메뉴 건너뛰기




Volumn 20, Issue 7, 2007, Pages 791-798

Significant vector learning to construct sparse kernel regression models

Author keywords

Orthogonal least square; Relevance vector machine; Significant vector machine; Sparse kernel regression

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; REGRESSION ANALYSIS;

EID: 34548455315     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2007.03.001     Document Type: Article
Times cited : (25)

References (23)
  • 1
    • 0001731811 scopus 로고
    • The identification of linear and nonlinear models of a turbocharged automotive diesel engine
    • Billings S., Chen S., and Backhouse R. The identification of linear and nonlinear models of a turbocharged automotive diesel engine. Mechanical Systems and Signal Processing 3 2 (1989) 123-142
    • (1989) Mechanical Systems and Signal Processing , vol.3 , Issue.2 , pp. 123-142
    • Billings, S.1    Chen, S.2    Backhouse, R.3
  • 2
    • 0000588294 scopus 로고
    • Improving the generalization properties of radial basis function neural networks
    • Bishop C. Improving the generalization properties of radial basis function neural networks. Neural Computation 3 4 (1991) 579-581
    • (1991) Neural Computation , vol.3 , Issue.4 , pp. 579-581
    • Bishop, C.1
  • 3
    • 84949203556 scopus 로고    scopus 로고
    • Chen, S. (2002). Locally regularized orthogonal least squares for the construction of sparse kernel regression models. In Proceeding of 6th int. conf. signal processing: Vol. 2 (pp. 1229-1232)
  • 4
    • 29444447147 scopus 로고    scopus 로고
    • Local regularization assisted orthogonal least squares regression
    • Chen S. Local regularization assisted orthogonal least squares regression. Neurocomputing 69 (2006) 559-585
    • (2006) Neurocomputing , vol.69 , pp. 559-585
    • Chen, S.1
  • 5
    • 0024631931 scopus 로고
    • Representations of nonlinear systems: The NARMAX model
    • Chen S., and Billings S. Representations of nonlinear systems: The NARMAX model. International Journal of Control 49 3 (1989) 1013-1032
    • (1989) International Journal of Control , vol.49 , Issue.3 , pp. 1013-1032
    • Chen, S.1    Billings, S.2
  • 6
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • Chen S., Billings S., and Luo W. Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control 50 5 (1989) 1873-1896
    • (1989) International Journal of Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.2    Luo, W.3
  • 7
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., Cowan C., and Grant P. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 2 (1991) 302-309
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.2    Grant, P.3
  • 8
    • 0038548172 scopus 로고    scopus 로고
    • Sparse kernel regression modelling using combined locally regularized orthogonal least squares and D-optimality experimental design
    • Chen S., Hong X., and Harris C. Sparse kernel regression modelling using combined locally regularized orthogonal least squares and D-optimality experimental design. IEEE Transactions on Automatic Control 48 6 (2003) 1029-1036
    • (2003) IEEE Transactions on Automatic Control , vol.48 , Issue.6 , pp. 1029-1036
    • Chen, S.1    Hong, X.2    Harris, C.3
  • 9
    • 0031632516 scopus 로고    scopus 로고
    • Drezet, P., & Harrison, R. (1998). Support vector machines for system identification. In Proceeding of UKACC int. conf. control'98 (pp. 688-692)
  • 10
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman J. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29 5 (2001) 1189-1232
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.1
  • 11
    • 34548427112 scopus 로고    scopus 로고
    • Gestel, T., Espinoza, M., Suykens, J., Brasseur, C., & deMoor, B. (2003). Bayesian input selection for nonlinear regression with LS-SVMS. In Proceedings of 13th IFAC symposium on system identification(pp. 27-29)
  • 13
    • 34548401377 scopus 로고    scopus 로고
    • Kruif, B., & Vries, T. (2002). Support-vector-based least squares for learning non-linear dynamics. In Proceedings of 41st IEEE conference on decision and control (pp. 10-13)
  • 14
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D. Bayesian interpolation. Neural Computation 4 3 (1992) 415-447
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.1
  • 16
    • 33751560009 scopus 로고
    • Regularization in the selection of radial basis function centres
    • Orr M. Regularization in the selection of radial basis function centres. Neural Computation 7 3 (1995) 606-623
    • (1995) Neural Computation , vol.7 , Issue.3 , pp. 606-623
    • Orr, M.1
  • 17
    • 0000473139 scopus 로고    scopus 로고
    • A sparse representation for function approximation
    • Poggio T., and Girosi F. A sparse representation for function approximation. Neural Computation 10 (1998) 1445-1454
    • (1998) Neural Computation , vol.10 , pp. 1445-1454
    • Poggio, T.1    Girosi, F.2
  • 21
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1 (2001) 211-244
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.1
  • 22
    • 34548439141 scopus 로고    scopus 로고
    • Valyon, J., & Horváth, G. (2003). A generalized LS-SVM. In J. Principe, L. Gile, N. Morgan, and E. Wilson (Eds.), Proceedings of 13th IFAC symposium on system identification


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.