메뉴 건너뛰기




Volumn 137, Issue , 2014, Pages 192-197

Locally adaptive multiple kernel clustering

Author keywords

Kernel clustering methods; Kernel k means clustering; Localized multiple kernel clustering; Multiple kernel learning

Indexed keywords

OPTIMIZATION;

EID: 84899627207     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.05.064     Document Type: Article
Times cited : (18)

References (39)
  • 2
    • 10644261327 scopus 로고    scopus 로고
    • Evaluation of the performance of clustering algorithms in kernel-induced feature space
    • Kim D.W., Lee K.Y., Lee D., Lee K.H. Evaluation of the performance of clustering algorithms in kernel-induced feature space. Pattern Recognit. 2005, 38:607-611.
    • (2005) Pattern Recognit. , vol.38 , pp. 607-611
    • Kim, D.W.1    Lee, K.Y.2    Lee, D.3    Lee, K.H.4
  • 4
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A.J., Müller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10:1299-1319.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.R.3
  • 5
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • Girolami M. Mercer kernel-based clustering in feature space. IEEE Trans. Neural Netw. 2002, 13:780-784.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 780-784
    • Girolami, M.1
  • 9
    • 84864995790 scopus 로고    scopus 로고
    • A unified view of kernel k-means, spectral clustering and graph cuts
    • Dhillon I.S., Guan Y., Kulis B. A unified view of kernel k-means, spectral clustering and graph cuts. Comput. Complex. 2005, 25:1-20.
    • (2005) Comput. Complex. , vol.25 , pp. 1-20
    • Dhillon, I.S.1    Guan, Y.2    Kulis, B.3
  • 14
    • 84863385308 scopus 로고    scopus 로고
    • An extended level method for efficient multiple kernel learning
    • Xu Z., Jin R., King I., Lyu M.R. An extended level method for efficient multiple kernel learning. Adv. Neural Inf. Process. Syst. 2009, 21:1825-1832.
    • (2009) Adv. Neural Inf. Process. Syst. , vol.21 , pp. 1825-1832
    • Xu, Z.1    Jin, R.2    King, I.3    Lyu, M.R.4
  • 15
    • 70450141068 scopus 로고    scopus 로고
    • Infinite kernel learning
    • Technical Report No. TR-178, Max Planck Institute for Biological Cybernetics
    • P.V. Gehler, S. Nowozin, Infinite kernel learning, Technical Report No. TR-178, Max Planck Institute for Biological Cybernetics, 2008.
    • (2008)
    • Gehler, P.V.1    Nowozin, S.2
  • 21
    • 77956324356 scopus 로고    scopus 로고
    • Darrell Bayesian localized multiple kernel learning
    • Technical Report No. UCB/EECS-2009-96, University of California, USA
    • M. Christoudias, R. Urtasun, T. Darrell Bayesian localized multiple kernel learning, Technical Report No. UCB/EECS-2009-96, University of California, USA, 2009.
    • (2009)
    • Christoudias, M.1    Urtasun, R.T.2
  • 22
    • 79751530702 scopus 로고    scopus 로고
    • Non-uniform multiple kernel learning with cluster-based gating functions
    • Mu Y., Zhou B. Non-uniform multiple kernel learning with cluster-based gating functions. Neurocomputing 2011, 74:1095-1101.
    • (2011) Neurocomputing , vol.74 , pp. 1095-1101
    • Mu, Y.1    Zhou, B.2
  • 25
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for the k-means algorithm
    • Peña J.M., Lozano J.A., Larrañaga P. An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recognit. Lett. 1999, 20:1027-1040.
    • (1999) Pattern Recognit. Lett. , vol.20 , pp. 1027-1040
    • Peña, J.M.1    Lozano, J.A.2    Larrañaga, P.3
  • 31
    • 0036161242 scopus 로고    scopus 로고
    • Text categorization with support vector machines. How to represent texts in input space?
    • Leopold E., Kindermann J. Text categorization with support vector machines. How to represent texts in input space?. Mach. Learn. 2002, 46:423-444.
    • (2002) Mach. Learn. , vol.46 , pp. 423-444
    • Leopold, E.1    Kindermann, J.2
  • 33
    • 80052892041 scopus 로고    scopus 로고
    • A multiple-kernel fuzzy c-means algorithm for image segmentation
    • Chen L., Chen C.L., Lu M. A multiple-kernel fuzzy c-means algorithm for image segmentation. IEEE Trans. Syst., Man, Cybern. Part B 2011, 41(5):1263-1274.
    • (2011) IEEE Trans. Syst., Man, Cybern. Part B , vol.41 , Issue.5 , pp. 1263-1274
    • Chen, L.1    Chen, C.L.2    Lu, M.3
  • 35
    • 84872242129 scopus 로고    scopus 로고
    • Fuzzy c-means clustering with local information and kernel metric for image segmentation
    • Gong M., Liang Y., Shi J., Ma W., Ma J. Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 2013, 22(2):573-584.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.2 , pp. 573-584
    • Gong, M.1    Liang, Y.2    Shi, J.3    Ma, W.4    Ma, J.5
  • 37
    • 0037331011 scopus 로고    scopus 로고
    • An algorithm for data-driven bandwidth selection
    • Comaniciu D. An algorithm for data-driven bandwidth selection. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25(2):281-288.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.2 , pp. 281-288
    • Comaniciu, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.