메뉴 건너뛰기




Volumn 79, Issue 23, 2013, Pages 7360-7370

Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica

Author keywords

[No Author keywords available]

Indexed keywords

ACID ACCUMULATIONS; CARBON-TO-NITROGEN RATIO; DIFFERENTIALLY EXPRESSED GENE; EICOSAPENTAENOIC ACID; LIPID ACCUMULATIONS; NITROGEN LIMITATION; REGULATORY PATHWAY; YARROWIA LIPOLYTICA;

EID: 84888233890     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.02079-13     Document Type: Article
Times cited : (87)

References (53)
  • 1
    • 78349234191 scopus 로고    scopus 로고
    • The 'LipoYeasts' project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high-value products
    • Sabirova JS, Haddouche R, Van Bogaert IN, Mulaa F, Verstraete W, Timmis KN, Schmidt-Dannert C, Nicaud JM, Soetaert W. 2011. The 'LipoYeasts' project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high-value products. Microb. Biotechnol. 4:47-54.
    • (2011) Microb. Biotechnol. , vol.4 , pp. 47-54
    • Sabirova, J.S.1    Haddouche, R.2    Van Bogaert, I.N.3    Mulaa, F.4    Verstraete, W.5    Timmis, K.N.6    Schmidt-Dannert, C.7    Nicaud, J.M.8    Soetaert, W.9
  • 3
    • 77954807016 scopus 로고    scopus 로고
    • Yarrowia lipolytica: a model microorganism used for the production of tailor-made lipids
    • Papanikolaou S, Aggelis G. 2010. Yarrowia lipolytica: a model microorganism used for the production of tailor-made lipids. Eur. J. Lipid Sci. Technol. 112:639-654.
    • (2010) Eur. J. Lipid Sci. Technol. , vol.112 , pp. 639-654
    • Papanikolaou, S.1    Aggelis, G.2
  • 4
    • 80051682084 scopus 로고    scopus 로고
    • Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production
    • Papanikolaou S, Aggelis G. 2011. Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur. J. Lipid Sci. Technol. 113:1031-1051.
    • (2011) Eur. J. Lipid Sci. Technol. , vol.113 , pp. 1031-1051
    • Papanikolaou, S.1    Aggelis, G.2
  • 5
    • 80052038417 scopus 로고    scopus 로고
    • Involvement of the G3P shuttle and betaoxidation pathway in the control ofTAGsynthesis and lipid accumulation in Yarrowia lipolytica
    • Dulermo T, Nicaud JM. 2011. Involvement of the G3P shuttle and betaoxidation pathway in the control ofTAGsynthesis and lipid accumulation in Yarrowia lipolytica. Metab. Eng. 13:482-491.
    • (2011) Metab. Eng. , vol.13 , pp. 482-491
    • Dulermo, T.1    Nicaud, J.M.2
  • 6
    • 80054110605 scopus 로고    scopus 로고
    • Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media
    • Sarris D, Galiotou-Panayotou M, Koutinas AA, Komaitis M, Papanikolaou S. 2011. Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. J. Chem. Technol. Biotechnol. 86:1439-1448.
    • (2011) J. Chem. Technol. Biotechnol. , vol.86 , pp. 1439-1448
    • Sarris, D.1    Galiotou-Panayotou, M.2    Koutinas, A.A.3    Komaitis, M.4    Papanikolaou, S.5
  • 8
    • 0036865034 scopus 로고    scopus 로고
    • Regulation of lipid accumulation in oleaginous microorganisms
    • Ratledge C. 2002. Regulation of lipid accumulation in oleaginous microorganisms. Biochem. Soc. Trans. 30:1047-1050.
    • (2002) Biochem. Soc. Trans. , vol.30 , pp. 1047-1050
    • Ratledge, C.1
  • 11
    • 84858782079 scopus 로고    scopus 로고
    • AMPK: a nutrient and energy sensor that maintains energy homeostasis
    • Hardie DG, Ross FA, Hawley SA. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13:251-262.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 251-262
    • Hardie, D.G.1    Ross, F.A.2    Hawley, S.A.3
  • 12
    • 38449110592 scopus 로고    scopus 로고
    • SNF1/AMPK pathways in yeast
    • Hedbacker K, Carlson M. 2008. SNF1/AMPK pathways in yeast. Front. Biosci. 13:2408-2420.
    • (2008) Front. Biosci. , vol.13 , pp. 2408-2420
    • Hedbacker, K.1    Carlson, M.2
  • 13
    • 0028070457 scopus 로고
    • Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo
    • Woods A, Munday MR, Scott J, Yang X, Carlson M, Carling D. 1994. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J. Biol. Chem. 269:19509-19515.
    • (1994) J. Biol. Chem. , vol.269 , pp. 19509-19515
    • Woods, A.1    Munday, M.R.2    Scott, J.3    Yang, X.4    Carlson, M.5    Carling, D.6
  • 14
    • 0027932717 scopus 로고
    • Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase
    • Mitchelhill KI, Stapleton D, Gao G, House C, Michell B, Katsis F, Witters LA, Kemp BE. 1994. Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J. Biol. Chem. 269:2361-2364.
    • (1994) J. Biol. Chem. , vol.269 , pp. 2361-2364
    • Mitchelhill, K.I.1    Stapleton, D.2    Gao, G.3    House, C.4    Michell, B.5    Katsis, F.6    Witters, L.A.7    Kemp, B.E.8
  • 15
    • 16344395502 scopus 로고    scopus 로고
    • Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms
    • Lo WS, Gamache ER, Henry KW, Yang D, Pillus L, Berger SL. 2005. Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms. EMBO J. 24:997-1008.
    • (2005) EMBO J. , vol.24 , pp. 997-1008
    • Lo, W.S.1    Gamache, E.R.2    Henry, K.W.3    Yang, D.4    Pillus, L.5    Berger, S.L.6
  • 16
    • 0034898311 scopus 로고    scopus 로고
    • Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae
    • Shirra MK, Patton-Vogt J, Ulrich A, Liuta-Tehlivets O, Kohlwein SD, Henry SA, Arndt KM. 2001. Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol. Cell. Biol. 21:5710-5722.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 5710-5722
    • Shirra, M.K.1    Patton-Vogt, J.2    Ulrich, A.3    Liuta-Tehlivets, O.4    Kohlwein, S.D.5    Henry, S.A.6    Arndt, K.M.7
  • 17
    • 14844338858 scopus 로고    scopus 로고
    • Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8
    • Tachibana C, Yoo JY, Tagne JB, Kacherovsky N, Lee TI, Young ET. 2005. Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Mol. Cell. Biol. 25:2138-2146.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 2138-2146
    • Tachibana, C.1    Yoo, J.Y.2    Tagne, J.B.3    Kacherovsky, N.4    Lee, T.I.5    Young, E.T.6
  • 18
    • 0025977722 scopus 로고
    • The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins
    • Simon M, Adam G, Rapatz W, Spevak W, Ruis H. 1991. The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Mol. Cell. Biol. 11:699-704.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 699-704
    • Simon, M.1    Adam, G.2    Rapatz, W.3    Spevak, W.4    Ruis, H.5
  • 19
    • 34648828532 scopus 로고    scopus 로고
    • AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy
    • Hardie DG. 2007. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8:774-785.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 774-785
    • Hardie, D.G.1
  • 23
    • 84856618444 scopus 로고    scopus 로고
    • Engineering Yarrowia lipolytica to express secretory invertase with strong FBA1(IN) promoter
    • Hong SP, Seip J, Walters-Pollak D, Rupert R, Jackson R, Xue Z, Zhu Q. 2011. Engineering Yarrowia lipolytica to express secretory invertase with strong FBA1(IN) promoter. Yeast 29:59-72.
    • (2011) Yeast , vol.29 , pp. 59-72
    • Hong, S.P.1    Seip, J.2    Walters-Pollak, D.3    Rupert, R.4    Jackson, R.5    Xue, Z.6    Zhu, Q.7
  • 25
    • 84855662168 scopus 로고    scopus 로고
    • Three diacylglycerol acyltransferases contribute to oil biosynthesis and normal growth in Yarrowia lipolytica
    • Zhang H, Damude HG, Yadav NS. 2012. Three diacylglycerol acyltransferases contribute to oil biosynthesis and normal growth in Yarrowia lipolytica. Yeast 29:25-38.
    • (2012) Yeast , vol.29 , pp. 25-38
    • Zhang, H.1    Damude, H.G.2    Yadav, N.S.3
  • 26
    • 0036081355 scopus 로고    scopus 로고
    • Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
    • Edgar R, Domrachev M, Lash AE. 2002. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30:207-210.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 207-210
    • Edgar, R.1    Domrachev, M.2    Lash, A.E.3
  • 27
    • 77953727819 scopus 로고    scopus 로고
    • Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts
    • doi:10.1186/gb-2010-11-6-r65
    • Mekouar M, Blanc-Lenfle I, Ozanne C, Da Silva C, Cruaud C, Wincker P, Gaillardin C, Neuveglise C. 2010. Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts. Genome Biol. 11:R65. doi:10.1186/gb-2010-11-6-r65.
    • (2010) Genome Biol. , vol.11
    • Mekouar, M.1    Blanc-Lenfle, I.2    Ozanne, C.3    Da Silva, C.4    Cruaud, C.5    Wincker, P.6    Gaillardin, C.7    Neuveglise, C.8
  • 28
    • 0031740335 scopus 로고    scopus 로고
    • Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
    • Treitel MA, Kuchin S, Carlson M. 1998. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:6273-6280.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 6273-6280
    • Treitel, M.A.1    Kuchin, S.2    Carlson, M.3
  • 29
    • 74549132460 scopus 로고    scopus 로고
    • Transcriptional regulation of nonfermentable carbon utilization in budding yeast
    • Turcotte B, Liang XB, Robert F, Soontorngun N. 2010. Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res. 10:2-13.
    • (2010) FEMS Yeast Res. , vol.10 , pp. 2-13
    • Turcotte, B.1    Liang, X.B.2    Robert, F.3    Soontorngun, N.4
  • 30
    • 84870674137 scopus 로고    scopus 로고
    • Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production
    • Tai M, Stephanopoulos G. 2013. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15:1-9.
    • (2013) Metab. Eng. , vol.15 , pp. 1-9
    • Tai, M.1    Stephanopoulos, G.2
  • 31
    • 34247846159 scopus 로고    scopus 로고
    • Basic helix-loop-helix transcription factor heterocomplex of Yas1p and Yas2p regulates cytochrome P450 expression in response to alkanes in the yeast Yarrowia lipolytica
    • Endoh-Yamagami S, Hirakawa K, Morioka D, Fukuda R, Ohta A. 2007. Basic helix-loop-helix transcription factor heterocomplex of Yas1p and Yas2p regulates cytochrome P450 expression in response to alkanes in the yeast Yarrowia lipolytica. Eukaryot. Cell 6:734-743.
    • (2007) Eukaryot. Cell , vol.6 , pp. 734-743
    • Endoh-Yamagami, S.1    Hirakawa, K.2    Morioka, D.3    Fukuda, R.4    Ohta, A.5
  • 32
    • 65449130832 scopus 로고    scopus 로고
    • Yas3p, an Opi1 family transcription factor, regulates cytochrome P450 expression in response to n-alkanes in Yarrowia lipolytica
    • Hirakawa K, Kobayashi S, Inoue T, Endoh-Yamagami S, Fukuda R, Ohta A. 2009. Yas3p, an Opi1 family transcription factor, regulates cytochrome P450 expression in response to n-alkanes in Yarrowia lipolytica. J. Biol. Chem. 284:7126-7137.
    • (2009) J. Biol. Chem. , vol.284 , pp. 7126-7137
    • Hirakawa, K.1    Kobayashi, S.2    Inoue, T.3    Endoh-Yamagami, S.4    Fukuda, R.5    Ohta, A.6
  • 33
    • 0038506725 scopus 로고    scopus 로고
    • Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8
    • Young ET, Dombek KM, Tachibana C, Ideker T. 2003. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J. Biol. Chem. 278:26146-26158.
    • (2003) J. Biol. Chem. , vol.278 , pp. 26146-26158
    • Young, E.T.1    Dombek, K.M.2    Tachibana, C.3    Ideker, T.4
  • 34
    • 34447128162 scopus 로고    scopus 로고
    • Regulation of Snf1 protein kinase in response to environmental stress
    • Hong SP, Carlson M. 2007. Regulation of Snf1 protein kinase in response to environmental stress. J. Biol. Chem. 282:16838-16845.
    • (2007) J. Biol. Chem. , vol.282 , pp. 16838-16845
    • Hong, S.P.1    Carlson, M.2
  • 35
    • 56649106338 scopus 로고    scopus 로고
    • Detection of endogenous Snf1 and its activation state: application to Saccharomyces and Candida species
    • Orlova M, Barrett L, Kuchin S. 2008. Detection of endogenous Snf1 and its activation state: application to Saccharomyces and Candida species. Yeast 25:745-754.
    • (2008) Yeast , vol.25 , pp. 745-754
    • Orlova, M.1    Barrett, L.2    Kuchin, S.3
  • 36
    • 4444311163 scopus 로고    scopus 로고
    • Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase
    • Hedbacker K, Hong SP, Carlson M. 2004. Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase. Mol. Cell. Biol. 24:8255-8263.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 8255-8263
    • Hedbacker, K.1    Hong, S.P.2    Carlson, M.3
  • 37
    • 0029942696 scopus 로고    scopus 로고
    • FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis, are homologous to GAL83 and SNF1 of Saccharomyces cerevisiae
    • Goffrini P, Ficarelli A, Donnini C, Lodi T, Puglisi PP, Ferrero I. 1996. FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis, are homologous to GAL83 and SNF1 of Saccharomyces cerevisiae. Curr. Genet. 29:316-326.
    • (1996) Curr. Genet. , vol.29 , pp. 316-326
    • Goffrini, P.1    Ficarelli, A.2    Donnini, C.3    Lodi, T.4    Puglisi, P.P.5    Ferrero, I.6
  • 38
    • 0029828850 scopus 로고    scopus 로고
    • Disruption of the SNF1 gene abolishes trehalose utilization in the pathogenic yeast Candida glabrata
    • Petter R, Kwon-Chung KJ. 1996. Disruption of the SNF1 gene abolishes trehalose utilization in the pathogenic yeast Candida glabrata. Infect. Immun. 64:5269-5273.
    • (1996) Infect. Immun. , vol.64 , pp. 5269-5273
    • Petter, R.1    Kwon-Chung, K.J.2
  • 39
    • 0030782385 scopus 로고    scopus 로고
    • A gene homologous to Saccharomyces cerevisiae SNF1 appears to be essential for the viability of Candida albicans
    • Petter R, Chang YC, Kwon-Chung KJ. 1997. A gene homologous to Saccharomyces cerevisiae SNF1 appears to be essential for the viability of Candida albicans. Infect. Immun. 65:4909-4917.
    • (1997) Infect. Immun. , vol.65 , pp. 4909-4917
    • Petter, R.1    Chang, Y.C.2    Kwon-Chung, K.J.3
  • 40
    • 0032886019 scopus 로고    scopus 로고
    • Expression of the SNF1 gene from Candida tropicalis is required for growth on various carbon sources, including glucose
    • Kanai T, Ogawa K, Ueda M, Tanaka A. 1999. Expression of the SNF1 gene from Candida tropicalis is required for growth on various carbon sources, including glucose. Arch. Microbiol. 172:256-263.
    • (1999) Arch. Microbiol. , vol.172 , pp. 256-263
    • Kanai, T.1    Ogawa, K.2    Ueda, M.3    Tanaka, A.4
  • 41
    • 78649797896 scopus 로고    scopus 로고
    • Isolation and characterization of the carbon catabolite-derepressing protein kinase Snf1 from the stress tolerant yeast Torulaspora delbrueckii
    • Hernandez-Lopez MJ, Prieto JA, Randez-Gil F. 2010. Isolation and characterization of the carbon catabolite-derepressing protein kinase Snf1 from the stress tolerant yeast Torulaspora delbrueckii. Yeast 27:1061-1069.
    • (2010) Yeast , vol.27 , pp. 1061-1069
    • Hernandez-Lopez, M.J.1    Prieto, J.A.2    Randez-Gil, F.3
  • 42
    • 84873750905 scopus 로고    scopus 로고
    • Transcriptional repression by glycerol of genes involved in the assimilation of n-alkanes and fatty acids in yeast Yarrowia lipolytica
    • Mori K, Iwama R, Kobayashi S, Horiuchi H, Fukuda R, Ohta A. 2013. Transcriptional repression by glycerol of genes involved in the assimilation of n-alkanes and fatty acids in yeast Yarrowia lipolytica. FEMS Yeast Res. 13:233-240.
    • (2013) FEMS Yeast Res. , vol.13 , pp. 233-240
    • Mori, K.1    Iwama, R.2    Kobayashi, S.3    Horiuchi, H.4    Fukuda, R.5    Ohta, A.6
  • 44
    • 0026508262 scopus 로고
    • Control of peroxisome proliferation in Saccharomyces cerevisiae by ADR1, SNF1 (CAT1, CCR1) and SNF4 (CAT3)
    • Simon M, Binder M, Adam G, Hartig A, Ruis H. 1992. Control of peroxisome proliferation in Saccharomyces cerevisiae by ADR1, SNF1 (CAT1, CCR1) and SNF4 (CAT3). Yeast 8:303-309.
    • (1992) Yeast , vol.8 , pp. 303-309
    • Simon, M.1    Binder, M.2    Adam, G.3    Hartig, A.4    Ruis, H.5
  • 45
    • 77954373691 scopus 로고    scopus 로고
    • The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis
    • Zhang J, Olsson L, Nielsen J. 2010. The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis. Mol. Microbiol. 77:371-383.
    • (2010) Mol. Microbiol. , vol.77 , pp. 371-383
    • Zhang, J.1    Olsson, L.2    Nielsen, J.3
  • 46
    • 18944401511 scopus 로고    scopus 로고
    • Role of Tos3, a Snf1 protein kinase kinase, during growth of Saccharomyces cerevisiae on nonfermentable carbon sources
    • Kim MD, Hong SP, Carlson M. 2005. Role of Tos3, a Snf1 protein kinase kinase, during growth of Saccharomyces cerevisiae on nonfermentable carbon sources. Eukaryot. Cell 4:861-866.
    • (2005) Eukaryot. Cell , vol.4 , pp. 861-866
    • Kim, M.D.1    Hong, S.P.2    Carlson, M.3
  • 47
    • 33845538326 scopus 로고    scopus 로고
    • A mutation in Arabidopsis cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation
    • Kumar R, Wallis JG, Skidmore C, Browse J. 2006. A mutation in Arabidopsis cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation. Plant J. 48:920-932.
    • (2006) Plant J. , vol.48 , pp. 920-932
    • Kumar, R.1    Wallis, J.G.2    Skidmore, C.3    Browse, J.4
  • 48
    • 84857424979 scopus 로고    scopus 로고
    • Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae
    • Henry SA, Kohlwein SD, Carman GM. 2012. Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190:317-349.
    • (2012) Genetics , vol.190 , pp. 317-349
    • Henry, S.A.1    Kohlwein, S.D.2    Carman, G.M.3
  • 49
    • 81555207963 scopus 로고    scopus 로고
    • Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica
    • doi:10.1371/journal.pone.0027966
    • Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea JL, Molina-Jouve C, Nicaud JM. 2011. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One 6:e27966. doi:10.1371/journal.pone.0027966.
    • (2011) PLoS One , vol.6
    • Morin, N.1    Cescut, J.2    Beopoulos, A.3    Lelandais, G.4    Le Berre, V.5    Uribelarrea, J.L.6    Molina-Jouve, C.7    Nicaud, J.M.8
  • 50
    • 0033559856 scopus 로고    scopus 로고
    • AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target
    • Muoio DM, Seefeld K, Witters LA, Coleman RA. 1999. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem. J. 338(Part 3):783-791.
    • (1999) Biochem. J. , vol.338 , Issue.PART 3 , pp. 783-791
    • Muoio, D.M.1    Seefeld, K.2    Witters, L.A.3    Coleman, R.A.4
  • 51
    • 0025310576 scopus 로고
    • Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver
    • Clarke PR, Hardie DG. 1990. Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J. 9:2439-2446.
    • (1990) EMBO J. , vol.9 , pp. 2439-2446
    • Clarke, P.R.1    Hardie, D.G.2
  • 52
    • 0028834801 scopus 로고
    • Bacterial expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-CoA reductase (isoform HMGR1) from Arabidopsis thaliana, and its inactivation by phosphorylation at Ser577 by Brassica oleracea 3-hydroxy-3-methylglutaryl-CoA reductase kinase
    • Dale S, Arro M, Becerra B, Morrice NG, Boronat A, Hardie DG, Ferrer A. 1995. Bacterial expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-CoA reductase (isoform HMGR1) from Arabidopsis thaliana, and its inactivation by phosphorylation at Ser577 by Brassica oleracea 3-hydroxy-3-methylglutaryl-CoA reductase kinase. Eur. J. Biochem. 233:506-513.
    • (1995) Eur. J. Biochem. , vol.233 , pp. 506-513
    • Dale, S.1    Arro, M.2    Becerra, B.3    Morrice, N.G.4    Boronat, A.5    Hardie, D.G.6    Ferrer, A.7
  • 53
    • 50849138815 scopus 로고    scopus 로고
    • Cloning and characterization of an acyl-CoAdependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of theDGATprotein using site-directed mutagenesis to modify enzyme activity and oil content
    • Xu J, Francis T, Mietkiewska E, Giblin EM, Barton DL, Zhang Y, Zhang M, Taylor DC. 2008. Cloning and characterization of an acyl-CoAdependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of theDGATprotein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnol. J. 6:799-818.
    • (2008) Plant Biotechnol. J. , vol.6 , pp. 799-818
    • Xu, J.1    Francis, T.2    Mietkiewska, E.3    Giblin, E.M.4    Barton, D.L.5    Zhang, Y.6    Zhang, M.7    Taylor, D.C.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.