메뉴 건너뛰기




Volumn 2, Issue 56, 2010, Pages

Mathematical modeling of molecular data in translational medicine: Theoretical considerations

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANALYTIC METHOD; ARTIFICIAL INTELLIGENCE; CLINICAL MEDICINE; DATA BASE; LEARNING; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; PREDICTION; PRIORITY JOURNAL; PROBABILITY; REVIEW; STATISTICAL ANALYSIS; THEORY; TRANSLATIONAL RESEARCH; COMPUTER SIMULATION; HUMAN; MEDICINE; SYSTEM ANALYSIS; THEORETICAL MODEL;

EID: 78149343523     PISSN: 19466234     EISSN: 19466242     Source Type: Journal    
DOI: 10.1126/scitranslmed.3001207     Document Type: Review
Times cited : (11)

References (80)
  • 1
    • 33744957443 scopus 로고    scopus 로고
    • Microarray analysis and tumor classification
    • J. Quackenbush, Microarray analysis and tumor classification. N. Engl. J. Med. 354, 2463-2472 (2006).
    • (2006) N. Engl. J. Med. , vol.354 , pp. 2463-2472
    • Quackenbush, J.1
  • 2
    • 69949121341 scopus 로고    scopus 로고
    • The advancement of translational medicine - From regional challenges to global solutions
    • S. Albani, B. Prakken, The advancement of translational medicine - from regional challenges to global solutions. Nat. Med. 15, 1006-1009 (2009).
    • (2009) Nat. Med. , vol.15 , pp. 1006-1009
    • Albani, S.1    Prakken, B.2
  • 4
    • 77149120471 scopus 로고    scopus 로고
    • Association between a literature-based genetic risk score and cardiovascular events in women
    • N. P. Paynter, D. I. Chasman, G. Paré, J. E. Buring, N. R. Cook, J. P. Miletich, P. M. Ridker, Association between a literature-based genetic risk score and cardiovascular events in women. JAMA 303, 631-637 (2010).
    • (2010) JAMA , vol.303 , pp. 631-637
    • Paynter, N.P.1    Chasman, D.I.2    Paré, G.3    Buring, J.E.4    Cook, N.R.5    Miletich, J.P.6    Ridker, P.M.7
  • 5
    • 0042424602 scopus 로고    scopus 로고
    • Statistical significance for genomewide studies
    • J. D. Storey, R. Tibshirani, Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U.S.A. 100, 9440-9445 (2003).
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 9440-9445
    • Storey, J.D.1    Tibshirani, R.2
  • 7
    • 77951652898 scopus 로고    scopus 로고
    • A probabilistic framework for microarray data analysis: Fundamental probability models and statistical inference
    • B. A. Ogunnaike, C. A. Gelmi, J. S. Edwards, A probabilistic framework for microarray data analysis: Fundamental probability models and statistical inference. J. Theor. Biol. 264, 211-222 (2010).
    • (2010) J. Theor. Biol. , vol.264 , pp. 211-222
    • Ogunnaike, B.A.1    Gelmi, C.A.2    Edwards, J.S.3
  • 8
    • 73449094166 scopus 로고    scopus 로고
    • Multiple testing and its applications to microarrays
    • Y. Ge, S. C. Sealfon, T. P. Speed, Multiple testing and its applications to microarrays. Stat. Methods Med. Res. 18, 543-563 (2009).
    • (2009) Stat. Methods Med. Res. , vol.18 , pp. 543-563
    • Ge, Y.1    Sealfon, S.C.2    Speed, T.P.3
  • 10
    • 0345399126 scopus 로고
    • The probable error of a mean
    • Student
    • Student, The probable error of a mean. Biometrika 6, 1-25 (1908).
    • (1908) Biometrika , vol.6 , pp. 1-25
  • 11
    • 84947402121 scopus 로고
    • Rectangular confidence regions for the means of multivariate normal distributions
    • Z. Šidák, Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc. 62, 626-633 (1967).
    • (1967) J. Am. Stat. Assoc. , vol.62 , pp. 626-633
    • Šidák, Z.1
  • 13
    • 0035733108 scopus 로고    scopus 로고
    • The control of the false discovery rate in multiple testing under dependency
    • Y. Benjamini, D. Yekutieli, The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165-1188 (2001).
    • (2001) Ann. Stat. , vol.29 , pp. 1165-1188
    • Benjamini, Y.1    Yekutieli, D.2
  • 14
    • 23744439164 scopus 로고    scopus 로고
    • Generalization of the familywise error rate
    • E. L. Lehmann, J. P. Romano, Generalization of the familywise error rate. Ann. Stat. 33, 1138-1154 (2005).
    • (2005) Ann. Stat. , vol.33 , pp. 1138-1154
    • Lehmann, E.L.1    Romano, J.P.2
  • 15
    • 33749828387 scopus 로고    scopus 로고
    • Stepup procedures for control of generalizations of the familywise error rate
    • J. P. Romano, A. M. Shaikh, Stepup procedures for control of generalizations of the familywise error rate. Ann. Stat. 34, 1850-1873 (2006).
    • (2006) Ann. Stat. , vol.34 , pp. 1850-1873
    • Romano, J.P.1    Shaikh, A.M.2
  • 16
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • V. G. Tusher, R. Tibshirani, G. Chu, Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U.S.A. 98, 5116-5121 (2001).
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 19
    • 33745062896 scopus 로고    scopus 로고
    • Komrower lecture: Treatment of inborn errors of metabolism: A review
    • J. V. Leonard, Komrower lecture: Treatment of inborn errors of metabolism: A review. J. Inherit. Metab. Dis. 29, 275-278 (2006).
    • (2006) J. Inherit. Metab. Dis. , vol.29 , pp. 275-278
    • Leonard, J.V.1
  • 21
    • 51249117945 scopus 로고    scopus 로고
    • Translational research: From evidence based medicine to sustainable solutions for public health problems
    • M. E. J. Lean, J. I. Mann, J. A.Hoek, R. M. Elliot, G. Schofield, Translational research: From evidence based medicine to sustainable solutions for public health problems. BMJ 337, a863 (2008).
    • (2008) BMJ , vol.337
    • Lean, M.E.J.1    Mann, J.I.2    Hoek, J.A.3    Elliot, R.M.4    Schofield, G.5
  • 22
    • 26444548655 scopus 로고    scopus 로고
    • Repeated split sample validation to assess logistic regression and recursive partitioning: An application to the prediction of cognitive impairment
    • K. E. James, R. F. White, H. C. Kraemer, Repeated split sample validation to assess logistic regression and recursive partitioning: An application to the prediction of cognitive impairment. Stat. Med. 24, 3019-3035 (2005).
    • (2005) Stat. Med. , vol.24 , pp. 3019-3035
    • James, K.E.1    White, R.F.2    Kraemer, H.C.3
  • 23
    • 31344435149 scopus 로고    scopus 로고
    • Dichotomizing continuous predictors in multiple regression: A bad idea
    • P. Royston, D. G. Altman, W. Sauerbrei, Dichotomizing continuous predictors in multiple regression: A bad idea. Stat. Med. 25, 127-141 (2006).
    • (2006) Stat. Med. , vol.25 , pp. 127-141
    • Royston, P.1    Altman, D.G.2    Sauerbrei, W.3
  • 25
    • 33646486740 scopus 로고    scopus 로고
    • The cost of dichotomising continuous variables
    • D. G. Altman, P. Royston, The cost of dichotomising continuous variables. BMJ 332, 1080 (2006).
    • (2006) BMJ , vol.332 , pp. 1080
    • Altman, D.G.1    Royston, P.2
  • 26
    • 0029848604 scopus 로고    scopus 로고
    • A simulation study of cross-validation for selecting an optimal cutpoint in univariate survival analysis
    • D. Faraggi, R. Simon, A simulation study of cross-validation for selecting an optimal cutpoint in univariate survival analysis. Stat. Med. 15, 2203-2213 (1996).
    • (1996) Stat. Med. , vol.15 , pp. 2203-2213
    • Faraggi, D.1    Simon, R.2
  • 27
    • 1842780228 scopus 로고    scopus 로고
    • Inflation of the type I error rate when a continuous confounding variable is categorized in logistic regression analyses
    • P. C. Austin, L. J. Brunner, Inflation of the type I error rate when a continuous confounding variable is categorized in logistic regression analyses. Stat. Med. 23, 1159-1178 (2004).
    • (2004) Stat. Med. , vol.23 , pp. 1159-1178
    • Austin, P.C.1    Brunner, L.J.2
  • 28
    • 0041851508 scopus 로고    scopus 로고
    • Negative consequences of dichotomizing continuous predictor variables
    • J. R. Irwin, G. H. McClelland, Negative consequences of dichotomizing continuous predictor variables. J. Mark. Res. 40, 366-371 (2003).
    • (2003) J. Mark. Res. , vol.40 , pp. 366-371
    • Irwin, J.R.1    McClelland, G.H.2
  • 29
    • 0028179558 scopus 로고
    • Dangers of using "optimal" cutpoints in the evaluation of prognostic factors
    • D. G. Altman, B. Lausen, W. Sauerbrei, M. Schumacher, Dangers of using "optimal" cutpoints in the evaluation of prognostic factors. J. Natl. Cancer Inst. 86, 829-835 (1994).
    • (1994) J. Natl. Cancer Inst. , vol.86 , pp. 829-835
    • Altman, D.G.1    Lausen, B.2    Sauerbrei, W.3    Schumacher, M.4
  • 30
    • 33645742492 scopus 로고    scopus 로고
    • Scoring and staging systems using Cox linear regression modeling and recursive partitioning
    • J. W. Lee, S. H. Um, J. B. Lee, J. Mun, H. Cho, Scoring and staging systems using Cox linear regression modeling and recursive partitioning. Methods Inf. Med. 45, 37-43 (2006).
    • (2006) Methods Inf. Med. , vol.45 , pp. 37-43
    • Lee, J.W.1    Um, S.H.2    Lee, J.B.3    Mun, J.4    Cho, H.5
  • 32
    • 45149104277 scopus 로고    scopus 로고
    • Probabilistic modeling and machine learning in structural and systems biology
    • S. Kaski, J. Rousu, E. Ukkonen, Probabilistic modeling and machine learning in structural and systems biology. BMC Bioinformatics 8, S1 (2007).
    • (2007) BMC Bioinformatics , vol.8
    • Kaski, S.1    Rousu, J.2    Ukkonen, E.3
  • 33
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • N. Friedman, Inferring cellular networks using probabilistic graphical models. Science 303, 799-805 (2004).
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 35
    • 1842583608 scopus 로고    scopus 로고
    • Simulation-based estimation of stochastic process parameters in tumor growth
    • J. R. Thompson, Simulation-based estimation of stochastic process parameters in tumor growth. C. R. Biol. 327, 181-192 (2004).
    • (2004) C. R. Biol. , vol.327 , pp. 181-192
    • Thompson, J.R.1
  • 36
    • 33748909535 scopus 로고    scopus 로고
    • A stochastic model for cancer risk
    • R. B. Schinazi, A stochastic model for cancer risk. Genetics 174, 545-547 (2006).
    • (2006) Genetics , vol.174 , pp. 545-547
    • Schinazi, R.B.1
  • 37
    • 77955592507 scopus 로고    scopus 로고
    • American Joint Committee on Cancer, Springer, New York
    • American Joint Committee on Cancer, AJCC Cancer Staging Handbook (Springer, New York, 2009).
    • (2009) AJCC Cancer Staging Handbook
  • 38
    • 33947380080 scopus 로고    scopus 로고
    • Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data
    • X. Zhao, L. W. Cheung, Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data. BMC Bioinformatics 8, 67 (2007).
    • (2007) BMC Bioinformatics , vol.8 , pp. 67
    • Zhao, X.1    Cheung, L.W.2
  • 40
    • 0033657261 scopus 로고    scopus 로고
    • Principal components analysis to summarize microarray experiments: Application to sporulation time series
    • S. Raychaudhuri, J. M. Stuart, R. B. Altman, Principal components analysis to summarize microarray experiments: Application to sporulation time series. Pac. Symp. Biocomput. 455-466 (2000).
    • (2000) Pac. Symp. Biocomput. , pp. 455-466
    • Raychaudhuri, S.1    Stuart, J.M.2    Altman, R.B.3
  • 41
    • 57349130111 scopus 로고    scopus 로고
    • A review of independent component analysis application tomicroarray gene expression data
    • W. Kong, C. R. Vanderburg, H. Gunshin, J. T. Rogers, X. Huang, A review of independent component analysis application tomicroarray gene expression data. Biotechniques 45, 501-520 (2008).
    • (2008) Biotechniques , vol.45 , pp. 501-520
    • Kong, W.1    Vanderburg, C.R.2    Gunshin, H.3    Rogers, J.T.4    Huang, X.5
  • 42
    • 5044223128 scopus 로고    scopus 로고
    • What is a hidden Markov model?
    • S. R. Eddy, What is a hidden Markov model? Nat. Biotechnol. 22, 1315-1316 (2004).
    • (2004) Nat. Biotechnol. , vol.22 , pp. 1315-1316
    • Eddy, S.R.1
  • 43
    • 4043181214 scopus 로고    scopus 로고
    • Cancer genes and the pathways they control
    • B. Vogelstein, K. W. Kinzler, Cancer genes and the pathways they control. Nat. Med. 10, 789-799 (2004).
    • (2004) Nat. Med. , vol.10 , pp. 789-799
    • Vogelstein, B.1    Kinzler, K.W.2
  • 44
    • 77949372252 scopus 로고    scopus 로고
    • Inferring genetic interactions via a nonlinear model and an optimization algorithm
    • C. M. Chen, C. Lee, C. L. Chuang, C. C. Wang, G. S. Shieh, Inferring genetic interactions via a nonlinear model and an optimization algorithm. BMC Syst. Biol. 4, 16 (2010).
    • (2010) BMC Syst. Biol. , vol.4 , pp. 16
    • Chen, C.M.1    Lee, C.2    Chuang, C.L.3    Wang, C.C.4    Shieh, G.S.5
  • 47
    • 33750522220 scopus 로고    scopus 로고
    • Kernel PCA for novelty detection
    • H. Hoffman, Kernel PCA for novelty detection. Pattern Recognit. 40, 863-874 (2007).
    • (2007) Pattern Recognit. , vol.40 , pp. 863-874
    • Hoffman, H.1
  • 48
    • 24044488957 scopus 로고    scopus 로고
    • Biomarker discovery in microarray gene expression data with Gaussian processes
    • W. Chu, Z. Ghahramani, F. Falciani, D. L. Wild, Biomarker discovery in microarray gene expression data with Gaussian processes. Bioinformatics 21, 3385-3393 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 3385-3393
    • Chu, W.1    Ghahramani, Z.2    Falciani, F.3    Wild, D.L.4
  • 51
    • 65649107615 scopus 로고    scopus 로고
    • Graph models for phenotype and genotype association between oral mucosa and submandibular gland tumorigenesis in rat
    • M. Brunotto, A. M. Zarate, J. L. Barra, A. Malberti, Graph models for phenotype and genotype association between oral mucosa and submandibular gland tumorigenesis in rat. J. Oral Pathol. Med. 38, 463-469 (2009).
    • (2009) J. Oral Pathol. Med. , vol.38 , pp. 463-469
    • Brunotto, M.1    Zarate, A.M.2    Barra, J.L.3    Malberti, A.4
  • 53
    • 40749101538 scopus 로고    scopus 로고
    • Integrating genomic and clinical medicine: Searching for susceptibility genes in complex lung diseases
    • A. A. Desai, P. Hysi, J. G. Garcia, Integrating genomic and clinical medicine: Searching for susceptibility genes in complex lung diseases. Transl. Res. 151, 181-193 (2008).
    • (2008) Transl. Res. , vol.151 , pp. 181-193
    • Desai, A.A.1    Hysi, P.2    Garcia, J.G.3
  • 55
    • 73249153269 scopus 로고    scopus 로고
    • Uncovering transcriptional interactions via an adaptive fuzzy logic approach
    • C. L. Chuang, K. Hung, C. M. Chen, G. S. Shieh, Uncovering transcriptional interactions via an adaptive fuzzy logic approach. BMC Bioinformatics 10, 400 (2009).
    • (2009) BMC Bioinformatics , vol.10 , pp. 400
    • Chuang, C.L.1    Hung, K.2    Chen, C.M.3    Shieh, G.S.4
  • 56
    • 34147179823 scopus 로고    scopus 로고
    • Clustering of genes into regulons using integrated modeling-COGRIM
    • G. Chen, S. T. Jensen, C. J. Stoeckert Jr., Clustering of genes into regulons using integrated modeling-COGRIM. Genome Biol. 8, R4 (2007).
    • (2007) Genome Biol. , vol.8
    • Chen, G.1    Jensen, S.T.2    Stoeckert Jr., C.J.3
  • 58
    • 50549083203 scopus 로고    scopus 로고
    • Unraveling transcriptional regulatory programs by integrative analysis of microarray and transcription factor binding data
    • H. Li, M. Zhan, Unraveling transcriptional regulatory programs by integrative analysis of microarray and transcription factor binding data. Bioinformatics 24, 1874-1880 (2008).
    • (2008) Bioinformatics , vol.24 , pp. 1874-1880
    • Li, H.1    Zhan, M.2
  • 59
    • 0035202909 scopus 로고    scopus 로고
    • A comprehensive leukemia database: Integration of cytogenetics,molecular genetics and microarray data with clinical information, cytomorphology and immunophenotyping
    • M. Dugas, C. Schoch, S. Schnittger, T. Haferlach, S. Danhauser-Riedl, W. Hiddemann, D. Messerer, K. Uberla, A comprehensive leukemia database: Integration of cytogenetics,molecular genetics and microarray data with clinical information, cytomorphology and immunophenotyping. Leukemia 15, 1805-1810 (2001).
    • (2001) Leukemia , vol.15 , pp. 1805-1810
    • Dugas, M.1    Schoch, C.2    Schnittger, S.3    Haferlach, T.4    Danhauser-Riedl, S.5    Hiddemann, W.6    Messerer, D.7    Uberla, K.8
  • 61
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
    • O. Gevaert, F. De Smet, D. Timmerman, Y. Moreau, B. De Moor, Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 22, e184-e190 (2006).
    • (2006) Bioinformatics , vol.22
    • Gevaert, O.1    De Smet, F.2    Timmerman, D.3    Moreau, Y.4    De Moor, B.5
  • 63
    • 35349023361 scopus 로고    scopus 로고
    • The GeWare data warehouse platform for the analysis of molecular-biological and clinical data
    • E. Rahm, T. Kirsten, J. Lange, The GeWare data warehouse platform for the analysis of molecular-biological and clinical data. J. Integr. Bioinform. 4, 47-57 (2007).
    • (2007) J. Integr. Bioinform. , vol.4 , pp. 47-57
    • Rahm, E.1    Kirsten, T.2    Lange, J.3
  • 64
    • 52949085815 scopus 로고    scopus 로고
    • State of the nation in data integration for bioinformatics
    • C. Goble, R. Stevens, State of the nation in data integration for bioinformatics. J. Biomed. Inform. 41, 687-693 (2008).
    • (2008) J. Biomed. Inform. , vol.41 , pp. 687-693
    • Goble, C.1    Stevens, R.2
  • 65
    • 72049107873 scopus 로고    scopus 로고
    • Integrated molecular analysis suggests a three-class model for low-grade gliomas: A proof-of-concept study
    • N. F. Marko, R. A. Prayson, G. H. Barnett, R. J. Weil, Integrated molecular analysis suggests a three-class model for low-grade gliomas: A proof-of-concept study. Genomics 95, 16-24 (2010).
    • (2010) Genomics , vol.95 , pp. 16-24
    • Marko, N.F.1    Prayson, R.A.2    Barnett, G.H.3    Weil, R.J.4
  • 66
    • 0141994853 scopus 로고    scopus 로고
    • Towards integrated clinico-genomic models for personalized medicine: Combining gene expression signatures and clinical factors in breast cancer outcomes prediction
    • J. R. Nevins, E. S. Huang, H. Dressman, J. Pittman, A. T. Huang, M. West, Towards integrated clinico-genomic models for personalized medicine: Combining gene expression signatures and clinical factors in breast cancer outcomes prediction. Hum. Mol. Genet. 12 (Spec. No. 2), R153-R157 (2003).
    • (2003) Hum. Mol. Genet. , vol.12 , Issue.SPEC. NO. 2
    • Nevins, J.R.1    Huang, E.S.2    Dressman, H.3    Pittman, J.4    Huang, A.T.5    West, M.6
  • 67
    • 35948981211 scopus 로고    scopus 로고
    • Identification and validation of a novel gene signature associated with the recurrence of human hepatocellular carcinoma
    • S. M. Wang, L. L. Ooi, K. M. Hui, Identification and validation of a novel gene signature associated with the recurrence of human hepatocellular carcinoma. Clin. Cancer Res. 13, 6275-6283 (2007).
    • (2007) Clin. Cancer Res. , vol.13 , pp. 6275-6283
    • Wang, S.M.1    Ooi, L.L.2    Hui, K.M.3
  • 68
    • 33744961676 scopus 로고    scopus 로고
    • Applications of machine learning in cancer prediction and prognosis
    • J. A. Cruz, D. S. Wishart, Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2, 59-77 (2007).
    • (2007) Cancer Inform. , vol.2 , pp. 59-77
    • Cruz, J.A.1    Wishart, D.S.2
  • 69
    • 44449145580 scopus 로고    scopus 로고
    • A comparative study of different machine learning methods on microarray gene expression data
    • M. Pirooznia, J. Y. Yang, M. Q. Yang, Y. Deng, A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics 9 (Suppl. 1), S13 (2008).
    • (2008) BMC Genomics , vol.9 , Issue.SUPPL. 1
    • Pirooznia, M.1    Yang, J.Y.2    Yang, M.Q.3    Deng, Y.4
  • 70
    • 2942514670 scopus 로고    scopus 로고
    • Diagnostic classification of cancer using DNA microarrays and artificial intelligence
    • B. T. Greer, J. Khan, Diagnostic classification of cancer using DNA microarrays and artificial intelligence. Ann. N. Y. Acad. Sci. 1020, 49-66 (2004).
    • (2004) Ann. N. Y. Acad. Sci. , vol.1020 , pp. 49-66
    • Greer, B.T.1    Khan, J.2
  • 71
    • 2442685760 scopus 로고    scopus 로고
    • Artificial intelligence techniques for bioinformatics
    • A. Narayanan, E. C. Keedwell, B. Olsson, Artificial intelligence techniques for bioinformatics. Appl. Bioinformatics 1, 191-222 (2002).
    • (2002) Appl. Bioinformatics , vol.1 , pp. 191-222
    • Narayanan, A.1    Keedwell, E.C.2    Olsson, B.3
  • 72
    • 42049111859 scopus 로고    scopus 로고
    • Genomic expression patterns distinguish long-term from short-term glioblastoma survivors: A preliminary feasibility study
    • N. F. Marko, S. A. Toms, G. H. Barnett, R. Weil, Genomic expression patterns distinguish long-term from short-term glioblastoma survivors: A preliminary feasibility study. Genomics 91, 395-406 (2008).
    • (2008) Genomics , vol.91 , pp. 395-406
    • Marko, N.F.1    Toms, S.A.2    Barnett, G.H.3    Weil, R.4
  • 73
    • 67650770061 scopus 로고    scopus 로고
    • Predictor correlation impacts machine learning algorithms: Implications for genomic studies
    • K. K. Nicodemus, J. D. Malley, Predictor correlation impacts machine learning algorithms: Implications for genomic studies. Bioinformatics 25, 1884-1890 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 1884-1890
    • Nicodemus, K.K.1    Malley, J.D.2
  • 74
    • 60649118416 scopus 로고    scopus 로고
    • Identification of differential gene expression for microarray data using recursive random forest
    • X. Y. Wu, Z. Y. Wu, K. Li, Identification of differential gene expression for microarray data using recursive random forest. Chin. Med. J. 121, 2492-2496 (2008).
    • (2008) Chin. Med. J. , vol.121 , pp. 2492-2496
    • Wu, X.Y.1    Wu, Z.Y.2    Li, K.3
  • 75
    • 45249116785 scopus 로고    scopus 로고
    • Ovarian cancer diagnosis with complementary learning fuzzy neural network
    • T. Z. Tan, C. Quek, G. S. Ng, K. Razvi, Ovarian cancer diagnosis with complementary learning fuzzy neural network. Artif. Intell. Med. 43, 207-222 (2008).
    • (2008) Artif. Intell. Med. , vol.43 , pp. 207-222
    • Tan, T.Z.1    Quek, C.2    Ng, G.S.3    Razvi, K.4
  • 76
    • 44949171503 scopus 로고    scopus 로고
    • Adaptive design methods in clinical trials - A review
    • S. C. Chow, M. Chang, Adaptive design methods in clinical trials - a review. Orphanet J. Rare Dis. 3, 11 (2008).
    • (2008) Orphanet J. Rare Dis. , vol.3 , pp. 11
    • Chow, S.C.1    Chang, M.2
  • 77
    • 46349091495 scopus 로고    scopus 로고
    • Adaptive clinical trials: Progress and challenges
    • C. S. Coffey, J. A. Kairalla, Adaptive clinical trials: Progress and challenges. Drugs R. D. 9, 229-242 (2008).
    • (2008) Drugs R. D. , vol.9 , pp. 229-242
    • Coffey, C.S.1    Kairalla, J.A.2
  • 78
    • 77953976371 scopus 로고    scopus 로고
    • Violations of robustness trade-offs
    • H. Kitano, Violations of robustness trade-offs. Mol. Syst. Biol. 6, 384 (2010).
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 384
    • Kitano, H.1
  • 79
    • 34548825690 scopus 로고    scopus 로고
    • Towards a theory of biological robustness
    • H. Kitano, Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007).
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 137
    • Kitano, H.1
  • 80
    • 78149324960 scopus 로고    scopus 로고
    • note
    • Acknowledgments: We wish to thank the Melvin Burkhardt Chair in Neurosurgical Oncology and the Karen Colina Wilson research endowment within the Brain Tumor and Neuro- Oncology Center at the Cleveland Clinic Foundation for partial support and funding. Competing interests: The authors declare that they have no competing interests.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.