-
1
-
-
0003408420
-
-
MIT Press, Cambridge, Mass., USA
-
Schölkopf B., Smola A.J. Learning With Kernels: Support Vector Machines, Regularization, Optimization and Beyond 2002, MIT Press, Cambridge, Mass., USA.
-
(2002)
Learning With Kernels: Support Vector Machines, Regularization, Optimization and Beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
2
-
-
84930273613
-
-
Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Penn., USA.
-
G. Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Penn., USA, 1990.
-
(1990)
-
-
Wahba, G.1
-
3
-
-
0003425666
-
An Equivalence Between Sparse Approximation and Support Vector Machines, Technical Report
-
Massachusetts Institute of Technology
-
F. Girosi, An Equivalence Between Sparse Approximation and Support Vector Machines, Technical Report, Massachusetts Institute of Technology, 1997. http://cbcl.mit.edu/publications/ai-publications/1500-1999/AIM-1606.ps.
-
(1997)
-
-
Girosi, F.1
-
4
-
-
84930276275
-
-
Everything old is new again: a fresh look at historical approaches in machine learning (Ph.D. thesis), MIT-Sloan School of Management
-
R.M. Rifkin, Everything old is new again: a fresh look at historical approaches in machine learning (Ph.D. thesis), MIT-Sloan School of Management, 2006. URL . http://dspace.mit.edu/bitstream/handle/1721.1/17549/51896466.pdf?sequence=1.
-
(2006)
-
-
Rifkin, R.M.1
-
6
-
-
0010786475
-
On the influence of the kernel on the consistency of support vector machines
-
Steinwart I. On the influence of the kernel on the consistency of support vector machines. J. Mach. Learn. Res. 2001, 2:67-93.
-
(2001)
J. Mach. Learn. Res.
, vol.2
, pp. 67-93
-
-
Steinwart, I.1
-
7
-
-
84893524779
-
Multidimensional splines with infinite number of knots as SVM kernels
-
R. Izmailov, V. Vapnik, A. Vashist, Multidimensional splines with infinite number of knots as SVM kernels, in: IJCNN '13: Proceedings of the 2013 International Joint Conference on Neural Networks, 2013, pp. 1-7.
-
(2013)
IJCNN '13: Proceedings of the 2013 International Joint Conference on Neural Networks
, pp. 1-7
-
-
Izmailov, R.1
Vapnik, V.2
Vashist, A.3
-
8
-
-
0000406385
-
A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
-
Kimeldorf G., Wahba G. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Stat. 1970, 41(2):495-502.
-
(1970)
Ann. Math. Stat.
, vol.41
, Issue.2
, pp. 495-502
-
-
Kimeldorf, G.1
Wahba, G.2
-
9
-
-
0003281852
-
On estimation of characters obtained in statistical procedure of recognition
-
(in Russian)
-
Luntz A., Brailovsky V. On estimation of characters obtained in statistical procedure of recognition. Techn. Kibern. 1969, 3. (in Russian).
-
(1969)
Techn. Kibern.
, vol.3
-
-
Luntz, A.1
Brailovsky, V.2
-
10
-
-
51249190305
-
Statistical predictor identification
-
Akaike H. Statistical predictor identification. Ann. Inst. Stat. Math. 1970, 22(1):203-217.
-
(1970)
Ann. Inst. Stat. Math.
, vol.22
, Issue.1
, pp. 203-217
-
-
Akaike, H.1
-
11
-
-
34250263445
-
Smoothing noisy data with spline functions. estimating the correct degree of smoothing by the method of generalized cross-validation
-
Wahba G., Craven P. Smoothing noisy data with spline functions. estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 1979, 31:377-404.
-
(1979)
Numer. Math.
, vol.31
, pp. 377-404
-
-
Wahba, G.1
Craven, P.2
-
12
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz G. Estimating the dimension of a model. Ann. Stat. 1978, 6(2):461-464.
-
(1978)
Ann. Stat.
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
13
-
-
77956887130
-
An optimal selection of regression variables
-
Shibata R. An optimal selection of regression variables. Biometrika 1981, 68(1):45-54.
-
(1981)
Biometrika
, vol.68
, Issue.1
, pp. 45-54
-
-
Shibata, R.1
-
14
-
-
0032595046
-
Model complexity control for regression using VC generalization bounds
-
Cherkassky V., Shao X., Mulier F., Vapnik V. Model complexity control for regression using VC generalization bounds. IEEE Trans. Neural Netw. 1999, 10(5):1075-1089.
-
(1999)
IEEE Trans. Neural Netw.
, vol.10
, Issue.5
, pp. 1075-1089
-
-
Cherkassky, V.1
Shao, X.2
Mulier, F.3
Vapnik, V.4
-
15
-
-
85052767164
-
-
Chapman and Hall, Boca Raton, FL, USA
-
Hastie T.J., Tibshirani R.J. Generalized Additive Models, CRC Monographs on Statistics and Applied Probability 1990, Chapman and Hall, Boca Raton, FL, USA.
-
(1990)
Generalized Additive Models, CRC Monographs on Statistics and Applied Probability
-
-
Hastie, T.J.1
Tibshirani, R.J.2
-
17
-
-
84894198524
-
-
MIT Press
-
Schuurmans D., Southey F., Wilkinson D., Guo Y. Metric-based Approaches for Semi-supervised Regression and Classification, Adaptive Computation and Machine Learning 2006, MIT Press, pp. 421-451.
-
(2006)
Metric-based Approaches for Semi-supervised Regression and Classification, Adaptive Computation and Machine Learning
, pp. 421-451
-
-
Schuurmans, D.1
Southey, F.2
Wilkinson, D.3
Guo, Y.4
-
18
-
-
0036643075
-
Model selection for small sample regression
-
Chapelle O., Vapnik V., Bengio Y. Model selection for small sample regression. Mach. Learn. 2002, 48(1-3):9-23.
-
(2002)
Mach. Learn.
, vol.48
, Issue.1-3
, pp. 9-23
-
-
Chapelle, O.1
Vapnik, V.2
Bengio, Y.3
-
19
-
-
79951829331
-
KEEL data-mining software tool. data set repository, integration of algorithms and experimental analysis framework
-
Alcalá-Fernández J., Fernández A., Luengo J., Derrac J., García S., Sánchez L., Herrera F. KEEL data-mining software tool. data set repository, integration of algorithms and experimental analysis framework. J. Mult. Valued Logic Soft Comput. 2011, 17(2-3):255-287.
-
(2011)
J. Mult. Valued Logic Soft Comput.
, vol.17
, Issue.2-3
, pp. 255-287
-
-
Alcalá-Fernández, J.1
Fernández, A.2
Luengo, J.3
Derrac, J.4
García, S.5
Sánchez, L.6
Herrera, F.7
|