-
1
-
-
84880214877
-
LRRK2: Cause, risk, and mechanism
-
Paisán-Ruiz, C., Lewis, P. A. & Singleton, A. B. LRRK2: cause, risk, and mechanism. J. Park. Dis. 3, 85-103 (2013).
-
(2013)
J. Park. Dis.
, vol.3
, pp. 85-103
-
-
Paisán-Ruiz, C.1
Lewis, P.A.2
Singleton, A.B.3
-
2
-
-
33646151866
-
LRRK2 in Parkinson's disease: Protein domains and functional insights
-
Mata, I. F., Wedemeyer, W. J., Farrer, M. J., Taylor, J. P. & Gallo, K. A. LRRK2 in Parkinson's disease: protein domains and functional insights. Trends Neurosci. 29, 286-293 (2006).
-
(2006)
Trends Neurosci.
, vol.29
, pp. 286-293
-
-
Mata, I.F.1
Wedemeyer, W.J.2
Farrer, M.J.3
Taylor, J.P.4
Gallo, K.A.5
-
3
-
-
33746267531
-
Kinase activity is required for the toxic effects of mutant LRRK2/dardarin
-
Greggio, E. et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis. 23, 329-341 (2006).
-
(2006)
Neurobiol. Dis.
, vol.23
, pp. 329-341
-
-
Greggio, E.1
-
4
-
-
77953395313
-
Leucine-rich repeat kinase 2 mutations and Parkinson's disease: Three questions
-
Greggio, E. & Cookson, M. R. Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions. ASN Neuro. 1 (2009).
-
(2009)
ASN Neuro.
, vol.1
-
-
Greggio, E.1
Cookson, M.R.2
-
5
-
-
78650685500
-
Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant
-
Daniels, V. et al. Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant. J. Neurochem. 116, 304-315 (2011).
-
(2011)
J. Neurochem.
, vol.116
, pp. 304-315
-
-
Daniels, V.1
-
6
-
-
34247468302
-
The R1441C mutation of LRRK2 disrupts GTP hydrolysis
-
Lewis, P. A. et al. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem. Biophys. Res. Commun. 357, 668-671 (2007).
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.357
, pp. 668-671
-
-
Lewis, P.A.1
-
7
-
-
84886642469
-
Leucine-rich repeat kinase 2 for beginners: Six key questions
-
Kett, L. R. & Dauer, W. T. Leucine-rich repeat kinase 2 for beginners: six key questions. Cold Spring Harb. Perspect. Med. 2, a009407 (2012).
-
(2012)
Cold Spring Harb. Perspect. Med.
, vol.2
, pp. a009407
-
-
Kett, L.R.1
Dauer, W.T.2
-
8
-
-
77950631558
-
Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2
-
Gloeckner, C. J. et al. Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2. J. Proteome Res. 9, 1738-1745 (2010).
-
(2010)
J. Proteome Res.
, vol.9
, pp. 1738-1745
-
-
Gloeckner, C.J.1
-
9
-
-
77956655427
-
Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization
-
Dzamko, N. et al. Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem. J. 430, 405-413 (2010).
-
(2010)
Biochem. J.
, vol.430
, pp. 405-413
-
-
Dzamko, N.1
-
10
-
-
84874720265
-
Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations
-
Sheng, Z. et al. Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci. Transl. Med. 4, 164ra161 (2012).
-
(2012)
Sci. Transl. Med.
, vol.4
, pp. 164ra161
-
-
Sheng, Z.1
-
11
-
-
84866704591
-
Phosphorylation of LRRK2: From kinase to substrate
-
Lobbestael, E., Baekelandt, V. & Taymans, J. M. Phosphorylation of LRRK2: from kinase to substrate. Biochem. Soc. Trans. 40, 1102-1110 (2012).
-
(2012)
Biochem. Soc. Trans.
, vol.40
, pp. 1102-1110
-
-
Lobbestael, E.1
Baekelandt, V.2
Taymans, J.M.3
-
12
-
-
79952918505
-
Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2
-
Deng, X. et al. Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2. Nat. Chem. Biol. 7, 203-205 (2011).
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 203-205
-
-
Deng, X.1
-
13
-
-
83855160771
-
Phosphorylation of LRRK2 serines 955 and 973 is disrupted by Parkinson's disease mutations and LRRK2 pharmacological inhibition
-
Doggett, E. A., Zhao, J., Mork, C. N., Hu, D. & Nichols, R. J. Phosphorylation of LRRK2 serines 955 and 973 is disrupted by Parkinson's disease mutations and LRRK2 pharmacological inhibition. J. Neurochem. 120, 37-45 (2012).
-
(2012)
J. Neurochem.
, vol.120
, pp. 37-45
-
-
Doggett, E.A.1
Zhao, J.2
Mork, C.N.3
Hu, D.4
Nichols, R.J.5
-
14
-
-
79952302007
-
Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common mutations of familial Parkinson's disease
-
Li, X. et al. Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common mutations of familial Parkinson's disease. PLoS ONE 6, e17153 (2011).
-
(2011)
PLoS ONE
, vol.6
, pp. e17153
-
-
Li, X.1
-
15
-
-
84864743687
-
The G2385R variant of leucine-rich repeat kinase 2 associated with Parkinson's disease is a partial loss-of-function mutation
-
Rudenko, I. N. et al. The G2385R variant of leucine-rich repeat kinase 2 associated with Parkinson's disease is a partial loss-of-function mutation. Biochem. J. 446, 99-111 (2012).
-
(2012)
Biochem. J.
, vol.446
, pp. 99-111
-
-
Rudenko, I.N.1
-
16
-
-
84886466822
-
Identification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle
-
Lobbestael, E. et al. Identification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle. Biochem. J. 456, 119-128 (2013).
-
(2013)
Biochem. J.
, vol.456
, pp. 119-128
-
-
Lobbestael, E.1
-
17
-
-
77956674229
-
14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization
-
Nichols, R. J. et al. 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization. Biochem. J. 430, 393-404 (2010).
-
(2010)
Biochem. J.
, vol.430
, pp. 393-404
-
-
Nichols, R.J.1
-
18
-
-
84894322830
-
Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease
-
Beilina, A. et al. Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc. Natl Acad. Sci. USA 111, 2626-2631 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 2626-2631
-
-
Beilina, A.1
-
19
-
-
84873281274
-
RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk
-
MacLeod, D. A. et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77, 425-439 (2013).
-
(2013)
Neuron
, vol.77
, pp. 425-439
-
-
MacLeod, D.A.1
-
20
-
-
84865583070
-
Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers
-
Civiero, L. et al. Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers. PLoS ONE 7, e43472 (2012).
-
(2012)
PLoS ONE
, vol.7
, pp. e43472
-
-
Civiero, L.1
-
21
-
-
84886832202
-
Metabolic labeling of leucine rich repeat kinases 1 and 2 with radioactive phosphate
-
Taymans, J.-M., Gao, F. & Baekelandt, V. Metabolic labeling of leucine rich repeat kinases 1 and 2 with radioactive phosphate. J. Vis. Exp. JoVE e50523 (2013).
-
(2013)
J. Vis. Exp. JoVE
, pp. e50523
-
-
Taymans, J.-M.1
Gao, F.2
Baekelandt, V.3
-
22
-
-
0019278383
-
Regulatory genes controlling mitosis in the fission yeast Schizosaccharomyces pombe
-
Nurse, P. & Thuriaux, P. Regulatory genes controlling mitosis in the fission yeast Schizosaccharomyces pombe. Genetics 96, 627-637 (1980).
-
(1980)
Genetics
, vol.96
, pp. 627-637
-
-
Nurse, P.1
Thuriaux, P.2
-
23
-
-
84893877488
-
Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1
-
Luerman, G. C. et al. Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J. Neurochem. 128, 561-576 (2014).
-
(2014)
J. Neurochem.
, vol.128
, pp. 561-576
-
-
Luerman, G.C.1
-
24
-
-
78149446290
-
ARHGEF7 (Beta-PIX) acts as guanine nucleotide exchange factor for leucine-rich repeat kinase 2
-
Haebig, K. et al. ARHGEF7 (Beta-PIX) acts as guanine nucleotide exchange factor for leucine-rich repeat kinase 2. PLoS ONE 5, e13762 (2010).
-
(2010)
PLoS ONE
, vol.5
, pp. e13762
-
-
Haebig, K.1
-
25
-
-
77950520993
-
Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN
-
Anitei, M. et al. Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN. Nat. Cell Biol. 12, 330-340 (2010).
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 330-340
-
-
Anitei, M.1
-
26
-
-
80051611506
-
LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding
-
Taymans, J. M. et al. LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding. PLoS ONE 6, e23207 (2011).
-
(2011)
PLoS ONE
, vol.6
, pp. e23207
-
-
Taymans, J.M.1
-
27
-
-
77749255337
-
Kinetic mechanistic studies of wild-type leucine-rich repeat kinase 2: Characterization of the kinase and GTPase activities
-
Liu, M., Dobson, B., Glicksman, M. A., Yue, Z. & Stein, R. L. Kinetic mechanistic studies of wild-type leucine-rich repeat kinase 2: characterization of the kinase and GTPase activities. Biochemistry (Mosc.) 49, 2008-2017 (2010).
-
(2010)
Biochemistry (Mosc.)
, vol.49
, pp. 2008-2017
-
-
Liu, M.1
Dobson, B.2
Glicksman, M.A.3
Yue, Z.4
Stein, R.L.5
-
28
-
-
79955544006
-
Rac1 protein rescues neurite retraction caused by G2019S Leucine-rich repeat kinase 2 (LRRK2)
-
Chan, D., Citro, A., Cordy, J. M., Shen, G. C. & Wolozin, B. Rac1 protein rescues neurite retraction caused by G2019S Leucine-rich repeat kinase 2 (LRRK2). J. Biol. Chem. 286, 16140-16149 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 16140-16149
-
-
Chan, D.1
Citro, A.2
Cordy, J.M.3
Shen, G.C.4
Wolozin, B.5
-
29
-
-
46549089664
-
LRRK2 regulates synaptic vesicle endocytosis
-
Shin, N. et al. LRRK2 regulates synaptic vesicle endocytosis. Exp. Cell Res. 314, 2055-2065 (2008).
-
(2008)
Exp. Cell Res.
, vol.314
, pp. 2055-2065
-
-
Shin, N.1
-
30
-
-
84863241584
-
Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning
-
Dodson, M. W., Zhang, T., Jiang, C., Chen, S. & Guo, M. Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum. Mol. Genet. 21, 1350-1363 (2012).
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 1350-1363
-
-
Dodson, M.W.1
Zhang, T.2
Jiang, C.3
Chen, S.4
Guo, M.5
-
31
-
-
84910004657
-
LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity
-
Gomez-Suaga, P. et al. LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity. Hum. Mol. Genet. (2014doi:10.1093/hmg/ddu395.
-
(2014)
Hum. Mol. Genet.
-
-
Gomez-Suaga, P.1
-
32
-
-
84906836338
-
A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity
-
Dusonchet, J. et al. A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity. Hum. Mol. Genet. 23, 4887-4905 (2014).
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 4887-4905
-
-
Dusonchet, J.1
-
33
-
-
77749279684
-
CCK activates RhoA and Rac1 differentially through G 13 and G q in mouse pancreatic acini
-
Sabbatini, M. E., Bi, Y., Ji, B., Ernst, S. A. & Williams, J. A. CCK activates RhoA and Rac1 differentially through G 13 and G q in mouse pancreatic acini. AJP Cell Physiol. 298, C592-C601 (2010).
-
(2010)
AJP Cell Physiol.
, vol.298
, pp. C592-C601
-
-
Sabbatini, M.E.1
Bi, Y.2
Ji, B.3
Ernst, S.A.4
Williams, J.A.5
-
34
-
-
84858050446
-
ArfGAP1 is a GTPase activating protein for LRRK2: Reciprocal regulation of ArfGAP1 by LRRK2
-
Xiong, Y., Yuan, C., Chen, R., Dawson, T. M. & Dawson, V. L. ArfGAP1 is a GTPase activating protein for LRRK2: reciprocal regulation of ArfGAP1 by LRRK2. J. Neurosci. 32, 3877-3886 (2012).
-
(2012)
J. Neurosci.
, vol.32
, pp. 3877-3886
-
-
Xiong, Y.1
Yuan, C.2
Chen, R.3
Dawson, T.M.4
Dawson, V.L.5
-
35
-
-
84859187983
-
GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1
-
Stafa, K. et al. GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1. PLoS Genet. 8, e1002526 (2012).
-
(2012)
PLoS Genet.
, vol.8
, pp. e1002526
-
-
Stafa, K.1
-
36
-
-
11844280881
-
The cool-2/a-pix protein mediates a Cdc42-Rac signaling cascade
-
Baird, D., Feng, Q. & Cerione, R. A. The cool-2/a-pix protein mediates a Cdc42-Rac signaling cascade. Curr. Biol. 15, 1-10 (2005).
-
(2005)
Curr. Biol.
, vol.15
, pp. 1-10
-
-
Baird, D.1
Feng, Q.2
Cerione, R.A.3
-
37
-
-
84255195050
-
Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways
-
Anitei, M. & Hoflack, B. Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nat. Cell Biol. 14, 11-19 (2011).
-
(2011)
Nat. Cell Biol.
, vol.14
, pp. 11-19
-
-
Anitei, M.1
Hoflack, B.2
-
38
-
-
84900388122
-
A role of Rab29 in the integrity of the trans-golgi network and retrograde trafficking of mannose-6-phosphate receptor
-
Wang, S. et al. A role of Rab29 in the integrity of the trans-golgi network and retrograde trafficking of mannose-6-phosphate receptor. PLoS ONE 9, e96242 (2014).
-
(2014)
PLoS ONE
, vol.9
, pp. e96242
-
-
Wang, S.1
-
39
-
-
84873270532
-
Bacterial pathogens commandeer Rab GTPases to establish intracellular niches: Co-opting Rab protein function
-
Stein, M.-P., Müller, M. P. & Wandinger-Ness, A. Bacterial pathogens commandeer Rab GTPases to establish intracellular niches: co-opting Rab protein function. Traffic 13, 1565-1588 (2012).
-
(2012)
Traffic
, vol.13
, pp. 1565-1588
-
-
Stein, M.-P.1
Müller, M.P.2
Wandinger-Ness, A.3
-
40
-
-
84890339047
-
Hexokinase activity is required for recruitment of parkin to depolarized mitochondria
-
McCoy, M. K., Kaganovich, A., Rudenko, I. N., Ding, J. & Cookson, M. R. Hexokinase activity is required for recruitment of parkin to depolarized mitochondria. Hum. Mol. Genet. 23, 145-156 (2014).
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 145-156
-
-
McCoy, M.K.1
Kaganovich, A.2
Rudenko, I.N.3
Ding, J.4
Cookson, M.R.5
-
41
-
-
70449377127
-
Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis
-
Parisiadou, L. et al. Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J. Neurosci. Off. J. Soc. Neurosci. 29, 13971-13980 (2009).
-
(2009)
J. Neurosci. Off. J. Soc. Neurosci.
, vol.29
, pp. 13971-13980
-
-
Parisiadou, L.1
-
42
-
-
34250878954
-
Mechanisms of specificity in protein phosphorylation
-
Ubersax, J. A. & Ferrell, Jr J. E. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol. 8, 530-541 (2007).
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 530-541
-
-
Ubersax, J.A.1
Ferrell, Jr.J.E.2
-
43
-
-
0042838373
-
A noncanonical sequence phosphorylated by casein kinase 1 in beta-catenin may play a role in casein kinase 1 targeting of important signaling proteins
-
Marin, O. et al. A noncanonical sequence phosphorylated by casein kinase 1 in beta-catenin may play a role in casein kinase 1 targeting of important signaling proteins. Proc. Natl Acad. Sci. USA 100, 10193-10200 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 10193-10200
-
-
Marin, O.1
|