메뉴 건너뛰기




Volumn 17, Issue 4, 2016, Pages 576-592

Big-data-based edge biomarkers: Study on dynamical drug sensitivity and resistance in individuals

Author keywords

big data; Dynamical drug sensitivity and resistance; Dynamical network biomarker; Edge biomarker; Module biomarker; Personalized medicine

Indexed keywords

BIOLOGICAL MARKER;

EID: 84991380548     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbv078     Document Type: Article
Times cited : (44)

References (126)
  • 1
    • 78650323671 scopus 로고    scopus 로고
    • Predictive, preventive, personalized and participatory medicine: back to the future
    • Auffray C, Charron D, Hood L. Predictive, preventive, personalized and participatory medicine: back to the future. Genome Med 2010;2:57.
    • (2010) Genome Med , vol.2 , pp. 57
    • Auffray, C.1    Charron, D.2    Hood, L.3
  • 2
    • 79952431304 scopus 로고    scopus 로고
    • Predictive, personalized, preventive, participatory (P4) cancer medicine
    • Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 2011;8:184-7.
    • (2011) Nat Rev Clin Oncol , vol.8 , pp. 184-187
    • Hood, L.1    Friend, S.H.2
  • 3
    • 84865429505 scopus 로고    scopus 로고
    • A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory
    • Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol 2012;29:613-24.
    • (2012) N Biotechnol , vol.29 , pp. 613-624
    • Hood, L.1    Flores, M.2
  • 4
    • 84871146634 scopus 로고    scopus 로고
    • Personal genomes and precision medicine
    • Highnam G, Mittelman D. Personal genomes and precision medicine. Genome Biol 2012;13:324.
    • (2012) Genome Biol , vol.13 , pp. 324
    • Highnam, G.1    Mittelman, D.2
  • 5
    • 84905370049 scopus 로고    scopus 로고
    • Tracking genomic cancer evolution for precision medicine: the lung TRACERx study
    • Jamal-Hanjani M, Hackshaw A, Ngai Y, et al. Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLoS Biol 2014;12:e1001906.
    • (2014) PLoS Biol , vol.12
    • Jamal-Hanjani, M.1    Hackshaw, A.2    Ngai, Y.3
  • 6
    • 84902148239 scopus 로고    scopus 로고
    • Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine
    • Van Allen EM, Wagle N, Stojanov P, et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med 2014;20:682-8.
    • (2014) Nat Med , vol.20 , pp. 682-688
    • Van Allen, E.M.1    Wagle, N.2    Stojanov, P.3
  • 7
    • 84923673213 scopus 로고    scopus 로고
    • Precision medicine in breast cancer: genes, genomes, and the future of genomically driven treatments
    • Stover DG, Wagle N. Precision medicine in breast cancer: genes, genomes, and the future of genomically driven treatments. Curr Oncol Rep 2015;17:438.
    • (2015) Curr Oncol Rep , vol.17 , pp. 438
    • Stover, D.G.1    Wagle, N.2
  • 8
    • 84924413329 scopus 로고    scopus 로고
    • Obama's Precision Medicine Initiative
    • Terry SF. Obama's Precision Medicine Initiative. Genet Test Mol Biomarkers 2015;19:113-14.
    • (2015) Genet Test Mol Biomarkers , vol.19 , pp. 113-114
    • Terry, S.F.1
  • 9
    • 84925581553 scopus 로고    scopus 로고
    • Obama seeks $213m to fund "precision medicine"
    • McCarthy M. Obama seeks $213m to fund "precision medicine". BMJ 2015;350:h587.
    • (2015) BMJ , vol.350
    • McCarthy, M.1
  • 10
    • 84923762812 scopus 로고    scopus 로고
    • A new initiative on precision medicine
    • Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372:793-5.
    • (2015) N Engl J Med , vol.372 , pp. 793-795
    • Collins, F.S.1    Varmus, H.2
  • 11
    • 84991344826 scopus 로고    scopus 로고
    • Obama 2016 budget calls for precision medicine
    • Obama 2016 budget calls for precision medicine. Nat Biotechnol 2015;33:216.
    • (2015) Nat Biotechnol , vol.33 , pp. 216
  • 12
    • 84923309434 scopus 로고    scopus 로고
    • UK catapults precision medicine
    • UK catapults precision medicine. Nat Biotechnol 2015;33:119.
    • (2015) Nat Biotechnol , vol.33 , pp. 119
  • 13
    • 78650114702 scopus 로고    scopus 로고
    • National Institutes of Health.A government niche for translational medicine and drug development
    • Kaiser J. National Institutes of Health. A government niche for translational medicine and drug development. Science 2010;330:1462-3.
    • (2010) Science , vol.330 , pp. 1462-1463
    • Kaiser, J.1
  • 14
    • 77149152809 scopus 로고    scopus 로고
    • Translational medicine: an engine of change for bringing new technology to community health
    • Milne CP, Kaitin KI. Translational medicine: an engine of change for bringing new technology to community health. Sci Transl Med 2009;1:5cm5.
    • (2009) Sci Transl Med , vol.1
    • Milne, C.P.1    Kaitin, K.I.2
  • 15
    • 78149343523 scopus 로고    scopus 로고
    • Mathematical modeling of molecular data in translational medicine: theoretical considerations
    • Marko NF, Weil RJ. Mathematical modeling of molecular data in translational medicine: theoretical considerations. Sci Transl Med 2010;2:56rv54.
    • (2010) Sci Transl Med , vol.2
    • Marko, N.F.1    Weil, R.J.2
  • 16
    • 77956470019 scopus 로고    scopus 로고
    • Translational medicine and the value of biomarker qualification
    • Goodsaid FM, Mendrick DL. Translational medicine and the value of biomarker qualification. Sci Transl Med 2010;2:47ps44.
    • (2010) Sci Transl Med , vol.2
    • Goodsaid, F.M.1    Mendrick, D.L.2
  • 17
    • 84867125470 scopus 로고    scopus 로고
    • Translational medicine in China
    • Zhang J. Translational medicine in China. Sci China Life Sci 2012;55:834-6.
    • (2012) Sci China Life Sci , vol.55 , pp. 834-836
    • Zhang, J.1
  • 19
    • 84856095538 scopus 로고    scopus 로고
    • Improving the efficacy of translational medicine by optimally integrating health care, academia and industry
    • Bornstein SR, Licinio J. Improving the efficacy of translational medicine by optimally integrating health care, academia and industry. Nat Med 2011;17:1567-9.
    • (2011) Nat Med , vol.17 , pp. 1567-1569
    • Bornstein, S.R.1    Licinio, J.2
  • 20
    • 84893431595 scopus 로고    scopus 로고
    • Progeria: a paradigm for translational medicine
    • Gordon LB, Rothman FG, Lopez-Otin C, et al. Progeria: a paradigm for translational medicine. Cell 2014;156:400-7.
    • (2014) Cell , vol.156 , pp. 400-407
    • Gordon, L.B.1    Rothman, F.G.2    Lopez-Otin, C.3
  • 21
    • 84859741480 scopus 로고    scopus 로고
    • Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers
    • Chen L, Liu R, Liu ZP, et al. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci Rep 2012;2:342.
    • (2012) Sci Rep , vol.2 , pp. 342
    • Chen, L.1    Liu, R.2    Liu, Z.P.3
  • 22
    • 51349125241 scopus 로고    scopus 로고
    • Big data: the next Google.Interview by Duncan Graham-Rowe
    • Buxton B, Hayward V, Pearson I, et al. Big data: the next Google. Interview by Duncan Graham-Rowe. Nature 2008;455:8-9.
    • (2008) Nature , vol.455 , pp. 8-9
    • Buxton, B.1    Hayward, V.2    Pearson, I.3
  • 23
    • 84871549881 scopus 로고    scopus 로고
    • Comparison of metagenomic samples using sequence signatures
    • Jiang B, Song K, Ren J, et al. Comparison of metagenomic samples using sequence signatures. BMC Genomics 2012; 13:730.
    • (2012) BMC Genomics , vol.13 , pp. 730
    • Jiang, B.1    Song, K.2    Ren, J.3
  • 24
    • 84887617966 scopus 로고    scopus 로고
    • Opportunities and methods for studying alternative splicing in cancer with RNA-Seq
    • Feng H, Qin Z, Zhang X. Opportunities and methods for studying alternative splicing in cancer with RNA-Seq. Cancer Lett 2013;340:179-91.
    • (2013) Cancer Lett , vol.340 , pp. 179-191
    • Feng, H.1    Qin, Z.2    Zhang, X.3
  • 25
    • 84922756988 scopus 로고    scopus 로고
    • Limited sampling hampers "big data" estimation of species richness in a tropical biodiversity hotspot
    • Engemann K, Enquist BJ, Sandel B, et al. Limited sampling hampers "big data" estimation of species richness in a tropical biodiversity hotspot. Ecol Evol 2015;5:807-20.
    • (2015) Ecol Evol , vol.5 , pp. 807-820
    • Engemann, K.1    Enquist, B.J.2    Sandel, B.3
  • 26
    • 84925286056 scopus 로고    scopus 로고
    • Using "big data" to dissect clinical heterogeneity
    • Altman RB, Ashley EA. Using "big data" to dissect clinical heterogeneity. Circulation 2015;131:232-3.
    • (2015) Circulation , vol.131 , pp. 232-233
    • Altman, R.B.1    Ashley, E.A.2
  • 27
    • 84922655439 scopus 로고    scopus 로고
    • Big biological data: challenges and opportunities
    • Li Y, Chen L. Big biological data: challenges and opportunities. Genomics Proteomics Bioinformatics 2014;12:187-9.
    • (2014) Genomics Proteomics Bioinformatics , vol.12 , pp. 187-189
    • Li, Y.1    Chen, L.2
  • 28
    • 84908867288 scopus 로고    scopus 로고
    • Computational systems biology in the big data era
    • Wang Y, Zhang XS, Chen L. Computational systems biology in the big data era. BMC Syst Biol 2013;7 (Suppl 2):S1.
    • (2013) BMC Syst Biol , vol.7 , pp. S1
    • Wang, Y.1    Zhang, X.S.2    Chen, L.3
  • 29
    • 84893156375 scopus 로고    scopus 로고
    • Gaussian graphical model for identifying significantly responsive regulatory networks from time course high-throughput data
    • Liu ZP, Zhang W, Horimoto K, et al. Gaussian graphical model for identifying significantly responsive regulatory networks from time course high-throughput data. IET Syst Biol 2013;7:143-52.
    • (2013) IET Syst Biol , vol.7 , pp. 143-152
    • Liu, Z.P.1    Zhang, W.2    Horimoto, K.3
  • 30
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet 2004;5:101-13.
    • (2004) Nat Rev Genet , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 31
    • 84856094560 scopus 로고    scopus 로고
    • Differential network biology
    • Ideker T, Krogan NJ. Differential network biology. Mol Syst Biol 2012;8:565.
    • (2012) Mol Syst Biol , vol.8 , pp. 565
    • Ideker, T.1    Krogan, N.J.2
  • 32
    • 84887815759 scopus 로고    scopus 로고
    • Network biomarkers reveal dysfunctional gene regulations during disease progression
    • Zeng T, Sun SY, Wang Y, et al. Network biomarkers reveal dysfunctional gene regulations during disease progression. FEBS J 2013;280:5682-95.
    • (2013) FEBS J , vol.280 , pp. 5682-5695
    • Zeng, T.1    Sun, S.Y.2    Wang, Y.3
  • 33
    • 84897433296 scopus 로고    scopus 로고
    • Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers
    • Liu R, Wang X, Aihara K, et al. Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Med Res Rev 2014;34:455-78. doi:10.1002/med.21293.
    • (2014) Med Res Rev , vol.34 , pp. 455-478
    • Liu, R.1    Wang, X.2    Aihara, K.3
  • 34
    • 84922004018 scopus 로고    scopus 로고
    • Edge biomarkers for classification and prediction of phenotypes
    • Zeng T, Zhang W, Yu X, et al. Edge biomarkers for classification and prediction of phenotypes. Sci China Life Sci 2014;57:1103-14.
    • (2014) Sci China Life Sci , vol.57 , pp. 1103-1114
    • Zeng, T.1    Zhang, W.2    Yu, X.3
  • 35
    • 84889606541 scopus 로고    scopus 로고
    • Edgotype: a fundamental link between genotype and phenotype
    • Sahni N, Yi S, Zhong Q, et al. Edgotype: a fundamental link between genotype and phenotype. Curr Opin Genet Dev 2013;23:649-57.
    • (2013) Curr Opin Genet Dev , vol.23 , pp. 649-657
    • Sahni, N.1    Yi, S.2    Zhong, Q.3
  • 36
    • 84907653864 scopus 로고    scopus 로고
    • EdgeMarker: identifying differentially correlated molecule pairs as edge-biomarkers
    • Zhang W, Zeng T, Chen L. EdgeMarker: identifying differentially correlated molecule pairs as edge-biomarkers. J Theor Biol 2014;362:35-43.
    • (2014) J Theor Biol , vol.362 , pp. 35-43
    • Zhang, W.1    Zeng, T.2    Chen, L.3
  • 37
    • 84887828585 scopus 로고    scopus 로고
    • Spatio-temporal analysis of type 2 diabetes mellitus based on differential expression networks
    • Sun SY, Liu ZP, Zeng T, et al. Spatio-temporal analysis of type 2 diabetes mellitus based on differential expression networks. Sci Rep 2013;3:2268.
    • (2013) Sci Rep , vol.3 , pp. 2268
    • Sun, S.Y.1    Liu, Z.P.2    Zeng, T.3
  • 38
    • 10244219943 scopus 로고    scopus 로고
    • A statistical method for identifying differential gene-gene co-expression patterns
    • Lai Y, Wu B, Chen L, et al. A statistical method for identifying differential gene-gene co-expression patterns. Bioinformatics 2004;20:3146-55.
    • (2004) Bioinformatics , vol.20 , pp. 3146-3155
    • Lai, Y.1    Wu, B.2    Chen, L.3
  • 39
    • 84901457642 scopus 로고    scopus 로고
    • Systems biology with omics data
    • Chen L. Systems biology with omics data. Methods 2014;67:267-8.
    • (2014) Methods , vol.67 , pp. 267-268
    • Chen, L.1
  • 40
    • 84858433310 scopus 로고    scopus 로고
    • Personal omics profiling reveals dynamic molecular and medical phenotypes
    • Chen R, Mias GI, Li-Pook-Than J, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012;148:1293-307.
    • (2012) Cell , vol.148 , pp. 1293-1307
    • Chen, R.1    Mias, G.I.2    Li-Pook-Than, J.3
  • 41
    • 84909578095 scopus 로고    scopus 로고
    • Prediction of dynamical drug sensitivity and resistance by module network rewiring-analysis based on transcriptional profiling
    • Zeng T, Wang DC, Wang X, et al. Prediction of dynamical drug sensitivity and resistance by module network rewiring-analysis based on transcriptional profiling. Drug Resist Updat 2014;17:64-76.
    • (2014) Drug Resist Updat , vol.17 , pp. 64-76
    • Zeng, T.1    Wang, D.C.2    Wang, X.3
  • 42
    • 84938867264 scopus 로고    scopus 로고
    • Diagnosing phenotypes of single-sample individuals by edge biomarkers
    • Zhang W, Zeng T, Liu X, et al. Diagnosing phenotypes of single-sample individuals by edge biomarkers. J Mol Cell Biol 2015;7:231-41.
    • (2015) J Mol Cell Biol , vol.7 , pp. 231-241
    • Zhang, W.1    Zeng, T.2    Liu, X.3
  • 43
    • 84884475470 scopus 로고    scopus 로고
    • Independent validation of a model using cell line chemosensitivity to predict response to therapy
    • Wang W, Baggerly KA, Knudsen S, et al. Independent validation of a model using cell line chemosensitivity to predict response to therapy. J Natl Cancer Inst 2013;105:1284-91.
    • (2013) J Natl Cancer Inst , vol.105 , pp. 1284-1291
    • Wang, W.1    Baggerly, K.A.2    Knudsen, S.3
  • 44
    • 84920261036 scopus 로고    scopus 로고
    • Using drug response data to identify molecular effectors, and molecular "omic" data to identify candidate drugs in cancer
    • Reinhold WC, Varma S, Rajapakse VN, et al. Using drug response data to identify molecular effectors, and molecular "omic" data to identify candidate drugs in cancer. Hum Genet 2015;134:3-11.
    • (2015) Hum Genet , vol.134 , pp. 3-11
    • Reinhold, W.C.1    Varma, S.2    Rajapakse, V.N.3
  • 45
    • 84873279841 scopus 로고    scopus 로고
    • GWAS meets TCGA to illuminatemechanisms of cancer predisposition
    • Kim HS, Minna JD, White MA. GWAS meets TCGA to illuminatemechanisms of cancer predisposition. Cell 2013;152:387-9.
    • (2013) Cell , vol.152 , pp. 387-389
    • Kim, H.S.1    Minna, J.D.2    White, M.A.3
  • 46
    • 84885137302 scopus 로고    scopus 로고
    • Exploring TCGA Pan-Cancer data at the UCSC Cancer Genomics Browser
    • Cline MS, Craft B, Swatloski T, et al. Exploring TCGA Pan-Cancer data at the UCSC Cancer Genomics Browser. Sci Rep 2013;3:2652.
    • (2013) Sci Rep , vol.3 , pp. 2652
    • Cline, M.S.1    Craft, B.2    Swatloski, T.3
  • 47
    • 84874271270 scopus 로고    scopus 로고
    • NCBI GEO: archive for functional genomics data sets-update
    • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 2013;41:D991-5.
    • (2013) Nucleic Acids Res , vol.41 , pp. D991-D995
    • Barrett, T.1    Wilhite, S.E.2    Ledoux, P.3
  • 48
    • 78651339534 scopus 로고    scopus 로고
    • NCBI GEO: archive for functional genomics data sets-10 years on
    • Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: archive for functional genomics data sets-10 years on. Nucleic Acids Res 2011;39:D1005-10.
    • (2011) Nucleic Acids Res , vol.39 , pp. D1005-D1010
    • Barrett, T.1    Troup, D.B.2    Wilhite, S.E.3
  • 49
    • 84883577718 scopus 로고    scopus 로고
    • Analysis Tool Web Services from the EMBL-EBI
    • McWilliam H, Li W, Uludag M, et al. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res 2013;41:W597-600.
    • (2013) Nucleic Acids Res , vol.41 , pp. W597-W600
    • McWilliam, H.1    Li, W.2    Uludag, M.3
  • 50
    • 77954296666 scopus 로고    scopus 로고
    • A new bioinformatics analysis tools framework at EMBL-EBI
    • Goujon M, McWilliam H, Li W, et al. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 2010;38:W695-9.
    • (2010) Nucleic Acids Res , vol.38 , pp. W695-W699
    • Goujon, M.1    McWilliam, H.2    Li, W.3
  • 51
    • 84906561393 scopus 로고    scopus 로고
    • GigaDB: promoting data dissemination and reproducibility
    • Sneddon TP, Zhe XS, Edmunds SC, et al. GigaDB: promoting data dissemination and reproducibility. Database (Oxford) 2014;2014:bau018.
    • (2014) Database (Oxford) , vol.2014
    • Sneddon, T.P.1    Zhe, X.S.2    Edmunds, S.C.3
  • 52
    • 84891658571 scopus 로고    scopus 로고
    • GigaDB: announcing the GigaScience database
    • Sneddon TP, Li P, Edmunds SC. GigaDB: announcing the GigaScience database. Gigascience 2012;1:11.
    • (2012) Gigascience , vol.1 , pp. 11
    • Sneddon, T.P.1    Li, P.2    Edmunds, S.C.3
  • 53
    • 84866163733 scopus 로고    scopus 로고
    • Genomics: ENCODE leads the way on big data
    • Gerstein M. Genomics: ENCODE leads the way on big data. Nature 2012;489:208.
    • (2012) Nature , vol.489 , pp. 208
    • Gerstein, M.1
  • 54
    • 84923365627 scopus 로고    scopus 로고
    • Compound signature detection on LINCS L1000 big data
    • Liu C, Su J, Yang F, et al. Compound signature detection on LINCS L1000 big data. Mol Biosyst 2015;11:714-22.
    • (2015) Mol Biosyst , vol.11 , pp. 714-722
    • Liu, C.1    Su, J.2    Yang, F.3
  • 55
    • 84904811883 scopus 로고    scopus 로고
    • LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures
    • Duan Q, Flynn C, Niepel M, et al. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res 2014;42:W449-60.
    • (2014) Nucleic Acids Res , vol.42 , pp. W449-W460
    • Duan, Q.1    Flynn, C.2    Niepel, M.3
  • 56
    • 84858983547 scopus 로고    scopus 로고
    • KEGG for integration and interpretation of large-scale molecular data sets
    • Kanehisa M, Goto S, Sato Y, et al. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012;40:D109-14.
    • (2012) Nucleic Acids Res , vol.40 , pp. D109-D114
    • Kanehisa, M.1    Goto, S.2    Sato, Y.3
  • 57
    • 0032919364 scopus 로고    scopus 로고
    • KEGG: Kyoto Encyclopedia of Genes and Genomes
    • Ogata H, Goto S, Sato K, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 1999;27:29-34.
    • (1999) Nucleic Acids Res , vol.27 , pp. 29-34
    • Ogata, H.1    Goto, S.2    Sato, K.3
  • 58
    • 78651324347 scopus 로고    scopus 로고
    • The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored
    • Szklarczyk D, Franceschini A, Kuhn M, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011;39:D561-8.
    • (2011) Nucleic Acids Res , vol.39 , pp. D561-D568
    • Szklarczyk, D.1    Franceschini, A.2    Kuhn, M.3
  • 59
    • 84874253819 scopus 로고    scopus 로고
    • Gene Ontology annotations and resources
    • Blake JA, Dolan M, Drabkin H, et al. Gene Ontology annotations and resources. Nucleic Acids Res 2013;41:D530-5.
    • (2013) Nucleic Acids Res , vol.41 , pp. D530-D535
    • Blake, J.A.1    Dolan, M.2    Drabkin, H.3
  • 60
    • 79951744727 scopus 로고    scopus 로고
    • Preface: RECOMB Conference on Systems Biology, Regulatory Genomics, and DREAM Challenges 2010 special issue
    • Kellis M, Califano A, Bar-Joseph Z. Preface: RECOMB Conference on Systems Biology, Regulatory Genomics, and DREAM Challenges 2010 special issue. J Comput Biol 2011;18:131.
    • (2011) J Comput Biol , vol.18 , pp. 131
    • Kellis, M.1    Califano, A.2    Bar-Joseph, Z.3
  • 61
    • 84925340868 scopus 로고    scopus 로고
    • Predicting cancer drug response: advancing the DREAM
    • Altman RB. Predicting cancer drug response: advancing the DREAM. Cancer Discov 2015;5:237-8.
    • (2015) Cancer Discov , vol.5 , pp. 237-238
    • Altman, R.B.1
  • 62
    • 77956059154 scopus 로고    scopus 로고
    • Genome-wide searching of rare genetic variants in WTCCC data
    • Feng T, Zhu X. Genome-wide searching of rare genetic variants in WTCCC data. Hum Genet 2010;128:269-80.
    • (2010) Hum Genet , vol.128 , pp. 269-280
    • Feng, T.1    Zhu, X.2
  • 63
    • 84859169877 scopus 로고    scopus 로고
    • The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    • Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012;483:603-7.
    • (2012) Nature , vol.483 , pp. 603-607
    • Barretina, J.1    Caponigro, G.2    Stransky, N.3
  • 64
    • 79551587720 scopus 로고    scopus 로고
    • Cytoscape 2.8: new features for data integration and network visualization
    • Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011;27:431-2.
    • (2011) Bioinformatics , vol.27 , pp. 431-432
    • Smoot, M.E.1    Ono, K.2    Ruscheinski, J.3
  • 65
    • 77956548953 scopus 로고    scopus 로고
    • Cytoscape Web: an interactive web-based network browser
    • Lopes CT, Franz M, Kazi F, et al. Cytoscape Web: an interactive web-based network browser. Bioinformatics 2010;26:2347-8.
    • (2010) Bioinformatics , vol.26 , pp. 2347-2348
    • Lopes, C.T.1    Franz, M.2    Kazi, F.3
  • 66
    • 0242490780 scopus 로고    scopus 로고
    • Cytoscape: a software environment for integrated models of biomolecular interaction networks
    • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-504.
    • (2003) Genome Res , vol.13 , pp. 2498-2504
    • Shannon, P.1    Markiel, A.2    Ozier, O.3
  • 67
    • 84894571860 scopus 로고    scopus 로고
    • Causal analysis approaches in ingenuity pathway analysis
    • Kramer A, Green J, Pollard J, Jr, et al. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 2014;30:523-30.
    • (2014) Bioinformatics , vol.30 , pp. 523-530
    • Kramer, A.1    Green, J.2    Pollard, J.3
  • 68
    • 84975742565 scopus 로고    scopus 로고
    • A map of human genome variation from population-scale sequencing
    • Abecasis GR, Altshuler D, Auton A, et al. A map of human genome variation from population-scale sequencing. Nature 2010;467:1061-73.
    • (2010) Nature , vol.467 , pp. 1061-1073
    • Abecasis, G.R.1    Altshuler, D.2    Auton, A.3
  • 69
    • 84975795680 scopus 로고    scopus 로고
    • An integrated map of genetic variation from 1, 092 human genomes
    • Abecasis GR, Auton A, Brooks LD, et al. An integrated map of genetic variation from 1, 092 human genomes. Nature 2012;491:56-65.
    • (2012) Nature , vol.491 , pp. 56-65
    • Abecasis, G.R.1    Auton, A.2    Brooks, L.D.3
  • 70
    • 84991340763 scopus 로고    scopus 로고
    • The 100, 000 Genomes Project
    • The 100, 000 Genomes Project. http://www.genomicseng land.co.uk/the-100000-genomes-project/
  • 71
    • 84991304587 scopus 로고    scopus 로고
    • 100K Wellness Project
    • 100K Wellness Project. http://research.systemsbiology.net/100k/
  • 72
    • 84924095064 scopus 로고    scopus 로고
    • Integrating big data and actionable health coaching to optimize wellness
    • Hood L, Lovejoy JC, Price ND. Integrating big data and actionable health coaching to optimize wellness. BMC Med 2015;13:4.
    • (2015) BMC Med , vol.13 , pp. 4
    • Hood, L.1    Lovejoy, J.C.2    Price, N.D.3
  • 73
    • 84901387868 scopus 로고    scopus 로고
    • Deciphering early development of complex diseases by progressive module network
    • Zeng T, Zhang CC, Zhang W, et al. Deciphering early development of complex diseases by progressive module network. Methods 2014;67:334-43.
    • (2014) Methods , vol.67 , pp. 334-343
    • Zeng, T.1    Zhang, C.C.2    Zhang, W.3
  • 74
    • 84910070867 scopus 로고    scopus 로고
    • Systematic identification of transcriptional and post-transcriptional regulations in human respiratory epithelial cells during influenza A virus infection
    • Liu ZP, Wu H, Zhu J, et al. Systematic identification of transcriptional and post-transcriptional regulations in human respiratory epithelial cells during influenza A virus infection. BMC Bioinformatics 2014;15:336.
    • (2014) BMC Bioinformatics , vol.15 , pp. 336
    • Liu, Z.P.1    Wu, H.2    Zhu, J.3
  • 75
    • 84863887694 scopus 로고    scopus 로고
    • Studying and modelling dynamic biological processes using time-series gene expression data
    • Bar-Joseph Z, Gitter A, Simon I. Studying and modelling dynamic biological processes using time-series gene expression data. Nat Rev Genet 2012;13:552-64.
    • (2012) Nat Rev Genet , vol.13 , pp. 552-564
    • Bar-Joseph, Z.1    Gitter, A.2    Simon, I.3
  • 76
    • 84873124804 scopus 로고    scopus 로고
    • APG: an Active Protein-Gene network model to quantify regulatory signals in complex biological systems
    • Wang J, Sun Y, Zheng S, et al. APG: an Active Protein-Gene network model to quantify regulatory signals in complex biological systems. Sci Rep 2013;3:1097.
    • (2013) Sci Rep , vol.3 , pp. 1097
    • Wang, J.1    Sun, Y.2    Zheng, S.3
  • 77
    • 80052320333 scopus 로고    scopus 로고
    • Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection
    • Huang Y, Zaas AK, Rao A, et al. Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection. PLoS Genet 2011;7:e1002234.
    • (2011) PLoS Genet , vol.7
    • Huang, Y.1    Zaas, A.K.2    Rao, A.3
  • 78
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van 't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530-6.
    • (2002) Nature , vol.415 , pp. 530-536
    • van 't Veer, L.J.1    Dai, H.2    van de Vijver, M.J.3
  • 79
    • 78649976005 scopus 로고    scopus 로고
    • An integrated approach to uncover drivers of cancer
    • Akavia UD, Litvin O, Kim J, et al. An integrated approach to uncover drivers of cancer. Cell 2010;143:1005-17.
    • (2010) Cell , vol.143 , pp. 1005-1017
    • Akavia, U.D.1    Litvin, O.2    Kim, J.3
  • 80
    • 35348891430 scopus 로고    scopus 로고
    • Network-based classification of breast cancer metastasis
    • Chuang HY, Lee E, Liu YT, et al. Network-based classification of breast cancer metastasis. Mol Syst Biol 2007;3:140.
    • (2007) Mol Syst Biol , vol.3 , pp. 140
    • Chuang, H.Y.1    Lee, E.2    Liu, Y.T.3
  • 81
    • 57149092133 scopus 로고    scopus 로고
    • Inferring pathway activity toward precise disease classification
    • Lee E, Chuang HY, Kim JW, et al. Inferring pathway activity toward precise disease classification. PLoS Comput Biol 2008;4:e1000217.
    • (2008) PLoS Comput Biol , vol.4
    • Lee, E.1    Chuang, H.Y.2    Kim, J.W.3
  • 82
    • 84874903469 scopus 로고    scopus 로고
    • Classification of time series gene expression in clinical studies via integration of biological network
    • Qian L, Zheng H, Zhou H, et al. Classification of time series gene expression in clinical studies via integration of biological network. PLoS One 2013;8:e58383.
    • (2013) PLoS One , vol.8
    • Qian, L.1    Zheng, H.2    Zhou, H.3
  • 83
    • 84925452476 scopus 로고    scopus 로고
    • Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis
    • Li Y, Jin S, Lei L, et al. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis. Sci Rep 2015;5:9283.
    • (2015) Sci Rep , vol.5 , pp. 9283
    • Li, Y.1    Jin, S.2    Lei, L.3
  • 84
    • 84868152524 scopus 로고    scopus 로고
    • Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
    • Zhang S, Liu CC, Li W, et al. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 2012;40:9379-91.
    • (2012) Nucleic Acids Res , vol.40 , pp. 9379-9391
    • Zhang, S.1    Liu, C.C.2    Li, W.3
  • 85
    • 84889594211 scopus 로고    scopus 로고
    • Temporal response of the human virome to immunosuppression and antiviral therapy
    • De Vlaminck I, Khush KK, Strehl C, et al. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell 2013;155:1178-87.
    • (2013) Cell , vol.155 , pp. 1178-1187
    • De Vlaminck, I.1    Khush, K.K.2    Strehl, C.3
  • 86
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007; 23:2507-17.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 88
    • 84923375991 scopus 로고    scopus 로고
    • Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy
    • Montero J, Sarosiek KA, DeAngelo JD, et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell 2015;160:977-89.
    • (2015) Cell , vol.160 , pp. 977-989
    • Montero, J.1    Sarosiek, K.A.2    DeAngelo, J.D.3
  • 89
    • 84890285744 scopus 로고    scopus 로고
    • SHON is a novel estrogen-regulated oncogene in mammary carcinoma that predicts patient response to endocrine therapy
    • Jung Y, Abdel-Fatah TM, Chan SY, et al. SHON is a novel estrogen-regulated oncogene in mammary carcinoma that predicts patient response to endocrine therapy. Cancer Res 2013;73:6951-62.
    • (2013) Cancer Res , vol.73 , pp. 6951-6962
    • Jung, Y.1    Abdel-Fatah, T.M.2    Chan, S.Y.3
  • 90
    • 84875439460 scopus 로고    scopus 로고
    • Collections of simultaneously altered genes as biomarkers of cancer cell drug response
    • Masica DL, Karchin R. Collections of simultaneously altered genes as biomarkers of cancer cell drug response. Cancer Res 2013;73:1699-708.
    • (2013) Cancer Res , vol.73 , pp. 1699-1708
    • Masica, D.L.1    Karchin, R.2
  • 91
    • 84891945257 scopus 로고    scopus 로고
    • Differential network analysis applied to preoperative breast cancer chemotherapy response
    • Warsow G, Struckmann S, Kerkhoff C, et al. Differential network analysis applied to preoperative breast cancer chemotherapy response. PLoS One 2013;8:e81784.
    • (2013) PLoS One , vol.8
    • Warsow, G.1    Struckmann, S.2    Kerkhoff, C.3
  • 92
    • 84896802719 scopus 로고    scopus 로고
    • Predicting cooperative drug effects through the quantitative cellular profiling of response to individual drugs
    • Zhao J, Zhang XS, Zhang S. Predicting cooperative drug effects through the quantitative cellular profiling of response to individual drugs. CPT Pharmacometrics Syst Pharmacol 2014;3:e102.
    • (2014) CPT Pharmacometrics Syst Pharmacol , vol.3
    • Zhao, J.1    Zhang, X.S.2    Zhang, S.3
  • 93
    • 84888049920 scopus 로고    scopus 로고
    • Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment
    • Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013;342:967-70.
    • (2013) Science , vol.342 , pp. 967-970
    • Iida, N.1    Dzutsev, A.2    Stewart, C.A.3
  • 94
    • 84907494553 scopus 로고    scopus 로고
    • Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer
    • Walsh AJ, Cook RS, Sanders ME, et al. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res 2014;74: 5184-94.
    • (2014) Cancer Res , vol.74 , pp. 5184-5194
    • Walsh, A.J.1    Cook, R.S.2    Sanders, M.E.3
  • 95
    • 84897951842 scopus 로고    scopus 로고
    • Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines
    • Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol 2014;15:R47.
    • (2014) Genome Biol , vol.15 , pp. R47
    • Geeleher, P.1    Cox, N.J.2    Huang, R.S.3
  • 96
    • 84937761544 scopus 로고    scopus 로고
    • Studying clonal dynamics in response to cancer therapy using high-complexity barcoding
    • Bhang HE, Ruddy DA, Krishnamurthy Radhakrishna V, et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat Med 2015;21:440-8.
    • (2015) Nat Med , vol.21 , pp. 440-448
    • Bhang, H.E.1    Ruddy, D.A.2    Krishnamurthy Radhakrishna, V.3
  • 97
    • 84893165119 scopus 로고    scopus 로고
    • Discovery of genetic biomarkers contributing to variation in drug response of cytidine analogues using human lymphoblastoid cell lines
    • Li L, Fridley BL, Kalari K, et al. Discovery of genetic biomarkers contributing to variation in drug response of cytidine analogues using human lymphoblastoid cell lines. BMC Genomics 2014;15:93.
    • (2014) BMC Genomics , vol.15 , pp. 93
    • Li, L.1    Fridley, B.L.2    Kalari, K.3
  • 98
    • 84892604542 scopus 로고    scopus 로고
    • Variant GADL1 and response to lithium therapy in bipolar I disorder
    • Chen CH, Lee CS, Lee MT, et al. Variant GADL1 and response to lithium therapy in bipolar I disorder. N Engl J Med 2014;370:119-28.
    • (2014) N Engl J Med , vol.370 , pp. 119-128
    • Chen, C.H.1    Lee, C.S.2    Lee, M.T.3
  • 99
    • 84875993860 scopus 로고    scopus 로고
    • Genome-wide association study and gene expression analysis identifies CD84 as a predictor of response to etanercept therapy in rheumatoid arthritis
    • Cui J, Stahl EA, Saevarsdottir S, et al. Genome-wide association study and gene expression analysis identifies CD84 as a predictor of response to etanercept therapy in rheumatoid arthritis. PLoS Genet 2013;9:e1003394.
    • (2013) PLoS Genet , vol.9
    • Cui, J.1    Stahl, E.A.2    Saevarsdottir, S.3
  • 100
    • 0026777128 scopus 로고
    • HCV genotypes in chronic hepatitis C and response to interferon
    • Kanai K, Kako M, Okamoto H. HCV genotypes in chronic hepatitis C and response to interferon. Lancet 1992;339:1543.
    • (1992) Lancet , vol.339 , pp. 1543
    • Kanai, K.1    Kako, M.2    Okamoto, H.3
  • 101
    • 0027163103 scopus 로고
    • Nucleotide sequence of the hepatitis C virus genome from a patient negative for anti-HCV by the first generation antibody assay
    • Sarashina T, Sakurai T, Watanabe Y, et al. Nucleotide sequence of the hepatitis C virus genome from a patient negative for anti-HCV by the first generation antibody assay. Nucleic Acids Res 1993;21:1037.
    • (1993) Nucleic Acids Res , vol.21 , pp. 1037
    • Sarashina, T.1    Sakurai, T.2    Watanabe, Y.3
  • 102
    • 0033052847 scopus 로고    scopus 로고
    • Relationship of the genomic complexity of hepatitis C virus with liver disease severity and response to interferon in patients with chronic HCV genotype 1b infection [correction of interferon]
    • Lopez-Labrador FX, Ampurdanes S, Gimenez-Barcons M, et al. Relationship of the genomic complexity of hepatitis C virus with liver disease severity and response to interferon in patients with chronic HCV genotype 1b infection [correction of interferon]. Hepatology 1999;29:897-903.
    • (1999) Hepatology , vol.29 , pp. 897-903
    • Lopez-Labrador, F.X.1    Ampurdanes, S.2    Gimenez-Barcons, M.3
  • 103
    • 84885952071 scopus 로고    scopus 로고
    • Impact of host and virus genome variability on HCV replication and response to interferon
    • Schweitzer CJ, Liang TJ. Impact of host and virus genome variability on HCV replication and response to interferon. Curr Opin Virol 2013;3:501-7.
    • (2013) Curr Opin Virol , vol.3 , pp. 501-507
    • Schweitzer, C.J.1    Liang, T.J.2
  • 104
    • 27944450456 scopus 로고    scopus 로고
    • DNA microarray data imputation and significance analysis of differential expression
    • Jornsten R, Wang HY, Welsh WJ, et al. DNA microarray data imputation and significance analysis of differential expression. Bioinformatics 2005;21:4155-61.
    • (2005) Bioinformatics , vol.21 , pp. 4155-4161
    • Jornsten, R.1    Wang, H.Y.2    Welsh, W.J.3
  • 105
    • 84883644707 scopus 로고    scopus 로고
    • Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    • Rapaport F, Khanin R, Liang Y, et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 2013;14:R95.
    • (2013) Genome Biol , vol.14 , pp. R95
    • Rapaport, F.1    Khanin, R.2    Liang, Y.3
  • 106
    • 84862630197 scopus 로고    scopus 로고
    • Data integration and systems biology approaches for biomarker discovery: challenges and opportunities for multiple sclerosis
    • Villoslada P, Baranzini S. Data integration and systems biology approaches for biomarker discovery: challenges and opportunities for multiple sclerosis. J Neuroimmunol 2012;248:58-65.
    • (2012) J Neuroimmunol , vol.248 , pp. 58-65
    • Villoslada, P.1    Baranzini, S.2
  • 107
    • 65549084289 scopus 로고    scopus 로고
    • Pathway and network-based analysis of genome-wide association studies in multiple sclerosis
    • Baranzini SE, Galwey NW, Wang J, et al. Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet 2009;18:2078-90.
    • (2009) Hum Mol Genet , vol.18 , pp. 2078-2090
    • Baranzini, S.E.1    Galwey, N.W.2    Wang, J.3
  • 108
    • 84897903348 scopus 로고    scopus 로고
    • Prediction and early diagnosis of complex diseases by edge-network
    • Yu X, Li G, Chen L. Prediction and early diagnosis of complex diseases by edge-network. Bioinformatics 2014;30:852-9.
    • (2014) Bioinformatics , vol.30 , pp. 852-859
    • Yu, X.1    Li, G.2    Chen, L.3
  • 109
    • 84901315597 scopus 로고    scopus 로고
    • Identifying critical transitions of complex diseases based on a single sample
    • Liu R, Yu X, Liu X, et al. Identifying critical transitions of complex diseases based on a single sample. Bioinformatics 2014;30:1579-86.
    • (2014) Bioinformatics , vol.30 , pp. 1579-1586
    • Liu, R.1    Yu, X.2    Liu, X.3
  • 110
    • 58149377592 scopus 로고    scopus 로고
    • Cyclic changes in gene expression induced by Peg-interferon alfa-2b plus ribavirin in peripheral blood monocytes (PBMC) of hepatitis C patients during the first 10 weeks of treatment
    • Taylor MW, Tsukahara T, McClintick JN, et al. Cyclic changes in gene expression induced by Peg-interferon alfa-2b plus ribavirin in peripheral blood monocytes (PBMC) of hepatitis C patients during the first 10 weeks of treatment. J Transl Med 2008;6:66.
    • (2008) J Transl Med , vol.6 , pp. 66
    • Taylor, M.W.1    Tsukahara, T.2    McClintick, J.N.3
  • 111
    • 52749089141 scopus 로고    scopus 로고
    • The prediction of interferon treatment effects based on time series microarray gene expression profiles
    • Huang T, Tu K, Shyr Y, et al. The prediction of interferon treatment effects based on time series microarray gene expression profiles. J Transl Med 2008;6:44.
    • (2008) J Transl Med , vol.6 , pp. 44
    • Huang, T.1    Tu, K.2    Shyr, Y.3
  • 112
    • 20044373640 scopus 로고    scopus 로고
    • Transcription-based prediction of response to IFNbeta using supervised computational methods
    • Baranzini SE, Mousavi P, Rio J, et al. Transcription-based prediction of response to IFNbeta using supervised computational methods. PLoS Biol 2005;3:e2.
    • (2005) PLoS Biol , vol.3
    • Baranzini, S.E.1    Mousavi, P.2    Rio, J.3
  • 113
    • 84903705946 scopus 로고    scopus 로고
    • Negative correlation based gene markers identification in integrative gene expression data
    • Zeng T, Guo X, Liu J. Negative correlation based gene markers identification in integrative gene expression data. Int J Data Min Bioinform 2014;10:1-17.
    • (2014) Int J Data Min Bioinform , vol.10 , pp. 1-17
    • Zeng, T.1    Guo, X.2    Liu, J.3
  • 114
    • 46249094886 scopus 로고    scopus 로고
    • Alignment and classification of time series gene expression in clinical studies
    • Lin TH, Kaminski N, Bar-Joseph Z. Alignment and classification of time series gene expression in clinical studies. Bioinformatics 2008;24:i147-55.
    • (2008) Bioinformatics , vol.24 , pp. i147-i155
    • Lin, T.H.1    Kaminski, N.2    Bar-Joseph, Z.3
  • 115
    • 75749118260 scopus 로고    scopus 로고
    • Expression of genes associated with immunoproteasome processing of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS, S malaria vaccine
    • Vahey MT, Wang Z, Kester KE, et al. Expression of genes associated with immunoproteasome processing of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS, S malaria vaccine. J Infect Dis 2010;201:580-9.
    • (2010) J Infect Dis , vol.201 , pp. 580-589
    • Vahey, M.T.1    Wang, Z.2    Kester, K.E.3
  • 116
    • 0030917736 scopus 로고    scopus 로고
    • From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen
    • Hadley TJ, Peiper SC. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood 1997;89:3077-91.
    • (1997) Blood , vol.89 , pp. 3077-3091
    • Hadley, T.J.1    Peiper, S.C.2
  • 117
    • 84906658091 scopus 로고    scopus 로고
    • Unleashing the potential of NOD-and Toll-like agonists as vaccine adjuvants
    • Maisonneuve C, Bertholet S, Philpott DJ, et al. Unleashing the potential of NOD-and Toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci USA 2014;111:12294-9.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 12294-12299
    • Maisonneuve, C.1    Bertholet, S.2    Philpott, D.J.3
  • 118
    • 7044254906 scopus 로고    scopus 로고
    • Phase I testing of a malaria vaccine composed of hepatitis B virus core particles expressing Plasmodium falciparum circumsporozoite epitopes
    • Nardin EH, Oliveira GA, Calvo-Calle JM, et al. Phase I testing of a malaria vaccine composed of hepatitis B virus core particles expressing Plasmodium falciparum circumsporozoite epitopes. Infect Immun 2004;72:6519-27.
    • (2004) Infect Immun , vol.72 , pp. 6519-6527
    • Nardin, E.H.1    Oliveira, G.A.2    Calvo-Calle, J.M.3
  • 119
    • 0036986329 scopus 로고    scopus 로고
    • A malaria vaccine candidate based on a hepatitis B virus core platform
    • Sallberg M, Hughes J, Jones J, et al. A malaria vaccine candidate based on a hepatitis B virus core platform. Intervirology 2002;45:350-61.
    • (2002) Intervirology , vol.45 , pp. 350-361
    • Sallberg, M.1    Hughes, J.2    Jones, J.3
  • 120
  • 121
    • 77953792335 scopus 로고    scopus 로고
    • Association between malaria incidence and all cancer mortality in fifty U.S.States and the District of Columbia
    • Lehrer S. Association between malaria incidence and all cancer mortality in fifty U.S. States and the District of Columbia. Anticancer Res 2010;30:1371-3.
    • (2010) Anticancer Res , vol.30 , pp. 1371-1373
    • Lehrer, S.1
  • 122
    • 25444456388 scopus 로고    scopus 로고
    • Towards precise classification of cancers based on robust gene functional expression profiles
    • Guo Z, Zhang T, Li X, et al. Towards precise classification of cancers based on robust gene functional expression profiles. BMC Bioinformatics 2005;6:58.
    • (2005) BMC Bioinformatics , vol.6 , pp. 58
    • Guo, Z.1    Zhang, T.2    Li, X.3
  • 123
    • 84899541058 scopus 로고    scopus 로고
    • netClass: an R-package for network based, integrative biomarker signature discovery
    • Cun Y, Frohlich H. netClass: an R-package for network based, integrative biomarker signature discovery. Bioinformatics 2014;30:1325-6.
    • (2014) Bioinformatics , vol.30 , pp. 1325-1326
    • Cun, Y.1    Frohlich, H.2
  • 124
    • 84863677563 scopus 로고    scopus 로고
    • Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes
    • Winter C, Kristiansen G, Kersting S, et al. Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLoS Comput Biol 2012;8:e1002511.
    • (2012) PLoS Comput Biol , vol.8
    • Winter, C.1    Kristiansen, G.2    Kersting, S.3
  • 125
    • 84872202078 scopus 로고    scopus 로고
    • GSVA: gene set variation analysis for microarray and RNA-seq data
    • Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 2013;14:7.
    • (2013) BMC Bioinformatics , vol.14 , pp. 7
    • Hanzelmann, S.1    Castelo, R.2    Guinney, J.3
  • 126
    • 84876261160 scopus 로고    scopus 로고
    • Pathway-based personalized analysis of cancer
    • Drier Y, Sheffer M, Domany E. Pathway-based personalized analysis of cancer. Proc Natl Acad Sci USA 2013;110:6388-93.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 6388-6393
    • Drier, Y.1    Sheffer, M.2    Domany, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.