regularization in the selection of radial basis function centres. Neural Computation 7 3 (1995) 606-623
-
(1995)
Neural Computation
, vol.7
, Issue.3
, pp. 606-623
-
-
Orr, M.1
-
17
-
-
0000473139
-
A sparse representation for function approximation
-
Poggio T., and Girosi F. A sparse representation for function approximation. Neural Computation 10 (1998) 1445-1454
-
(1998)
Neural Computation
, vol.10
, pp. 1445-1454
-
-
Poggio, T.1
Girosi, F.2
-
19
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens J., van Gestel T., DeBrabanter J., and DeMoor B. Least square support vector machines (2002), World Scientific, Singapore
-
(2002)
Least square support vector machines
-
-
Suykens, J.1
van Gestel, T.2
DeBrabanter, J.3
DeMoor, B.4
-
21
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping M. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1 (2001) 211-244
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.1
-
22
-
-
34548439141
-
-
Valyon, J., & Horváth, G. (2003). A generalized LS-SVM. In J. Principe, L. Gile, N. Morgan, and E. Wilson (Eds.), Proceedings of 13th IFAC symposium on system identification
-
-
-
|