메뉴 건너뛰기




Volumn 163, Issue , 2015, Pages 106-114

Improving the kernel regularized least squares method for small-sample regression

Author keywords

Cross validation; Kernel regularizedleast squares; Non linear regression; Parameter selection; RBF kernel; Spline kernel

Indexed keywords

ADDITIVES; REGRESSION ANALYSIS;

EID: 84930276942     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.12.097     Document Type: Article
Times cited : (11)

References (19)
  • 2
    • 84930273613 scopus 로고
    • Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Penn., USA.
    • G. Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Penn., USA, 1990.
    • (1990)
    • Wahba, G.1
  • 3
    • 0003425666 scopus 로고    scopus 로고
    • An Equivalence Between Sparse Approximation and Support Vector Machines, Technical Report
    • Massachusetts Institute of Technology
    • F. Girosi, An Equivalence Between Sparse Approximation and Support Vector Machines, Technical Report, Massachusetts Institute of Technology, 1997. http://cbcl.mit.edu/publications/ai-publications/1500-1999/AIM-1606.ps.
    • (1997)
    • Girosi, F.1
  • 4
    • 84930276275 scopus 로고    scopus 로고
    • Everything old is new again: a fresh look at historical approaches in machine learning (Ph.D. thesis), MIT-Sloan School of Management
    • R.M. Rifkin, Everything old is new again: a fresh look at historical approaches in machine learning (Ph.D. thesis), MIT-Sloan School of Management, 2006. URL . http://dspace.mit.edu/bitstream/handle/1721.1/17549/51896466.pdf?sequence=1.
    • (2006)
    • Rifkin, R.M.1
  • 6
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • Steinwart I. On the influence of the kernel on the consistency of support vector machines. J. Mach. Learn. Res. 2001, 2:67-93.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 8
    • 0000406385 scopus 로고
    • A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
    • Kimeldorf G., Wahba G. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Stat. 1970, 41(2):495-502.
    • (1970) Ann. Math. Stat. , vol.41 , Issue.2 , pp. 495-502
    • Kimeldorf, G.1    Wahba, G.2
  • 9
    • 0003281852 scopus 로고
    • On estimation of characters obtained in statistical procedure of recognition
    • (in Russian)
    • Luntz A., Brailovsky V. On estimation of characters obtained in statistical procedure of recognition. Techn. Kibern. 1969, 3. (in Russian).
    • (1969) Techn. Kibern. , vol.3
    • Luntz, A.1    Brailovsky, V.2
  • 10
    • 51249190305 scopus 로고
    • Statistical predictor identification
    • Akaike H. Statistical predictor identification. Ann. Inst. Stat. Math. 1970, 22(1):203-217.
    • (1970) Ann. Inst. Stat. Math. , vol.22 , Issue.1 , pp. 203-217
    • Akaike, H.1
  • 11
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions. estimating the correct degree of smoothing by the method of generalized cross-validation
    • Wahba G., Craven P. Smoothing noisy data with spline functions. estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 1979, 31:377-404.
    • (1979) Numer. Math. , vol.31 , pp. 377-404
    • Wahba, G.1    Craven, P.2
  • 12
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Stat. 1978, 6(2):461-464.
    • (1978) Ann. Stat. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 13
    • 77956887130 scopus 로고
    • An optimal selection of regression variables
    • Shibata R. An optimal selection of regression variables. Biometrika 1981, 68(1):45-54.
    • (1981) Biometrika , vol.68 , Issue.1 , pp. 45-54
    • Shibata, R.1
  • 14
    • 0032595046 scopus 로고    scopus 로고
    • Model complexity control for regression using VC generalization bounds
    • Cherkassky V., Shao X., Mulier F., Vapnik V. Model complexity control for regression using VC generalization bounds. IEEE Trans. Neural Netw. 1999, 10(5):1075-1089.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.5 , pp. 1075-1089
    • Cherkassky, V.1    Shao, X.2    Mulier, F.3    Vapnik, V.4
  • 18
    • 0036643075 scopus 로고    scopus 로고
    • Model selection for small sample regression
    • Chapelle O., Vapnik V., Bengio Y. Model selection for small sample regression. Mach. Learn. 2002, 48(1-3):9-23.
    • (2002) Mach. Learn. , vol.48 , Issue.1-3 , pp. 9-23
    • Chapelle, O.1    Vapnik, V.2    Bengio, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.