메뉴 건너뛰기




Volumn 41, Issue 10, 2016, Pages 834-846

Circadian Oscillators: Around the Transcription–Translation Feedback Loop and on to Output

Author keywords

antisense.; clock; intrinsically disordered protein; codon bias; PTO; TTFL

Indexed keywords

TRANSCRIPTION FACTOR; CIRCADIAN RHYTHM SIGNALING PROTEIN; CODON; INTRINSICALLY DISORDERED PROTEIN;

EID: 84991716912     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2016.07.009     Document Type: Review
Times cited : (143)

References (100)
  • 1
    • 0033593306 scopus 로고    scopus 로고
    • Molecular bases for circadian clocks
    • 1 Dunlap, J.C., Molecular bases for circadian clocks. Cell 96 (1999), 271–490.
    • (1999) Cell , vol.96 , pp. 271-490
    • Dunlap, J.C.1
  • 2
    • 84862675384 scopus 로고    scopus 로고
    • Central and peripheral circadian clocks in mammals
    • 2 Mohawk, J.A., et al. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35 (2012), 445–462.
    • (2012) Annu. Rev. Neurosci. , vol.35 , pp. 445-462
    • Mohawk, J.A.1
  • 3
    • 0242669950 scopus 로고    scopus 로고
    • Role for antisense RNA in regulating circadian clock function in Neurospora crassa
    • 3 Kramer, C., et al. Role for antisense RNA in regulating circadian clock function in Neurospora crassa. Nature 421 (2003), 948–952.
    • (2003) Nature , vol.421 , pp. 948-952
    • Kramer, C.1
  • 4
    • 84867667011 scopus 로고    scopus 로고
    • Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
    • 4 Koike, N., et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338 (2012), 349–354.
    • (2012) Science , vol.338 , pp. 349-354
    • Koike, N.1
  • 5
    • 84929658409 scopus 로고    scopus 로고
    • The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin
    • 5 Li, N., et al. The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 4357–4362.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 4357-4362
    • Li, N.1
  • 6
    • 84908432601 scopus 로고    scopus 로고
    • Transcriptional interference by antisense RNA is required for circadian clock function
    • 6 Xue, Z., et al. Transcriptional interference by antisense RNA is required for circadian clock function. Nature 514 (2014), 650–653.
    • (2014) Nature , vol.514 , pp. 650-653
    • Xue, Z.1
  • 7
    • 84869083002 scopus 로고    scopus 로고
    • RNA polymerase II collision interrupts convergent transcription
    • 7 Hobson, D.J., et al. RNA polymerase II collision interrupts convergent transcription. Mol. Cell 48 (2012), 365–374.
    • (2012) Mol. Cell , vol.48 , pp. 365-374
    • Hobson, D.J.1
  • 8
    • 79960953992 scopus 로고    scopus 로고
    • CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency
    • 8 Belden, W.J., et al. CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLoS Genet., 7, 2011, e1002166.
    • (2011) PLoS Genet. , vol.7 , pp. e1002166
    • Belden, W.J.1
  • 9
    • 0034617102 scopus 로고    scopus 로고
    • Interconnected feedback loops in the Neurospora circadian system
    • 9 Lee, K., et al. Interconnected feedback loops in the Neurospora circadian system. Science 289 (2000), 107–110.
    • (2000) Science , vol.289 , pp. 107-110
    • Lee, K.1
  • 10
    • 4544332585 scopus 로고    scopus 로고
    • Clock gene evolution and functional divergence
    • 10 Tauber, E., et al. Clock gene evolution and functional divergence. J. Biol. Rhythms 19 (2004), 445–458.
    • (2004) J. Biol. Rhythms , vol.19 , pp. 445-458
    • Tauber, E.1
  • 11
    • 33751251331 scopus 로고    scopus 로고
    • How fungi keep time: circadian system in Neurospora and other fungi
    • 11 Dunlap, J.C., Loros, J.J., How fungi keep time: circadian system in Neurospora and other fungi. Growth Dev. 9 (2006), 579–587.
    • (2006) Growth Dev. , vol.9 , pp. 579-587
    • Dunlap, J.C.1    Loros, J.J.2
  • 12
    • 77951887222 scopus 로고    scopus 로고
    • The diversity and evolution of circadian clock proteins in fungi
    • 12 Salichos, L., Rokas, A., The diversity and evolution of circadian clock proteins in fungi. Mycologia 102 (2010), 269–278.
    • (2010) Mycologia , vol.102 , pp. 269-278
    • Salichos, L.1    Rokas, A.2
  • 13
    • 84943382924 scopus 로고    scopus 로고
    • Analysis of circadian rhythms in the basal filamentous 1 ascomycete Pyronema confluens
    • 13 Traeger, S., Nowrousian, M., Analysis of circadian rhythms in the basal filamentous 1 ascomycete Pyronema confluens. G3 5 (2015), 2061–2071.
    • (2015) G3 , vol.5 , pp. 2061-2071
    • Traeger, S.1    Nowrousian, M.2
  • 14
    • 84973411962 scopus 로고    scopus 로고
    • Around the fungal clock: recent advances in the molecular study of circadian clocks in Neurospora and other fungi
    • 14 Montenegro-Montero, A., et al. Around the fungal clock: recent advances in the molecular study of circadian clocks in Neurospora and other fungi. Adv. Genet. 92 (2015), 107–184.
    • (2015) Adv. Genet. , vol.92 , pp. 107-184
    • Montenegro-Montero, A.1
  • 15
    • 34047220139 scopus 로고    scopus 로고
    • Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks
    • 15 Yuan, Q., et al. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24 (2007), 948–955.
    • (2007) Mol. Biol. Evol. , vol.24 , pp. 948-955
    • Yuan, Q.1
  • 16
    • 84902198718 scopus 로고    scopus 로고
    • Interactive features of proteins composing eukaryotic circadian clocks
    • 16 Crane, B.R., Young, M.W., Interactive features of proteins composing eukaryotic circadian clocks. Annu. Rev. Biochem. 83 (2014), 191–219.
    • (2014) Annu. Rev. Biochem. , vol.83 , pp. 191-219
    • Crane, B.R.1    Young, M.W.2
  • 17
    • 0027184569 scopus 로고
    • PAS is a dimerization domain common to Drosophila period and several transcription factors
    • 17 Huang, Z.J., et al. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364 (1993), 259–262.
    • (1993) Nature , vol.364 , pp. 259-262
    • Huang, Z.J.1
  • 18
    • 65949083763 scopus 로고    scopus 로고
    • Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2
    • 18 Hennig, S., et al. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol., 7, 2009, e94.
    • (2009) PLoS Biol. , vol.7 , pp. e94
    • Hennig, S.1
  • 19
    • 80054705389 scopus 로고    scopus 로고
    • Structure of an enclosed dimer formed by the Drosophila period protein
    • 19 King, H.A., et al. Structure of an enclosed dimer formed by the Drosophila period protein. J. Mol. Biol. 413 (2011), 561–572.
    • (2011) J. Mol. Biol. , vol.413 , pp. 561-572
    • King, H.A.1
  • 20
    • 84857704420 scopus 로고    scopus 로고
    • Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function
    • 20 Kucera, N., et al. Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 3311–3316.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 3311-3316
    • Kucera, N.1
  • 21
    • 19944426818 scopus 로고    scopus 로고
    • Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD
    • 21 Yildiz, O., et al. Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD. Mol. Cell 17 (2005), 69–82.
    • (2005) Mol. Cell , vol.17 , pp. 69-82
    • Yildiz, O.1
  • 22
    • 84863751285 scopus 로고    scopus 로고
    • Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex
    • 22 Huang, N., et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337 (2012), 189–194.
    • (2012) Science , vol.337 , pp. 189-194
    • Huang, N.1
  • 23
    • 65549169528 scopus 로고    scopus 로고
    • Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock
    • 23 Baker, C.L., et al. Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Mol. Cell 34 (2009), 354–363.
    • (2009) Mol. Cell , vol.34 , pp. 354-363
    • Baker, C.L.1
  • 24
    • 67649771757 scopus 로고    scopus 로고
    • Setting the pace of the Neurospora circadian clock by multiple independent FRQ phosphorylation events
    • 24 Tang, C.T., et al. Setting the pace of the Neurospora circadian clock by multiple independent FRQ phosphorylation events. Proc. Natl Acad. Sci. U.S.A. 106 (2009), 10722–10727.
    • (2009) Proc. Natl Acad. Sci. U.S.A. , vol.106 , pp. 10722-10727
    • Tang, C.T.1
  • 25
    • 80052238651 scopus 로고    scopus 로고
    • Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain
    • 25 Querfurth, C., et al. Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain. Mol. Cell 43 (2011), 713–722.
    • (2011) Mol. Cell , vol.43 , pp. 713-722
    • Querfurth, C.1
  • 26
    • 84891147165 scopus 로고    scopus 로고
    • Conserved RNA helicase FRH acts nonenzymatically to support the intrinsically disordered Neurospora clock protein FRQ
    • 26 Hurley, J.M., et al. Conserved RNA helicase FRH acts nonenzymatically to support the intrinsically disordered Neurospora clock protein FRQ. Mol. cell 52 (2013), 832–843.
    • (2013) Mol. cell , vol.52 , pp. 832-843
    • Hurley, J.M.1
  • 27
    • 85027946552 scopus 로고    scopus 로고
    • Structure of the frequency-interacting RNA helicase: a protein interaction hub for the circadian clock
    • Published online June 23, 2016
    • 27 Conrad, K.S., et al. Structure of the frequency-interacting RNA helicase: a protein interaction hub for the circadian clock. EMBO J., 2016, 10.15252/embj.201694327 Published online June 23, 2016.
    • (2016) EMBO J.
    • Conrad, K.S.1
  • 28
    • 70350334392 scopus 로고    scopus 로고
    • The nanny model for IDPs
    • 28 Tsvetkov, P., et al. The nanny model for IDPs. Nat. Chem. Biol. 5 (2009), 778–781.
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 778-781
    • Tsvetkov, P.1
  • 29
    • 77951228944 scopus 로고    scopus 로고
    • Functional significance of FRH in regulating the phosphorylation and stability of Neurospora circadian clock protein FRQ
    • 29 Guo, J., et al. Functional significance of FRH in regulating the phosphorylation and stability of Neurospora circadian clock protein FRQ. J. Biol. Chem. 285 (2010), 11508–11515.
    • (2010) J. Biol. Chem. , vol.285 , pp. 11508-11515
    • Guo, J.1
  • 30
    • 70149093861 scopus 로고    scopus 로고
    • The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop
    • 30 Guo, J., et al. The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop. Cel 138 (2009), 1236–1246.
    • (2009) Cel , vol.138 , pp. 1236-1246
    • Guo, J.1
  • 31
    • 84907552868 scopus 로고    scopus 로고
    • The RNA helicase FRH is an ATP-dependent regulator of CK1a in the circadian clock of Neurospora crassa
    • 31 Lauinger, L., et al. The RNA helicase FRH is an ATP-dependent regulator of CK1a in the circadian clock of Neurospora crassa. Nat. Commun., 5, 2014, 3598.
    • (2014) Nat. Commun. , vol.5 , pp. 3598
    • Lauinger, L.1
  • 32
    • 84937691448 scopus 로고    scopus 로고
    • A protein fold switch joins the circadian oscillator to clock output in cyanobacteria
    • 32 Chang, Y.G., et al. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria. Science 349 (2015), 324–328.
    • (2015) Science , vol.349 , pp. 324-328
    • Chang, Y.G.1
  • 33
    • 84874978669 scopus 로고    scopus 로고
    • Robust and tunable circadian rhythms from differentially sensitive catalytic domains
    • 33 Phong, C., et al. Robust and tunable circadian rhythms from differentially sensitive catalytic domains. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 1124–1129.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 1124-1129
    • Phong, C.1
  • 34
    • 84874683740 scopus 로고    scopus 로고
    • Non-optimal codon usage affects expression, structure and function of clock protein FRQ
    • 34 Zhou, M., et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495 (2013), 111–115.
    • (2013) Nature , vol.495 , pp. 111-115
    • Zhou, M.1
  • 35
    • 84940891331 scopus 로고    scopus 로고
    • Codon usage influences the local rate of translation elongation to regulate co-translational protein folding
    • 35 Yu, C.H., et al. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol. Cell 59 (2015), 744–754.
    • (2015) Mol. Cell , vol.59 , pp. 744-754
    • Yu, C.H.1
  • 36
    • 84940467192 scopus 로고    scopus 로고
    • Nonoptimal codon usage influences protein structure in intrinsically disordered regions
    • 36 Zhou, M., et al. Nonoptimal codon usage influences protein structure in intrinsically disordered regions. Mol. Microbiol. 97 (2015), 974–987.
    • (2015) Mol. Microbiol. , vol.97 , pp. 974-987
    • Zhou, M.1
  • 37
    • 84874722535 scopus 로고    scopus 로고
    • Non-optimal codon usage is a mechanism to achieve circadian clock conditionality
    • 37 Xu, Y., et al. Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature 495 (2013), 116–120.
    • (2013) Nature , vol.495 , pp. 116-120
    • Xu, Y.1
  • 38
    • 0141743940 scopus 로고    scopus 로고
    • Fundamental properties of circadian rhythms
    • J.C. Dunlap et al. (eds.) Sinauer
    • 38 Johnson, C.H., et al. Fundamental properties of circadian rhythms. Dunlap, J.C., et al. (eds.) Chronobiology in Biological Timekeeping, 2004, Sinauer, 67–105.
    • (2004) Chronobiology in Biological Timekeeping , pp. 67-105
    • Johnson, C.H.1
  • 39
    • 79961004102 scopus 로고    scopus 로고
    • Kinetics of doubletime kinase-dependent degradation of the Drosophila period protein
    • 39 Syed, S., et al. Kinetics of doubletime kinase-dependent degradation of the Drosophila period protein. J. Biol. Chem. 286 (2011), 27654–27662.
    • (2011) J. Biol. Chem. , vol.286 , pp. 27654-27662
    • Syed, S.1
  • 40
    • 0034602768 scopus 로고    scopus 로고
    • Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock
    • 40 Liu, Y., et al. Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc. Natl. Acad. Sci. U.S.A. 97 (2000), 234–239.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 234-239
    • Liu, Y.1
  • 41
    • 84858172824 scopus 로고    scopus 로고
    • (Re)inventing the circadian feedback loop
    • 41 Brown, S.A., et al. (Re)inventing the circadian feedback loop. Dev. Cell 22 (2012), 477–487.
    • (2012) Dev. Cell , vol.22 , pp. 477-487
    • Brown, S.A.1
  • 42
    • 34249097203 scopus 로고    scopus 로고
    • Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
    • 42 Siepka, S.M., et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129 (2007), 1011–1123.
    • (2007) Cell , vol.129 , pp. 1011-1123
    • Siepka, S.M.1
  • 43
    • 34248525919 scopus 로고    scopus 로고
    • The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
    • 43 Godinho, S.I., et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316 (2007), 897–900.
    • (2007) Science , vol.316 , pp. 897-900
    • Godinho, S.I.1
  • 44
    • 34248566788 scopus 로고    scopus 로고
    • SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
    • 44 Busino, L., et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316 (2007), 900–904.
    • (2007) Science , vol.316 , pp. 900-904
    • Busino, L.1
  • 45
    • 29144492754 scopus 로고    scopus 로고
    • The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock
    • 45 Ruoff, P., et al. The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock. Proc. Natl. Acad. Sci. U.S.A. 102 (2005), 17681–21766.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 17681-21766
    • Ruoff, P.1
  • 46
    • 27844498688 scopus 로고    scopus 로고
    • Degradation of the Neurospora circadian clock protein FREQUENCY through the ubiquitin-proteasome pathway
    • 46 He, Q., Liu, Y., Degradation of the Neurospora circadian clock protein FREQUENCY through the ubiquitin-proteasome pathway. Biochem. Soc. Trans. 33 (2005), 953–956.
    • (2005) Biochem. Soc. Trans. , vol.33 , pp. 953-956
    • He, Q.1    Liu, Y.2
  • 47
    • 46249098507 scopus 로고    scopus 로고
    • The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock
    • 47 Chiu, J.C., et al. The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock. Genes Dev. 22 (2008), 1758–1772.
    • (2008) Genes Dev. , vol.22 , pp. 1758-1772
    • Chiu, J.C.1
  • 48
    • 84874772651 scopus 로고    scopus 로고
    • FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes
    • 48 Hirano, A., et al. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152 (2013), 1106–1118.
    • (2013) Cell , vol.152 , pp. 1106-1118
    • Hirano, A.1
  • 49
    • 34848913124 scopus 로고    scopus 로고
    • Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics
    • 49 Reischl, S., et al. Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 22 (2007), 375–386.
    • (2007) J. Biol. Rhythms , vol.22 , pp. 375-386
    • Reischl, S.1
  • 50
    • 84875279589 scopus 로고    scopus 로고
    • Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period determination and robustness of the clock
    • 50 Shi, G., et al. Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period determination and robustness of the clock. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 4750–4755.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 4750-4755
    • Shi, G.1
  • 51
    • 84921881472 scopus 로고    scopus 로고
    • Decoupling circadian clock protein turnover from circadian period determination
    • 51 Larrondo, L.F., et al. Decoupling circadian clock protein turnover from circadian period determination. Science, 347, 2015, 1257277.
    • (2015) Science , vol.347 , pp. 1257277
    • Larrondo, L.F.1
  • 52
    • 22344458341 scopus 로고    scopus 로고
    • The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex
    • 52 He, Q., et al. The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev. 19 (2005), 1518–1531.
    • (2005) Genes Dev. , vol.19 , pp. 1518-1531
    • He, Q.1
  • 53
    • 84890287542 scopus 로고    scopus 로고
    • Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length
    • 53 Gao, P., et al. Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length. J. Biol. Chem. 288 (2013), 35277–35286.
    • (2013) J. Biol. Chem. , vol.288 , pp. 35277-35286
    • Gao, P.1
  • 54
    • 79251571117 scopus 로고    scopus 로고
    • Tuning the period of the mammalian circadian clock: additive and independent effects of CK1epsilonTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking
    • 54 Maywood, E.S., et al. Tuning the period of the mammalian circadian clock: additive and independent effects of CK1epsilonTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking. J. Neurosci. 31 (2011), 1539–1544.
    • (2011) J. Neurosci. , vol.31 , pp. 1539-1544
    • Maywood, E.S.1
  • 55
    • 79959366611 scopus 로고    scopus 로고
    • A molecular mechanism for circadian clock negative feedback
    • 55 Duong, H.A., et al. A molecular mechanism for circadian clock negative feedback. Science 332 (2011), 1436–1439.
    • (2011) Science , vol.332 , pp. 1436-1439
    • Duong, H.A.1
  • 56
    • 84893787747 scopus 로고    scopus 로고
    • Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes
    • 56 Duong, H.A., Weitz, C.J., Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat. Struct. Mol. Biol. 21 (2014), 126–132.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 126-132
    • Duong, H.A.1    Weitz, C.J.2
  • 57
    • 84864739194 scopus 로고    scopus 로고
    • Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
    • 57 Padmanabhan, K., et al. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 337 (2012), 599–602.
    • (2012) Science , vol.337 , pp. 599-602
    • Padmanabhan, K.1
  • 58
    • 18244365850 scopus 로고    scopus 로고
    • PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
    • 58 Brown, S.A., et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308 (2005), 693–696.
    • (2005) Science , vol.308 , pp. 693-696
    • Brown, S.A.1
  • 59
    • 84952701111 scopus 로고    scopus 로고
    • period-1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock
    • 59 Emerson, J.M., et al. period-1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 15707–15712.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 15707-15712
    • Emerson, J.M.1
  • 60
    • 84943456330 scopus 로고    scopus 로고
    • Histone monoubiquitination by Clock-Bmal1 complex marks Per1 and Per2 genes for circadian feedback
    • 60 Tamayo, A.G., et al. Histone monoubiquitination by Clock-Bmal1 complex marks Per1 and Per2 genes for circadian feedback. Nat. Struct. Mol. Biol. 22 (2015), 759–766.
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 759-766
    • Tamayo, A.G.1
  • 61
    • 84918841904 scopus 로고    scopus 로고
    • Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor
    • 61 Kim, J.Y., et al. Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor. Mol. Cell 56 (2014), 738–748.
    • (2014) Mol. Cell , vol.56 , pp. 738-748
    • Kim, J.Y.1
  • 62
    • 78651491409 scopus 로고    scopus 로고
    • Delay in feedback repression by cryptochrome 1 is required for circadian clock function
    • 62 Ukai-Tadenuma, M., et al. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 144 (2011), 268–281.
    • (2011) Cell , vol.144 , pp. 268-281
    • Ukai-Tadenuma, M.1
  • 63
    • 84881506759 scopus 로고    scopus 로고
    • Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
    • 63 Menet, J.S., et al. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife, 1, 2012, e00011.
    • (2012) eLife , vol.1 , pp. e00011
    • Menet, J.S.1
  • 64
    • 84914140231 scopus 로고    scopus 로고
    • Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential
    • 64 Hurley, J.M., et al. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 16995–17002.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 16995-17002
    • Hurley, J.M.1
  • 65
    • 84925878586 scopus 로고    scopus 로고
    • Dawn- and dusk-phased circadian transcription rhythms coordinate anabolic and catabolic functions in Neurospora
    • 65 Sancar, C., et al. Dawn- and dusk-phased circadian transcription rhythms coordinate anabolic and catabolic functions in Neurospora. BMC Biol., 13, 2015, 17.
    • (2015) BMC Biol. , vol.13 , pp. 17
    • Sancar, C.1
  • 66
    • 81255150242 scopus 로고    scopus 로고
    • Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression
    • 66 Abruzzi, K.C., et al. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression. Genes Dev. 25 (2011), 2374–2386.
    • (2011) Genes Dev. , vol.25 , pp. 2374-2386
    • Abruzzi, K.C.1
  • 67
    • 84891677378 scopus 로고    scopus 로고
    • CLOCK:BMAL1 is a pioneer-like transcription factor
    • 67 Menet, J.S., et al. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev. 28 (2014), 8–13.
    • (2014) Genes Dev. , vol.28 , pp. 8-13
    • Menet, J.S.1
  • 68
    • 84907584491 scopus 로고    scopus 로고
    • Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle
    • 68 Wang, B., et al. Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle. PLoS Genet., 10, 2014, e1004599.
    • (2014) PLoS Genet. , vol.10 , pp. e1004599
    • Wang, B.1
  • 69
    • 84961289604 scopus 로고    scopus 로고
    • Pioneer transcription factors, chromatin dynamics, and cell fate control
    • 69 Zaret, K.S., Mango, S.E., Pioneer transcription factors, chromatin dynamics, and cell fate control. Curr. Opin. Genet. Dev. 37 (2016), 76–81.
    • (2016) Curr. Opin. Genet. Dev. , vol.37 , pp. 76-81
    • Zaret, K.S.1    Mango, S.E.2
  • 70
    • 33847021355 scopus 로고    scopus 로고
    • Execution of the circadian negative feedback loop in Neurospora Requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH
    • 70 Belden, W.J., et al. Execution of the circadian negative feedback loop in Neurospora Requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol. cell 25 (2007), 587–600.
    • (2007) Mol. cell , vol.25 , pp. 587-600
    • Belden, W.J.1
  • 71
    • 84885330642 scopus 로고    scopus 로고
    • CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus
    • 71 Cha, J., et al. CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus. EMBO Rep. 14 (2013), 923–930.
    • (2013) EMBO Rep. , vol.14 , pp. 923-930
    • Cha, J.1
  • 72
    • 84890026764 scopus 로고    scopus 로고
    • Circadian control of global gene expression by the cyanobacterial master regulator RpaA
    • 72 Markson, J.S., et al. Circadian control of global gene expression by the cyanobacterial master regulator RpaA. Cell 155 (2013), 1396–1408.
    • (2013) Cell , vol.155 , pp. 1396-1408
    • Markson, J.S.1
  • 73
    • 84872840475 scopus 로고    scopus 로고
    • Nascent-Seq analysis of Drosophila cycling gene expression
    • 73 Rodriguez, J., et al. Nascent-Seq analysis of Drosophila cycling gene expression. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), E275–E284.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E275-E284
    • Rodriguez, J.1
  • 74
    • 84863814454 scopus 로고    scopus 로고
    • Nascent-seq indicates widespread cotranscriptional RNA editing in Drosophila
    • 74 Rodriguez, J., et al. Nascent-seq indicates widespread cotranscriptional RNA editing in Drosophila. Mol. cell 47 (2012), 27–37.
    • (2012) Mol. cell , vol.47 , pp. 27-37
    • Rodriguez, J.1
  • 75
    • 84887875528 scopus 로고    scopus 로고
    • RNA-methylation-dependent RNA processing controls the speed of the circadian clock
    • 75 Fustin, J.M., et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155 (2013), 793–806.
    • (2013) Cell , vol.155 , pp. 793-806
    • Fustin, J.M.1
  • 76
    • 0004285329 scopus 로고    scopus 로고
    • Homocysteine in Health and Disease
    • Cambridge University Press 536 pp
    • 76 Carmel, R., Jacobsen, D.W., Homocysteine in Health and Disease. 2011, Cambridge University Press 536 pp.
    • (2011)
    • Carmel, R.1    Jacobsen, D.W.2
  • 77
    • 33750741439 scopus 로고    scopus 로고
    • No promoter left behind: global circadian gene expression in cyanobacteria
    • 77 Woelfle, M.A., Johnson, C.H., No promoter left behind: global circadian gene expression in cyanobacteria. J. Biol. Rhythms 21 (2006), 419–431.
    • (2006) J. Biol. Rhythms , vol.21 , pp. 419-431
    • Woelfle, M.A.1    Johnson, C.H.2
  • 78
    • 84871445347 scopus 로고    scopus 로고
    • The circadian clock: a framework linking metabolism, epigenetics and neuronal function
    • 78 Masri, S., Sassone-Corsi, P., The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat. Rev. Neurosci. 14 (2013), 69–75.
    • (2013) Nat. Rev. Neurosci. , vol.14 , pp. 69-75
    • Masri, S.1    Sassone-Corsi, P.2
  • 79
    • 84872334045 scopus 로고    scopus 로고
    • Metabolism and the circadian clock converge
    • 79 Eckel-Mahan, K., Sassone-Corsi, P., Metabolism and the circadian clock converge. Physiol. Rev. 93 (2013), 107–135.
    • (2013) Physiol. Rev. , vol.93 , pp. 107-135
    • Eckel-Mahan, K.1    Sassone-Corsi, P.2
  • 80
    • 84876820077 scopus 로고    scopus 로고
    • Two antagonistic clock-regulated histidine kinases time the activation of circadian gene expression
    • 80 Gutu, A., O'Shea, E.K., Two antagonistic clock-regulated histidine kinases time the activation of circadian gene expression. Mol. Cell 50 (2013), 288–294.
    • (2013) Mol. Cell , vol.50 , pp. 288-294
    • Gutu, A.1    O'Shea, E.K.2
  • 81
    • 84928139480 scopus 로고    scopus 로고
    • The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth
    • 81 Diamond, S., et al. The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E1916–E1925.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E1916-E1925
    • Diamond, S.1
  • 82
    • 84909592563 scopus 로고    scopus 로고
    • A circadian gene expression atlas in mammals: implications for biology and medicine
    • 82 Zhang, R., et al. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 16219–16224.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 16219-16224
    • Zhang, R.1
  • 83
    • 84956598215 scopus 로고    scopus 로고
    • Ribosome profiling reveals an important role for translational control in circadian gene expression
    • 83 Jang, C., et al. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res. 25 (2015), 1836–1847.
    • (2015) Genome Res. , vol.25 , pp. 1836-1847
    • Jang, C.1
  • 84
    • 17244373578 scopus 로고    scopus 로고
    • Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro
    • 84 Nakajima, M., et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308 (2005), 414–415.
    • (2005) Science , vol.308 , pp. 414-415
    • Nakajima, M.1
  • 85
    • 4644310259 scopus 로고    scopus 로고
    • Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942
    • 85 Nishiwaki, T., et al. Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942. Proc. Natl. Acad. Sci. U.S.A. 101 (2004), 13927–13932.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 13927-13932
    • Nishiwaki, T.1
  • 86
    • 37549018348 scopus 로고    scopus 로고
    • Ordered phosphorylation governs oscillation of a three-protein circadian clock
    • 86 Rust, M.J., et al. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318 (2007), 809–812.
    • (2007) Science , vol.318 , pp. 809-812
    • Rust, M.J.1
  • 87
    • 33746147001 scopus 로고    scopus 로고
    • Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro
    • 87 Kageyama, H., et al. Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro. Mol. Cell 23 (2006), 161–171.
    • (2006) Mol. Cell , vol.23 , pp. 161-171
    • Kageyama, H.1
  • 88
    • 84977935378 scopus 로고    scopus 로고
    • Transplantability of a circadian clock to a noncircadian organism
    • 88 Chen, A.H., et al. Transplantability of a circadian clock to a noncircadian organism. Sci. Adv., 1, 2015, e1500358.
    • (2015) Sci. Adv. , vol.1 , pp. e1500358
    • Chen, A.H.1
  • 89
    • 84892402903 scopus 로고    scopus 로고
    • Hypersensitive photic responses and intact genome-wide transcriptional control without the KaiC phosphorylation cycle in the Synechococcus circadian system
    • 89 Umetani, M., et al. Hypersensitive photic responses and intact genome-wide transcriptional control without the KaiC phosphorylation cycle in the Synechococcus circadian system. J. Bacteriol. 196 (2014), 548–555.
    • (2014) J. Bacteriol. , vol.196 , pp. 548-555
    • Umetani, M.1
  • 90
    • 84937723288 scopus 로고    scopus 로고
    • Atomic-scale origins of slowness in the cyanobacterial circadian clock
    • 90 Abe, J., et al. Atomic-scale origins of slowness in the cyanobacterial circadian clock. Science 349 (2015), 312–316.
    • (2015) Science , vol.349 , pp. 312-316
    • Abe, J.1
  • 91
    • 84952875075 scopus 로고    scopus 로고
    • Controlling the cyanobacterial clock by synthetically rewiring metabolism
    • 91 Pattanayak, G.K., et al. Controlling the cyanobacterial clock by synthetically rewiring metabolism. Cell Rep. 13 (2015), 2362–2367.
    • (2015) Cell Rep. , vol.13 , pp. 2362-2367
    • Pattanayak, G.K.1
  • 92
    • 78651453820 scopus 로고    scopus 로고
    • Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator
    • 92 Rust, M.J., et al. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331 (2011), 220–223.
    • (2011) Science , vol.331 , pp. 220-223
    • Rust, M.J.1
  • 93
    • 84868094430 scopus 로고    scopus 로고
    • Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator
    • 93 Kim, Y.I., et al. Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 17765–17769.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 17765-17769
    • Kim, Y.I.1
  • 94
    • 84877587194 scopus 로고    scopus 로고
    • Robust circadian oscillations in growing cyanobacteria require transcriptional feedback
    • 94 Teng, S.W., et al. Robust circadian oscillations in growing cyanobacteria require transcriptional feedback. Science 340 (2013), 737–740.
    • (2013) Science , vol.340 , pp. 737-740
    • Teng, S.W.1
  • 96
    • 1642274684 scopus 로고    scopus 로고
    • The PAS fold. A redefinition of the PAS domain based upon structural prediction
    • 96 Hefti, M.H., et al. The PAS fold. A redefinition of the PAS domain based upon structural prediction. Eur. J. Biochem. 271 (2004), 1198–1208.
    • (2004) Eur. J. Biochem. , vol.271 , pp. 1198-1208
    • Hefti, M.H.1
  • 97
    • 84996684557 scopus 로고    scopus 로고
    • Photobiology and circadian clocks in Neurospora
    • M. Nowrousian Springer
    • 97 Fuller, K.K., et al. Photobiology and circadian clocks in Neurospora. Nowrousian, M., (eds.) The Mycota, 2014, Springer, 121–148.
    • (2014) The Mycota , pp. 121-148
    • Fuller, K.K.1
  • 98
    • 84922335319 scopus 로고    scopus 로고
    • Dissecting the mechanisms of the clock in Neurospora
    • 98 Hurley, J., et al. Dissecting the mechanisms of the clock in Neurospora. Methods Enzymol. 551 (2015), 29–52.
    • (2015) Methods Enzymol. , vol.551 , pp. 29-52
    • Hurley, J.1
  • 99
    • 77951912759 scopus 로고    scopus 로고
    • Circadian organization of behavior and physiology in Drosophila
    • 99 Allada, R., Chung, B.Y., Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72 (2010), 605–624.
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 605-624
    • Allada, R.1    Chung, B.Y.2
  • 100
    • 84892976423 scopus 로고    scopus 로고
    • Molecular architecture of the mammalian circadian clock
    • 100 Partch, C.L., et al. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24 (2014), 90–99.
    • (2014) Trends Cell Biol. , vol.24 , pp. 90-99
    • Partch, C.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.