-
1
-
-
0033593306
-
Molecular bases for circadian clocks
-
1 Dunlap, J.C., Molecular bases for circadian clocks. Cell 96 (1999), 271–490.
-
(1999)
Cell
, vol.96
, pp. 271-490
-
-
Dunlap, J.C.1
-
2
-
-
84862675384
-
Central and peripheral circadian clocks in mammals
-
2 Mohawk, J.A., et al. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35 (2012), 445–462.
-
(2012)
Annu. Rev. Neurosci.
, vol.35
, pp. 445-462
-
-
Mohawk, J.A.1
-
3
-
-
0242669950
-
Role for antisense RNA in regulating circadian clock function in Neurospora crassa
-
3 Kramer, C., et al. Role for antisense RNA in regulating circadian clock function in Neurospora crassa. Nature 421 (2003), 948–952.
-
(2003)
Nature
, vol.421
, pp. 948-952
-
-
Kramer, C.1
-
4
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
4 Koike, N., et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338 (2012), 349–354.
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
-
5
-
-
84929658409
-
The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin
-
5 Li, N., et al. The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 4357–4362.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 4357-4362
-
-
Li, N.1
-
6
-
-
84908432601
-
Transcriptional interference by antisense RNA is required for circadian clock function
-
6 Xue, Z., et al. Transcriptional interference by antisense RNA is required for circadian clock function. Nature 514 (2014), 650–653.
-
(2014)
Nature
, vol.514
, pp. 650-653
-
-
Xue, Z.1
-
7
-
-
84869083002
-
RNA polymerase II collision interrupts convergent transcription
-
7 Hobson, D.J., et al. RNA polymerase II collision interrupts convergent transcription. Mol. Cell 48 (2012), 365–374.
-
(2012)
Mol. Cell
, vol.48
, pp. 365-374
-
-
Hobson, D.J.1
-
8
-
-
79960953992
-
CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency
-
8 Belden, W.J., et al. CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLoS Genet., 7, 2011, e1002166.
-
(2011)
PLoS Genet.
, vol.7
, pp. e1002166
-
-
Belden, W.J.1
-
9
-
-
0034617102
-
Interconnected feedback loops in the Neurospora circadian system
-
9 Lee, K., et al. Interconnected feedback loops in the Neurospora circadian system. Science 289 (2000), 107–110.
-
(2000)
Science
, vol.289
, pp. 107-110
-
-
Lee, K.1
-
10
-
-
4544332585
-
Clock gene evolution and functional divergence
-
10 Tauber, E., et al. Clock gene evolution and functional divergence. J. Biol. Rhythms 19 (2004), 445–458.
-
(2004)
J. Biol. Rhythms
, vol.19
, pp. 445-458
-
-
Tauber, E.1
-
11
-
-
33751251331
-
How fungi keep time: circadian system in Neurospora and other fungi
-
11 Dunlap, J.C., Loros, J.J., How fungi keep time: circadian system in Neurospora and other fungi. Growth Dev. 9 (2006), 579–587.
-
(2006)
Growth Dev.
, vol.9
, pp. 579-587
-
-
Dunlap, J.C.1
Loros, J.J.2
-
12
-
-
77951887222
-
The diversity and evolution of circadian clock proteins in fungi
-
12 Salichos, L., Rokas, A., The diversity and evolution of circadian clock proteins in fungi. Mycologia 102 (2010), 269–278.
-
(2010)
Mycologia
, vol.102
, pp. 269-278
-
-
Salichos, L.1
Rokas, A.2
-
13
-
-
84943382924
-
Analysis of circadian rhythms in the basal filamentous 1 ascomycete Pyronema confluens
-
13 Traeger, S., Nowrousian, M., Analysis of circadian rhythms in the basal filamentous 1 ascomycete Pyronema confluens. G3 5 (2015), 2061–2071.
-
(2015)
G3
, vol.5
, pp. 2061-2071
-
-
Traeger, S.1
Nowrousian, M.2
-
14
-
-
84973411962
-
Around the fungal clock: recent advances in the molecular study of circadian clocks in Neurospora and other fungi
-
14 Montenegro-Montero, A., et al. Around the fungal clock: recent advances in the molecular study of circadian clocks in Neurospora and other fungi. Adv. Genet. 92 (2015), 107–184.
-
(2015)
Adv. Genet.
, vol.92
, pp. 107-184
-
-
Montenegro-Montero, A.1
-
15
-
-
34047220139
-
Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks
-
15 Yuan, Q., et al. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24 (2007), 948–955.
-
(2007)
Mol. Biol. Evol.
, vol.24
, pp. 948-955
-
-
Yuan, Q.1
-
16
-
-
84902198718
-
Interactive features of proteins composing eukaryotic circadian clocks
-
16 Crane, B.R., Young, M.W., Interactive features of proteins composing eukaryotic circadian clocks. Annu. Rev. Biochem. 83 (2014), 191–219.
-
(2014)
Annu. Rev. Biochem.
, vol.83
, pp. 191-219
-
-
Crane, B.R.1
Young, M.W.2
-
17
-
-
0027184569
-
PAS is a dimerization domain common to Drosophila period and several transcription factors
-
17 Huang, Z.J., et al. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364 (1993), 259–262.
-
(1993)
Nature
, vol.364
, pp. 259-262
-
-
Huang, Z.J.1
-
18
-
-
65949083763
-
Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2
-
18 Hennig, S., et al. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol., 7, 2009, e94.
-
(2009)
PLoS Biol.
, vol.7
, pp. e94
-
-
Hennig, S.1
-
19
-
-
80054705389
-
Structure of an enclosed dimer formed by the Drosophila period protein
-
19 King, H.A., et al. Structure of an enclosed dimer formed by the Drosophila period protein. J. Mol. Biol. 413 (2011), 561–572.
-
(2011)
J. Mol. Biol.
, vol.413
, pp. 561-572
-
-
King, H.A.1
-
20
-
-
84857704420
-
Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function
-
20 Kucera, N., et al. Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 3311–3316.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 3311-3316
-
-
Kucera, N.1
-
21
-
-
19944426818
-
Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD
-
21 Yildiz, O., et al. Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD. Mol. Cell 17 (2005), 69–82.
-
(2005)
Mol. Cell
, vol.17
, pp. 69-82
-
-
Yildiz, O.1
-
22
-
-
84863751285
-
Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex
-
22 Huang, N., et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337 (2012), 189–194.
-
(2012)
Science
, vol.337
, pp. 189-194
-
-
Huang, N.1
-
23
-
-
65549169528
-
Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock
-
23 Baker, C.L., et al. Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Mol. Cell 34 (2009), 354–363.
-
(2009)
Mol. Cell
, vol.34
, pp. 354-363
-
-
Baker, C.L.1
-
24
-
-
67649771757
-
Setting the pace of the Neurospora circadian clock by multiple independent FRQ phosphorylation events
-
24 Tang, C.T., et al. Setting the pace of the Neurospora circadian clock by multiple independent FRQ phosphorylation events. Proc. Natl Acad. Sci. U.S.A. 106 (2009), 10722–10727.
-
(2009)
Proc. Natl Acad. Sci. U.S.A.
, vol.106
, pp. 10722-10727
-
-
Tang, C.T.1
-
25
-
-
80052238651
-
Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain
-
25 Querfurth, C., et al. Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain. Mol. Cell 43 (2011), 713–722.
-
(2011)
Mol. Cell
, vol.43
, pp. 713-722
-
-
Querfurth, C.1
-
26
-
-
84891147165
-
Conserved RNA helicase FRH acts nonenzymatically to support the intrinsically disordered Neurospora clock protein FRQ
-
26 Hurley, J.M., et al. Conserved RNA helicase FRH acts nonenzymatically to support the intrinsically disordered Neurospora clock protein FRQ. Mol. cell 52 (2013), 832–843.
-
(2013)
Mol. cell
, vol.52
, pp. 832-843
-
-
Hurley, J.M.1
-
27
-
-
85027946552
-
Structure of the frequency-interacting RNA helicase: a protein interaction hub for the circadian clock
-
Published online June 23, 2016
-
27 Conrad, K.S., et al. Structure of the frequency-interacting RNA helicase: a protein interaction hub for the circadian clock. EMBO J., 2016, 10.15252/embj.201694327 Published online June 23, 2016.
-
(2016)
EMBO J.
-
-
Conrad, K.S.1
-
28
-
-
70350334392
-
The nanny model for IDPs
-
28 Tsvetkov, P., et al. The nanny model for IDPs. Nat. Chem. Biol. 5 (2009), 778–781.
-
(2009)
Nat. Chem. Biol.
, vol.5
, pp. 778-781
-
-
Tsvetkov, P.1
-
29
-
-
77951228944
-
Functional significance of FRH in regulating the phosphorylation and stability of Neurospora circadian clock protein FRQ
-
29 Guo, J., et al. Functional significance of FRH in regulating the phosphorylation and stability of Neurospora circadian clock protein FRQ. J. Biol. Chem. 285 (2010), 11508–11515.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 11508-11515
-
-
Guo, J.1
-
30
-
-
70149093861
-
The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop
-
30 Guo, J., et al. The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop. Cel 138 (2009), 1236–1246.
-
(2009)
Cel
, vol.138
, pp. 1236-1246
-
-
Guo, J.1
-
31
-
-
84907552868
-
The RNA helicase FRH is an ATP-dependent regulator of CK1a in the circadian clock of Neurospora crassa
-
31 Lauinger, L., et al. The RNA helicase FRH is an ATP-dependent regulator of CK1a in the circadian clock of Neurospora crassa. Nat. Commun., 5, 2014, 3598.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3598
-
-
Lauinger, L.1
-
32
-
-
84937691448
-
A protein fold switch joins the circadian oscillator to clock output in cyanobacteria
-
32 Chang, Y.G., et al. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria. Science 349 (2015), 324–328.
-
(2015)
Science
, vol.349
, pp. 324-328
-
-
Chang, Y.G.1
-
33
-
-
84874978669
-
Robust and tunable circadian rhythms from differentially sensitive catalytic domains
-
33 Phong, C., et al. Robust and tunable circadian rhythms from differentially sensitive catalytic domains. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 1124–1129.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 1124-1129
-
-
Phong, C.1
-
34
-
-
84874683740
-
Non-optimal codon usage affects expression, structure and function of clock protein FRQ
-
34 Zhou, M., et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495 (2013), 111–115.
-
(2013)
Nature
, vol.495
, pp. 111-115
-
-
Zhou, M.1
-
35
-
-
84940891331
-
Codon usage influences the local rate of translation elongation to regulate co-translational protein folding
-
35 Yu, C.H., et al. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol. Cell 59 (2015), 744–754.
-
(2015)
Mol. Cell
, vol.59
, pp. 744-754
-
-
Yu, C.H.1
-
36
-
-
84940467192
-
Nonoptimal codon usage influences protein structure in intrinsically disordered regions
-
36 Zhou, M., et al. Nonoptimal codon usage influences protein structure in intrinsically disordered regions. Mol. Microbiol. 97 (2015), 974–987.
-
(2015)
Mol. Microbiol.
, vol.97
, pp. 974-987
-
-
Zhou, M.1
-
37
-
-
84874722535
-
Non-optimal codon usage is a mechanism to achieve circadian clock conditionality
-
37 Xu, Y., et al. Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature 495 (2013), 116–120.
-
(2013)
Nature
, vol.495
, pp. 116-120
-
-
Xu, Y.1
-
38
-
-
0141743940
-
Fundamental properties of circadian rhythms
-
J.C. Dunlap et al. (eds.) Sinauer
-
38 Johnson, C.H., et al. Fundamental properties of circadian rhythms. Dunlap, J.C., et al. (eds.) Chronobiology in Biological Timekeeping, 2004, Sinauer, 67–105.
-
(2004)
Chronobiology in Biological Timekeeping
, pp. 67-105
-
-
Johnson, C.H.1
-
39
-
-
79961004102
-
Kinetics of doubletime kinase-dependent degradation of the Drosophila period protein
-
39 Syed, S., et al. Kinetics of doubletime kinase-dependent degradation of the Drosophila period protein. J. Biol. Chem. 286 (2011), 27654–27662.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 27654-27662
-
-
Syed, S.1
-
40
-
-
0034602768
-
Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock
-
40 Liu, Y., et al. Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc. Natl. Acad. Sci. U.S.A. 97 (2000), 234–239.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 234-239
-
-
Liu, Y.1
-
41
-
-
84858172824
-
(Re)inventing the circadian feedback loop
-
41 Brown, S.A., et al. (Re)inventing the circadian feedback loop. Dev. Cell 22 (2012), 477–487.
-
(2012)
Dev. Cell
, vol.22
, pp. 477-487
-
-
Brown, S.A.1
-
42
-
-
34249097203
-
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
-
42 Siepka, S.M., et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129 (2007), 1011–1123.
-
(2007)
Cell
, vol.129
, pp. 1011-1123
-
-
Siepka, S.M.1
-
43
-
-
34248525919
-
The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
-
43 Godinho, S.I., et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316 (2007), 897–900.
-
(2007)
Science
, vol.316
, pp. 897-900
-
-
Godinho, S.I.1
-
44
-
-
34248566788
-
SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
44 Busino, L., et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316 (2007), 900–904.
-
(2007)
Science
, vol.316
, pp. 900-904
-
-
Busino, L.1
-
45
-
-
29144492754
-
The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock
-
45 Ruoff, P., et al. The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock. Proc. Natl. Acad. Sci. U.S.A. 102 (2005), 17681–21766.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 17681-21766
-
-
Ruoff, P.1
-
46
-
-
27844498688
-
Degradation of the Neurospora circadian clock protein FREQUENCY through the ubiquitin-proteasome pathway
-
46 He, Q., Liu, Y., Degradation of the Neurospora circadian clock protein FREQUENCY through the ubiquitin-proteasome pathway. Biochem. Soc. Trans. 33 (2005), 953–956.
-
(2005)
Biochem. Soc. Trans.
, vol.33
, pp. 953-956
-
-
He, Q.1
Liu, Y.2
-
47
-
-
46249098507
-
The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock
-
47 Chiu, J.C., et al. The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock. Genes Dev. 22 (2008), 1758–1772.
-
(2008)
Genes Dev.
, vol.22
, pp. 1758-1772
-
-
Chiu, J.C.1
-
48
-
-
84874772651
-
FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes
-
48 Hirano, A., et al. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152 (2013), 1106–1118.
-
(2013)
Cell
, vol.152
, pp. 1106-1118
-
-
Hirano, A.1
-
49
-
-
34848913124
-
Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics
-
49 Reischl, S., et al. Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 22 (2007), 375–386.
-
(2007)
J. Biol. Rhythms
, vol.22
, pp. 375-386
-
-
Reischl, S.1
-
50
-
-
84875279589
-
Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period determination and robustness of the clock
-
50 Shi, G., et al. Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period determination and robustness of the clock. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 4750–4755.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 4750-4755
-
-
Shi, G.1
-
51
-
-
84921881472
-
Decoupling circadian clock protein turnover from circadian period determination
-
51 Larrondo, L.F., et al. Decoupling circadian clock protein turnover from circadian period determination. Science, 347, 2015, 1257277.
-
(2015)
Science
, vol.347
, pp. 1257277
-
-
Larrondo, L.F.1
-
52
-
-
22344458341
-
The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex
-
52 He, Q., et al. The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev. 19 (2005), 1518–1531.
-
(2005)
Genes Dev.
, vol.19
, pp. 1518-1531
-
-
He, Q.1
-
53
-
-
84890287542
-
Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length
-
53 Gao, P., et al. Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length. J. Biol. Chem. 288 (2013), 35277–35286.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 35277-35286
-
-
Gao, P.1
-
54
-
-
79251571117
-
Tuning the period of the mammalian circadian clock: additive and independent effects of CK1epsilonTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking
-
54 Maywood, E.S., et al. Tuning the period of the mammalian circadian clock: additive and independent effects of CK1epsilonTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking. J. Neurosci. 31 (2011), 1539–1544.
-
(2011)
J. Neurosci.
, vol.31
, pp. 1539-1544
-
-
Maywood, E.S.1
-
55
-
-
79959366611
-
A molecular mechanism for circadian clock negative feedback
-
55 Duong, H.A., et al. A molecular mechanism for circadian clock negative feedback. Science 332 (2011), 1436–1439.
-
(2011)
Science
, vol.332
, pp. 1436-1439
-
-
Duong, H.A.1
-
56
-
-
84893787747
-
Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes
-
56 Duong, H.A., Weitz, C.J., Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat. Struct. Mol. Biol. 21 (2014), 126–132.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 126-132
-
-
Duong, H.A.1
Weitz, C.J.2
-
57
-
-
84864739194
-
Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
-
57 Padmanabhan, K., et al. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 337 (2012), 599–602.
-
(2012)
Science
, vol.337
, pp. 599-602
-
-
Padmanabhan, K.1
-
58
-
-
18244365850
-
PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
-
58 Brown, S.A., et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308 (2005), 693–696.
-
(2005)
Science
, vol.308
, pp. 693-696
-
-
Brown, S.A.1
-
59
-
-
84952701111
-
period-1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock
-
59 Emerson, J.M., et al. period-1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 15707–15712.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 15707-15712
-
-
Emerson, J.M.1
-
60
-
-
84943456330
-
Histone monoubiquitination by Clock-Bmal1 complex marks Per1 and Per2 genes for circadian feedback
-
60 Tamayo, A.G., et al. Histone monoubiquitination by Clock-Bmal1 complex marks Per1 and Per2 genes for circadian feedback. Nat. Struct. Mol. Biol. 22 (2015), 759–766.
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 759-766
-
-
Tamayo, A.G.1
-
61
-
-
84918841904
-
Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor
-
61 Kim, J.Y., et al. Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor. Mol. Cell 56 (2014), 738–748.
-
(2014)
Mol. Cell
, vol.56
, pp. 738-748
-
-
Kim, J.Y.1
-
62
-
-
78651491409
-
Delay in feedback repression by cryptochrome 1 is required for circadian clock function
-
62 Ukai-Tadenuma, M., et al. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 144 (2011), 268–281.
-
(2011)
Cell
, vol.144
, pp. 268-281
-
-
Ukai-Tadenuma, M.1
-
63
-
-
84881506759
-
Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
-
63 Menet, J.S., et al. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife, 1, 2012, e00011.
-
(2012)
eLife
, vol.1
, pp. e00011
-
-
Menet, J.S.1
-
64
-
-
84914140231
-
Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential
-
64 Hurley, J.M., et al. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 16995–17002.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 16995-17002
-
-
Hurley, J.M.1
-
65
-
-
84925878586
-
Dawn- and dusk-phased circadian transcription rhythms coordinate anabolic and catabolic functions in Neurospora
-
65 Sancar, C., et al. Dawn- and dusk-phased circadian transcription rhythms coordinate anabolic and catabolic functions in Neurospora. BMC Biol., 13, 2015, 17.
-
(2015)
BMC Biol.
, vol.13
, pp. 17
-
-
Sancar, C.1
-
66
-
-
81255150242
-
Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression
-
66 Abruzzi, K.C., et al. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression. Genes Dev. 25 (2011), 2374–2386.
-
(2011)
Genes Dev.
, vol.25
, pp. 2374-2386
-
-
Abruzzi, K.C.1
-
67
-
-
84891677378
-
CLOCK:BMAL1 is a pioneer-like transcription factor
-
67 Menet, J.S., et al. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev. 28 (2014), 8–13.
-
(2014)
Genes Dev.
, vol.28
, pp. 8-13
-
-
Menet, J.S.1
-
68
-
-
84907584491
-
Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle
-
68 Wang, B., et al. Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle. PLoS Genet., 10, 2014, e1004599.
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004599
-
-
Wang, B.1
-
69
-
-
84961289604
-
Pioneer transcription factors, chromatin dynamics, and cell fate control
-
69 Zaret, K.S., Mango, S.E., Pioneer transcription factors, chromatin dynamics, and cell fate control. Curr. Opin. Genet. Dev. 37 (2016), 76–81.
-
(2016)
Curr. Opin. Genet. Dev.
, vol.37
, pp. 76-81
-
-
Zaret, K.S.1
Mango, S.E.2
-
70
-
-
33847021355
-
Execution of the circadian negative feedback loop in Neurospora Requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH
-
70 Belden, W.J., et al. Execution of the circadian negative feedback loop in Neurospora Requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol. cell 25 (2007), 587–600.
-
(2007)
Mol. cell
, vol.25
, pp. 587-600
-
-
Belden, W.J.1
-
71
-
-
84885330642
-
CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus
-
71 Cha, J., et al. CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus. EMBO Rep. 14 (2013), 923–930.
-
(2013)
EMBO Rep.
, vol.14
, pp. 923-930
-
-
Cha, J.1
-
72
-
-
84890026764
-
Circadian control of global gene expression by the cyanobacterial master regulator RpaA
-
72 Markson, J.S., et al. Circadian control of global gene expression by the cyanobacterial master regulator RpaA. Cell 155 (2013), 1396–1408.
-
(2013)
Cell
, vol.155
, pp. 1396-1408
-
-
Markson, J.S.1
-
73
-
-
84872840475
-
Nascent-Seq analysis of Drosophila cycling gene expression
-
73 Rodriguez, J., et al. Nascent-Seq analysis of Drosophila cycling gene expression. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), E275–E284.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. E275-E284
-
-
Rodriguez, J.1
-
74
-
-
84863814454
-
Nascent-seq indicates widespread cotranscriptional RNA editing in Drosophila
-
74 Rodriguez, J., et al. Nascent-seq indicates widespread cotranscriptional RNA editing in Drosophila. Mol. cell 47 (2012), 27–37.
-
(2012)
Mol. cell
, vol.47
, pp. 27-37
-
-
Rodriguez, J.1
-
75
-
-
84887875528
-
RNA-methylation-dependent RNA processing controls the speed of the circadian clock
-
75 Fustin, J.M., et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155 (2013), 793–806.
-
(2013)
Cell
, vol.155
, pp. 793-806
-
-
Fustin, J.M.1
-
76
-
-
0004285329
-
Homocysteine in Health and Disease
-
Cambridge University Press 536 pp
-
76 Carmel, R., Jacobsen, D.W., Homocysteine in Health and Disease. 2011, Cambridge University Press 536 pp.
-
(2011)
-
-
Carmel, R.1
Jacobsen, D.W.2
-
77
-
-
33750741439
-
No promoter left behind: global circadian gene expression in cyanobacteria
-
77 Woelfle, M.A., Johnson, C.H., No promoter left behind: global circadian gene expression in cyanobacteria. J. Biol. Rhythms 21 (2006), 419–431.
-
(2006)
J. Biol. Rhythms
, vol.21
, pp. 419-431
-
-
Woelfle, M.A.1
Johnson, C.H.2
-
78
-
-
84871445347
-
The circadian clock: a framework linking metabolism, epigenetics and neuronal function
-
78 Masri, S., Sassone-Corsi, P., The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat. Rev. Neurosci. 14 (2013), 69–75.
-
(2013)
Nat. Rev. Neurosci.
, vol.14
, pp. 69-75
-
-
Masri, S.1
Sassone-Corsi, P.2
-
79
-
-
84872334045
-
Metabolism and the circadian clock converge
-
79 Eckel-Mahan, K., Sassone-Corsi, P., Metabolism and the circadian clock converge. Physiol. Rev. 93 (2013), 107–135.
-
(2013)
Physiol. Rev.
, vol.93
, pp. 107-135
-
-
Eckel-Mahan, K.1
Sassone-Corsi, P.2
-
80
-
-
84876820077
-
Two antagonistic clock-regulated histidine kinases time the activation of circadian gene expression
-
80 Gutu, A., O'Shea, E.K., Two antagonistic clock-regulated histidine kinases time the activation of circadian gene expression. Mol. Cell 50 (2013), 288–294.
-
(2013)
Mol. Cell
, vol.50
, pp. 288-294
-
-
Gutu, A.1
O'Shea, E.K.2
-
81
-
-
84928139480
-
The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth
-
81 Diamond, S., et al. The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E1916–E1925.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. E1916-E1925
-
-
Diamond, S.1
-
82
-
-
84909592563
-
A circadian gene expression atlas in mammals: implications for biology and medicine
-
82 Zhang, R., et al. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 16219–16224.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 16219-16224
-
-
Zhang, R.1
-
83
-
-
84956598215
-
Ribosome profiling reveals an important role for translational control in circadian gene expression
-
83 Jang, C., et al. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res. 25 (2015), 1836–1847.
-
(2015)
Genome Res.
, vol.25
, pp. 1836-1847
-
-
Jang, C.1
-
84
-
-
17244373578
-
Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro
-
84 Nakajima, M., et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308 (2005), 414–415.
-
(2005)
Science
, vol.308
, pp. 414-415
-
-
Nakajima, M.1
-
85
-
-
4644310259
-
Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942
-
85 Nishiwaki, T., et al. Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942. Proc. Natl. Acad. Sci. U.S.A. 101 (2004), 13927–13932.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 13927-13932
-
-
Nishiwaki, T.1
-
86
-
-
37549018348
-
Ordered phosphorylation governs oscillation of a three-protein circadian clock
-
86 Rust, M.J., et al. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318 (2007), 809–812.
-
(2007)
Science
, vol.318
, pp. 809-812
-
-
Rust, M.J.1
-
87
-
-
33746147001
-
Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro
-
87 Kageyama, H., et al. Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro. Mol. Cell 23 (2006), 161–171.
-
(2006)
Mol. Cell
, vol.23
, pp. 161-171
-
-
Kageyama, H.1
-
88
-
-
84977935378
-
Transplantability of a circadian clock to a noncircadian organism
-
88 Chen, A.H., et al. Transplantability of a circadian clock to a noncircadian organism. Sci. Adv., 1, 2015, e1500358.
-
(2015)
Sci. Adv.
, vol.1
, pp. e1500358
-
-
Chen, A.H.1
-
89
-
-
84892402903
-
Hypersensitive photic responses and intact genome-wide transcriptional control without the KaiC phosphorylation cycle in the Synechococcus circadian system
-
89 Umetani, M., et al. Hypersensitive photic responses and intact genome-wide transcriptional control without the KaiC phosphorylation cycle in the Synechococcus circadian system. J. Bacteriol. 196 (2014), 548–555.
-
(2014)
J. Bacteriol.
, vol.196
, pp. 548-555
-
-
Umetani, M.1
-
90
-
-
84937723288
-
Atomic-scale origins of slowness in the cyanobacterial circadian clock
-
90 Abe, J., et al. Atomic-scale origins of slowness in the cyanobacterial circadian clock. Science 349 (2015), 312–316.
-
(2015)
Science
, vol.349
, pp. 312-316
-
-
Abe, J.1
-
91
-
-
84952875075
-
Controlling the cyanobacterial clock by synthetically rewiring metabolism
-
91 Pattanayak, G.K., et al. Controlling the cyanobacterial clock by synthetically rewiring metabolism. Cell Rep. 13 (2015), 2362–2367.
-
(2015)
Cell Rep.
, vol.13
, pp. 2362-2367
-
-
Pattanayak, G.K.1
-
92
-
-
78651453820
-
Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator
-
92 Rust, M.J., et al. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331 (2011), 220–223.
-
(2011)
Science
, vol.331
, pp. 220-223
-
-
Rust, M.J.1
-
93
-
-
84868094430
-
Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator
-
93 Kim, Y.I., et al. Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 17765–17769.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 17765-17769
-
-
Kim, Y.I.1
-
94
-
-
84877587194
-
Robust circadian oscillations in growing cyanobacteria require transcriptional feedback
-
94 Teng, S.W., et al. Robust circadian oscillations in growing cyanobacteria require transcriptional feedback. Science 340 (2013), 737–740.
-
(2013)
Science
, vol.340
, pp. 737-740
-
-
Teng, S.W.1
-
96
-
-
1642274684
-
The PAS fold. A redefinition of the PAS domain based upon structural prediction
-
96 Hefti, M.H., et al. The PAS fold. A redefinition of the PAS domain based upon structural prediction. Eur. J. Biochem. 271 (2004), 1198–1208.
-
(2004)
Eur. J. Biochem.
, vol.271
, pp. 1198-1208
-
-
Hefti, M.H.1
-
97
-
-
84996684557
-
Photobiology and circadian clocks in Neurospora
-
M. Nowrousian Springer
-
97 Fuller, K.K., et al. Photobiology and circadian clocks in Neurospora. Nowrousian, M., (eds.) The Mycota, 2014, Springer, 121–148.
-
(2014)
The Mycota
, pp. 121-148
-
-
Fuller, K.K.1
-
98
-
-
84922335319
-
Dissecting the mechanisms of the clock in Neurospora
-
98 Hurley, J., et al. Dissecting the mechanisms of the clock in Neurospora. Methods Enzymol. 551 (2015), 29–52.
-
(2015)
Methods Enzymol.
, vol.551
, pp. 29-52
-
-
Hurley, J.1
-
99
-
-
77951912759
-
Circadian organization of behavior and physiology in Drosophila
-
99 Allada, R., Chung, B.Y., Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72 (2010), 605–624.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 605-624
-
-
Allada, R.1
Chung, B.Y.2
-
100
-
-
84892976423
-
Molecular architecture of the mammalian circadian clock
-
100 Partch, C.L., et al. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24 (2014), 90–99.
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 90-99
-
-
Partch, C.L.1
|