-
1
-
-
0042490526
-
A clockwork web: Circadian timing in brain and periphery, in health and disease
-
Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: Circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4(8):649-661.
-
(2003)
Nat Rev Neurosci
, vol.4
, Issue.8
, pp. 649-661
-
-
Hastings, M.H.1
Reddy, A.B.2
Maywood, E.S.3
-
3
-
-
4544362674
-
Mammalian circadian biology: Elucidating genomewide levels of temporal organization
-
Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: Elucidating genomewide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407-441.
-
(2004)
Annu Rev Genomics Hum Genet
, vol.5
, pp. 407-441
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
4
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S, et al. (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3):307-320.
-
(2002)
Cell
, vol.109
, Issue.3
, pp. 307-320
-
-
Panda, S.1
-
5
-
-
0037194790
-
Coordination of circadian timing in mammals
-
Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935-941.
-
(2002)
Nature
, vol.418
, Issue.6901
, pp. 935-941
-
-
Reppert, S.M.1
Weaver, D.R.2
-
6
-
-
0344737805
-
Adaptive significance of circadian clocks
-
Sharma VK (2003) Adaptive significance of circadian clocks. Chronobiol Int 20(6):901-919.
-
(2003)
Chronobiol Int
, vol.20
, Issue.6
, pp. 901-919
-
-
Sharma, V.K.1
-
7
-
-
15044341917
-
Cellular oscillators: Rhythmic gene expression and metabolism
-
Schibler U, Naef F (2005) Cellular oscillators: Rhythmic gene expression and metabolism. Curr Opin Cell Biol 17(2):223-229.
-
(2005)
Curr Opin Cell Biol
, vol.17
, Issue.2
, pp. 223-229
-
-
Schibler, U.1
Naef, F.2
-
8
-
-
0037178787
-
The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner N, et al. (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251-260.
-
(2002)
Cell
, vol.110
, Issue.2
, pp. 251-260
-
-
Preitner, N.1
-
9
-
-
4143142003
-
A functional genomics strategy reveals Rora as a component of the mammalian circadian clock
-
Sato TK, et al. (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43(4):527-537.
-
(2004)
Neuron
, vol.43
, Issue.4
, pp. 527-537
-
-
Sato, T.K.1
-
10
-
-
40149090376
-
Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms
-
Liu AC, et al. (2008) Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet 4(2):e1000023.
-
(2008)
PLoS Genet
, vol.4
, Issue.2
-
-
Liu, A.C.1
-
11
-
-
34249097203
-
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
-
Siepka SM, et al. (2007) Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129(5):1011-1023.
-
(2007)
Cell
, vol.129
, Issue.5
, pp. 1011-1023
-
-
Siepka, S.M.1
-
12
-
-
34248525919
-
The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
-
Godinho SI, et al. (2007) The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316(5826):897-900.
-
(2007)
Science
, vol.316
, Issue.5826
, pp. 897-900
-
-
Godinho, S.I.1
-
13
-
-
34248566788
-
SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Busino L, et al. (2007) SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316(5826):900-904.
-
(2007)
Science
, vol.316
, Issue.5826
, pp. 900-904
-
-
Busino, L.1
-
14
-
-
70449093653
-
Rhythmic per abundance defines a critical nodal point for negative feedback within the circadian clock mechanism
-
Chen R, et al. (2009) Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell 36(3):417-430.
-
(2009)
Mol Cell
, vol.36
, Issue.3
, pp. 417-430
-
-
Chen, R.1
-
15
-
-
20244377493
-
Positional cloning of the mouse circadian clock gene
-
King DP, et al. (1997) Positional cloning of the mouse circadian clock gene. Cell 89(4): 641-653.
-
(1997)
Cell
, vol.89
, Issue.4
, pp. 641-653
-
-
King, D.P.1
-
16
-
-
0034704203
-
Mop3 is an essential component of the master circadian pacemaker in mammals
-
Bunger MK, et al. (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103(7):1009-1017.
-
(2000)
Cell
, vol.103
, Issue.7
, pp. 1009-1017
-
-
Bunger, M.K.1
-
17
-
-
33846005528
-
Modeling of a human circadian mutation yields insights into clock regulation by PER2
-
Xu Y, et al. (2007) Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128(1):59-70.
-
(2007)
Cell
, vol.128
, Issue.1
, pp. 59-70
-
-
Xu, Y.1
-
18
-
-
0032553599
-
Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses
-
Thresher RJ, et al. (1998) Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282(5393):1490-1494.
-
(1998)
Science
, vol.282
, Issue.5393
, pp. 1490-1494
-
-
Thresher, R.J.1
-
19
-
-
2242456966
-
Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2
-
Vitaterna MH, et al. (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA 96(21):12114-12119.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, Issue.21
, pp. 12114-12119
-
-
Vitaterna, M.H.1
-
20
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
-
Etchegaray JP, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421(6919):177-182.
-
(2003)
Nature
, vol.421
, Issue.6919
, pp. 177-182
-
-
Etchegaray, J.P.1
Lee, C.2
Wade, P.A.3
Reppert, S.M.4
-
21
-
-
34249041230
-
Exploring genetic interactions and networks with yeast
-
Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8(6):437-449.
-
(2007)
Nat Rev Genet
, vol.8
, Issue.6
, pp. 437-449
-
-
Boone, C.1
Bussey, H.2
Andrews, B.J.3
-
22
-
-
84859329911
-
Rev-erba and Rev-erbβ coordinately protect the circadian clock and normal metabolic function
-
Bugge A, et al. (2012) Rev-erba and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev 26(7):657-667.
-
(2012)
Genes Dev
, vol.26
, Issue.7
, pp. 657-667
-
-
Bugge, A.1
-
23
-
-
57749195091
-
Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology
-
Alenghat T, et al. (2008) Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 456(7224):997-1000.
-
(2008)
Nature
, vol.456
, Issue.7224
, pp. 997-1000
-
-
Alenghat, T.1
-
24
-
-
22344445394
-
The orphan nuclear receptor Rev-erbalpha recruits the N-CoR/ histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene
-
Yin L, Lazar MA (2005) The orphan nuclear receptor Rev-erbalpha recruits the N-CoR/ histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol Endocrinol 19(6):1452-1459.
-
(2005)
Mol Endocrinol
, vol.19
, Issue.6
, pp. 1452-1459
-
-
Yin, L.1
Lazar, M.A.2
-
25
-
-
34249275727
-
Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
-
Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447(7143):477-481.
-
(2007)
Nature
, vol.447
, Issue.7143
, pp. 477-481
-
-
Liu, C.1
Li, S.2
Liu, T.3
Borjigin, J.4
Lin, J.D.5
-
26
-
-
0034989269
-
Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock
-
Bae K, et al. (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30(2):525-536.
-
(2001)
Neuron
, vol.30
, Issue.2
, pp. 525-536
-
-
Bae, K.1
-
27
-
-
77951482163
-
Interaction of MAGED1 with nuclear receptors affects circadian clock function
-
Wang X, et al. (2010) Interaction of MAGED1 with nuclear receptors affects circadian clock function. EMBO J 29(8):1389-1400.
-
(2010)
EMBO J
, vol.29
, Issue.8
, pp. 1389-1400
-
-
Wang, X.1
-
28
-
-
33646130147
-
A clock shock: Mouse CLOCK is not required for circadian oscillator function
-
Debruyne JP, et al. (2006) A clock shock: Mouse CLOCK is not required for circadian oscillator function. Neuron 50(3):465-477.
-
(2006)
Neuron
, vol.50
, Issue.3
, pp. 465-477
-
-
Debruyne, J.P.1
-
29
-
-
0035368681
-
Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock
-
Zheng B, et al. (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105(5):683-694.
-
(2001)
Cell
, vol.105
, Issue.5
, pp. 683-694
-
-
Zheng, B.1
-
30
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-A and REV-ERB-β
-
Cho H, et al. (2012) Regulation of circadian behaviour and metabolism by REV-ERB-a and REV-ERB-β. Nature 485(7396):123-127.
-
(2012)
Nature
, vol.485
, Issue.7396
, pp. 123-127
-
-
Cho, H.1
-
31
-
-
0033597904
-
MCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop
-
Kume K, et al. (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98(2):193-205.
-
(1999)
Cell
, vol.98
, Issue.2
, pp. 193-205
-
-
Kume, K.1
-
32
-
-
0037108057
-
Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice
-
Oster H, Yasui A, van der Horst GT, Albrecht U (2002) Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice. Genes Dev 16(20):2633-2638.
-
(2002)
Genes Dev
, vol.16
, Issue.20
, pp. 2633-2638
-
-
Oster, H.1
Yasui, A.2
Van Der Horst, G.T.3
Albrecht, U.4
-
33
-
-
13944254430
-
System-level identification of transcriptional circuits underlying mammalian circadian clocks
-
Ueda HR, et al. (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37(2):187-192.
-
(2005)
Nat Genet
, vol.37
, Issue.2
, pp. 187-192
-
-
Ueda, H.R.1
-
34
-
-
78651491409
-
Delay in feedback repression by cryptochrome 1 is required for circadian clock function
-
Ukai-Tadenuma M, et al. (2011) Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 144(2):268-281.
-
(2011)
Cell
, vol.144
, Issue.2
, pp. 268-281
-
-
Ukai-Tadenuma, M.1
-
35
-
-
84857057191
-
The circadian mutation PER2(S662G) is linked to cell cycle progression and tumorigenesis
-
Gu X, et al. (2012) The circadian mutation PER2(S662G) is linked to cell cycle progression and tumorigenesis. Cell Death Differ 19(3):397-405.
-
(2012)
Cell Death Differ
, vol.19
, Issue.3
, pp. 397-405
-
-
Gu, X.1
-
36
-
-
0035966317
-
Posttranslational mechanisms regulate the mammalian circadian clock
-
Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107(7):855-867.
-
(2001)
Cell
, vol.107
, Issue.7
, pp. 855-867
-
-
Lee, C.1
Etchegaray, J.P.2
Cagampang, F.R.3
Loudon, A.S.4
Reppert, S.M.5
|