메뉴 건너뛰기




Volumn 30, Issue 9, 2014, Pages 1325-1326

NetClass: An R-package for network based, integrative biomarker signature discovery

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER; MICRORNA;

EID: 84899541058     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btu025     Document Type: Article
Times cited : (19)

References (18)
  • 1
    • 61449157892 scopus 로고    scopus 로고
    • Incorporating pathway information into boosting estimation of high-dimensional risk prediction models
    • Binder, H. and Schumacher, M. (2009) Incorporating pathway information into boosting estimation of high-dimensional risk prediction models. BMC Bioinformatics, 10, 18.
    • (2009) BMC Bioinformatics , vol.10 , pp. 18
    • Binder, H.1    Schumacher, M.2
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001) Random forests. Mach. Learn., 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 4
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C. and Vapnik, V. (1995) Support vector networks. Mach. Learn., 20, 273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 43349094507 scopus 로고    scopus 로고
    • The igraph software package for complex network research
    • Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research. Int. J. Complex Syst., 1695.
    • (2006) Int. J. Complex Syst. , pp. 1695
    • Csardi, G.1    Nepusz, T.2
  • 6
    • 84879136653 scopus 로고    scopus 로고
    • Biomarker gene signature discovery integrating network knowledge
    • Cun, Y. and Frohlich, H. (2012a) Biomarker gene signature discovery integrating network knowledge. Biology, 1, 5-17.
    • (2012) Biology , vol.1 , pp. 5-17
    • Cun, Y.1    Frohlich, H.2
  • 7
    • 84862181484 scopus 로고    scopus 로고
    • Prognostic gene signatures for patient stratification in breast cancer-accuracy, stability and interpretability of gene selection approaches using prior knowledge on protein-protein interactions
    • Cun, Y. and Frohlich, H. (2012b) Prognostic gene signatures for patient stratification in breast cancer-accuracy, stability and interpretability of gene selection approaches using prior knowledge on protein-protein interactions. BMC Bioinformatics, 13, 69.
    • (2012) BMC Bioinformatics , vol.13 , pp. 69
    • Cun, Y.1    Frohlich, H.2
  • 8
    • 84883383048 scopus 로고    scopus 로고
    • Network and data integration for biomarker signature discovery via network smoothed t-statistics
    • Cun, Y. and Frohlich, H. (2013) Network and data integration for biomarker signature discovery via network smoothed t-statistics. PLoS One, 8, e73074.
    • (2013) PLoS One , vol.8
    • Cun, Y.1    Frohlich, H.2
  • 9
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: Is there a unique set?
    • Ein-Dor, L. et al. (2005) Outcome signature genes in breast cancer: is there a unique set?. Bioinformatics, 21, 171-178.
    • (2005) Bioinformatics , vol.21 , pp. 171-178
    • Ein-Dor, L.1
  • 10
    • 70449408962 scopus 로고    scopus 로고
    • Graph ranking for exploratory gene data analysis
    • Gao, C. et al. (2009) Graph ranking for exploratory gene data analysis. BMC Bioinformatics, 10 (Suppl. 11), S19.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL. 11
    • Gao, C.1
  • 11
    • 70350248793 scopus 로고    scopus 로고
    • Statistical aspects of gene signatures and molecular targets
    • Gonen, M. (2009) Statistical aspects of gene signatures and molecular targets. Gastrointest. Cancer Res.: GCR, 3 (2 Suppl. 1), S19.
    • (2009) Gastrointest. Cancer Res.: GCR , vol.3 , Issue.2 SUPPL. 1
    • Gonen, M.1
  • 12
    • 25444456388 scopus 로고    scopus 로고
    • Towards precise classification of cancers based on robust gene functional expression profiles
    • Guo, Z. et al. (2005) Towards precise classification of cancers based on robust gene functional expression profiles. BMC Bioinformatics, 6, 58.
    • (2005) BMC Bioinformatics , vol.6 , pp. 58
    • Guo, Z.1
  • 13
    • 77955886691 scopus 로고    scopus 로고
    • Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients
    • Johannes, M. et al. (2010) Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients. Bioinformatics, 26, 2136-2144.
    • (2010) Bioinformatics , vol.26 , pp. 2136-2144
    • Johannes, M.1
  • 14
    • 79955757477 scopus 로고    scopus 로고
    • PathClass: An R-package for integration of pathway knowledge into support vector machines for biomarker discovery
    • Johannes, M. et al. (2011) pathClass: an R-package for integration of pathway knowledge into support vector machines for biomarker discovery. Bioinformatics, 27, 1442-1443.
    • (2011) Bioinformatics , vol.27 , pp. 1442-1443
    • Johannes, M.1
  • 15
    • 57149092133 scopus 로고    scopus 로고
    • Inferring pathway activity toward precise disease classification
    • Lee, E. et al. (2008) Inferring pathway activity toward precise disease classification. PLoS Comput. Biol., 4, e1000217.
    • (2008) PLoS Comput. Biol. , vol.4
    • Lee, E.1
  • 16
    • 84876788441 scopus 로고    scopus 로고
    • Steiner tree methods for optimal sub-network identification: An empirical study
    • Sadeghi, A. and Frohlich, H. (2013) Steiner tree methods for optimal sub-network identification: an empirical study. BMC Bioinformatics, 14, 144.
    • (2013) BMC Bioinformatics , vol.14 , pp. 144
    • Sadeghi, A.1    Frohlich, H.2
  • 17
    • 59849125136 scopus 로고    scopus 로고
    • Dynamic modularity in protein interaction networks predicts breast cancer outcome
    • Taylor, I.W. et al. (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat. Biotechnol., 27, 199-204.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 199-204
    • Taylor, I.W.1
  • 18
    • 84863677563 scopus 로고    scopus 로고
    • Google goes cancer: Improving outcome prediction for cancer patients by network-based ranking of marker genes
    • Winter, C. et al. (2012) Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLoS Comput. Biol., 8, e1002511.
    • (2012) PLoS Comput. Biol. , vol.8
    • Winter, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.