메뉴 건너뛰기




Volumn 32, Issue 10, 2016, Pages 607-619

Uridylation Earmarks mRNAs for Degradation… and More

Author keywords

deadenylation; degradation; mRNA; translation; uridylation

Indexed keywords

MESSENGER RNA; PLANT RNA; POLYADENYLATED RNA; TRANSCRIPTOME; URIDINE DERIVATIVE; URIDINE;

EID: 84991093296     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2016.08.003     Document Type: Review
Times cited : (29)

References (109)
  • 1
    • 84922394767 scopus 로고    scopus 로고
    • Dynamic RNA modifications in posttranscriptional Regulation
    • 1 Wang, X., He, C., Dynamic RNA modifications in posttranscriptional Regulation. Mol. Cell 56 (2014), 5–12.
    • (2014) Mol. Cell , vol.56 , pp. 5-12
    • Wang, X.1    He, C.2
  • 2
    • 84959540513 scopus 로고    scopus 로고
    • RNA epigenetics–chemical messages for posttranscriptional gene regulation
    • 2 Roundtree, I.A., He, C., RNA epigenetics–chemical messages for posttranscriptional gene regulation. Curr. Opin. Chem. Biol. 30 (2016), 46–51.
    • (2016) Curr. Opin. Chem. Biol. , vol.30 , pp. 46-51
    • Roundtree, I.A.1    He, C.2
  • 3
    • 84860779086 scopus 로고    scopus 로고
    • Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
    • 3 Dominissini, D., et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485 (2012), 201–206.
    • (2012) Nature , vol.485 , pp. 201-206
    • Dominissini, D.1
  • 4
    • 84879642219 scopus 로고    scopus 로고
    • Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5 C within archaeal mRNAs
    • 4 Edelheit, S., et al. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5 C within archaeal mRNAs. PLoS Genet., 9, 2013, e1003602.
    • (2013) PLoS Genet. , vol.9 , pp. e1003602
    • Edelheit, S.1
  • 5
    • 84922607221 scopus 로고    scopus 로고
    • Unique features of the m6A methylome in Arabidopsis thaliana
    • 5 Luo, G-Z., et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat. Commun., 5, 2014, 5630.
    • (2014) Nat. Commun. , vol.5 , pp. 5630
    • Luo, G.-Z.1
  • 6
    • 84939603227 scopus 로고    scopus 로고
    • Widespread occurrence of N6-methyladenosine in bacterial mRNA
    • 6 Deng, X., et al. Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. 43 (2015), 6557–6567.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 6557-6567
    • Deng, X.1
  • 7
    • 84959386536 scopus 로고    scopus 로고
    • The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA
    • 7 Dominissini, D., et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530 (2016), 441–446.
    • (2016) Nature , vol.530 , pp. 441-446
    • Dominissini, D.1
  • 8
    • 84898814417 scopus 로고    scopus 로고
    • 6A RNA methylation
    • 6A RNA methylation. Nat. Rev. Genet. 15 (2014), 293–306.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 293-306
    • Fu, Y.1
  • 9
    • 84965072236 scopus 로고    scopus 로고
    • Nucleic acid modifications in regulation of gene expression
    • 9 Chen, K., et al. Nucleic acid modifications in regulation of gene expression. Cell Chem. Biol. 23 (2016), 74–85.
    • (2016) Cell Chem. Biol. , vol.23 , pp. 74-85
    • Chen, K.1
  • 10
    • 84964957465 scopus 로고    scopus 로고
    • Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications
    • 10 Licht, K., Jantsch, M.F., Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. J. Cell Biol. 213 (2016), 15–22.
    • (2016) J. Cell Biol. , vol.213 , pp. 15-22
    • Licht, K.1    Jantsch, M.F.2
  • 11
    • 84899586607 scopus 로고    scopus 로고
    • The dynamic epitranscriptome: N6-methyladenosine and gene expression control
    • 11 Meyer, K.D., Jaffrey, S.R., The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol. 15 (2014), 313–326.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 313-326
    • Meyer, K.D.1    Jaffrey, S.R.2
  • 12
    • 84954349048 scopus 로고    scopus 로고
    • Transcriptome-wide distribution and function of RNA hydroxymethylcytosine
    • 12 Delatte, B., et al. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351 (2016), 282–285.
    • (2016) Science , vol.351 , pp. 282-285
    • Delatte, B.1
  • 13
    • 84979530501 scopus 로고    scopus 로고
    • Pseudouridine: the fifth RNA nucleotide with renewed interests
    • 13 Li, X., et al. Pseudouridine: the fifth RNA nucleotide with renewed interests. Curr. Opin. Chem. Biol. 33 (2016), 108–116.
    • (2016) Curr. Opin. Chem. Biol. , vol.33 , pp. 108-116
    • Li, X.1
  • 14
    • 84957828213 scopus 로고    scopus 로고
    • Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome
    • 14 Li, X., et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol. 12 (2016), 311–316.
    • (2016) Nat. Chem. Biol. , vol.12 , pp. 311-316
    • Li, X.1
  • 15
    • 69449096380 scopus 로고    scopus 로고
    • Polyadenylation-assisted RNA degradation processes in plants
    • 15 Lange, H., et al. Polyadenylation-assisted RNA degradation processes in plants. Trends Plant Sci. 14 (2009), 497–504.
    • (2009) Trends Plant Sci. , vol.14 , pp. 497-504
    • Lange, H.1
  • 16
    • 84864295706 scopus 로고    scopus 로고
    • Mitochondrial poly(A) polymerase and polyadenylation
    • 16 Chang, J.H., Tong, L., Mitochondrial poly(A) polymerase and polyadenylation. Biochim. Biophys. Acta 1819 (2012), 992–997.
    • (2012) Biochim. Biophys. Acta , vol.1819 , pp. 992-997
    • Chang, J.H.1    Tong, L.2
  • 17
    • 84946923766 scopus 로고    scopus 로고
    • Uridylation and adenylation of RNAs
    • 17 Song, J., et al. Uridylation and adenylation of RNAs. Sci. China Life Sci. 58 (2015), 1057–1066.
    • (2015) Sci. China Life Sci. , vol.58 , pp. 1057-1066
    • Song, J.1
  • 18
    • 84879161085 scopus 로고    scopus 로고
    • Specificity factors in cytoplasmic polyadenylation
    • 18 Charlesworth, A., et al. Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip. Rev. RNA 4 (2013), 437–461.
    • (2013) Wiley Interdiscip. Rev. RNA , vol.4 , pp. 437-461
    • Charlesworth, A.1
  • 19
    • 84886404826 scopus 로고    scopus 로고
    • Cytoplasmic RNA: a case of the tail wagging the dog
    • 19 Norbury, C.J., Cytoplasmic RNA: a case of the tail wagging the dog. Nat. Rev. Mol. Cell Biol. 14 (2013), 643–653.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 643-653
    • Norbury, C.J.1
  • 20
    • 73549112185 scopus 로고    scopus 로고
    • CUCU modification of mRNA promotes decapping and transcript degradation in Aspergillus nidulans
    • 20 Morozov, I.Y., et al. CUCU modification of mRNA promotes decapping and transcript degradation in Aspergillus nidulans. Mol. Cell. Biol. 30 (2010), 460–469.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 460-469
    • Morozov, I.Y.1
  • 21
    • 84863994303 scopus 로고    scopus 로고
    • mRNA 3′ tagging is induced by nonsense-mediated decay and promotes ribosome dissociation
    • 21 Morozov, I.Y., et al. mRNA 3′ tagging is induced by nonsense-mediated decay and promotes ribosome dissociation. Mol. Cell. Biol. 32 (2012), 2585–2595.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 2585-2595
    • Morozov, I.Y.1
  • 22
    • 84896405087 scopus 로고    scopus 로고
    • TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications
    • 22 Chang, H., et al. TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol. Cell 53 (2014), 1044–1052.
    • (2014) Mol. Cell , vol.53 , pp. 1044-1052
    • Chang, H.1
  • 23
    • 84959929478 scopus 로고    scopus 로고
    • Uridylation and PABP cooperate to repair mRNA deadenylated ends in Arabidopsis
    • 23 Zuber, H., et al. Uridylation and PABP cooperate to repair mRNA deadenylated ends in Arabidopsis. Cell Rep. 14 (2016), 2707–2717.
    • (2016) Cell Rep. , vol.14 , pp. 2707-2717
    • Zuber, H.1
  • 24
    • 35548959608 scopus 로고    scopus 로고
    • RNA-specific ribonucleotidyl transferases
    • 24 Martin, G., Keller, W., RNA-specific ribonucleotidyl transferases. RNA 13 (2007), 1834–1849.
    • (2007) RNA , vol.13 , pp. 1834-1849
    • Martin, G.1    Keller, W.2
  • 25
    • 34249026025 scopus 로고    scopus 로고
    • A family of poly(U) polymerases
    • 25 Kwak, J.E., Wickens, M., A family of poly(U) polymerases. RNA 13 (2007), 860–867.
    • (2007) RNA , vol.13 , pp. 860-867
    • Kwak, J.E.1    Wickens, M.2
  • 26
    • 79960890415 scopus 로고    scopus 로고
    • Mitochondrial RNA processing in trypanosomes
    • 26 Aphasizhev, R., Aphasizheva, I., Mitochondrial RNA processing in trypanosomes. Res. Microbiol. 162 (2011), 655–663.
    • (2011) Res. Microbiol. , vol.162 , pp. 655-663
    • Aphasizhev, R.1    Aphasizheva, I.2
  • 27
    • 79953326716 scopus 로고    scopus 로고
    • Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes
    • 27 Aphasizheva, I., et al. Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes. Mol. Cell 42 (2011), 106–117.
    • (2011) Mol. Cell , vol.42 , pp. 106-117
    • Aphasizheva, I.1
  • 28
    • 84957671354 scopus 로고    scopus 로고
    • Antisense transcripts delimit exonucleolytic activity of the mitochondrial 3′ processome to generate guide RNAs
    • 28 Suematsu, T., et al. Antisense transcripts delimit exonucleolytic activity of the mitochondrial 3′ processome to generate guide RNAs. Mol. Cell 61 (2016), 364–378.
    • (2016) Mol. Cell , vol.61 , pp. 364-378
    • Suematsu, T.1
  • 29
    • 84907341968 scopus 로고    scopus 로고
    • Emerging roles of RNA modification: m6A and U-Tail
    • 29 Lee, M., et al. Emerging roles of RNA modification: m6A and U-Tail. Cell 158 (2014), 980–987.
    • (2014) Cell , vol.158 , pp. 980-987
    • Lee, M.1
  • 31
    • 84930679709 scopus 로고    scopus 로고
    • Polyuridylation in eukaryotes: a 3′-end modification regulating RNA Life
    • 31 Munoz-Tello, P., et al. Polyuridylation in eukaryotes: a 3′-end modification regulating RNA Life. BioMed Res. Int., 2015, 2015, 968127.
    • (2015) BioMed Res. Int. , vol.2015 , pp. 968127
    • Munoz-Tello, P.1
  • 32
    • 84967012320 scopus 로고    scopus 로고
    • Widespread 3′-end uridylation in eukaryotic RNA viruses
    • 32 Huo, Y., et al. Widespread 3′-end uridylation in eukaryotic RNA viruses. Sci. Rep., 6, 2016, 25454.
    • (2016) Sci. Rep. , vol.6 , pp. 25454
    • Huo, Y.1
  • 33
    • 34248225381 scopus 로고    scopus 로고
    • Efficient RNA polyuridylation by noncanonical poly(A) polymerases
    • 33 Rissland, O.S., et al. Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Mol. Cell. Biol. 27 (2007), 3612–3624.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 3612-3624
    • Rissland, O.S.1
  • 34
    • 66849122924 scopus 로고    scopus 로고
    • Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover
    • 34 Rissland, O.S., Norbury, C.J., Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nat. Struct. Mol. Biol. 16 (2009), 616–623.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 616-623
    • Rissland, O.S.1    Norbury, C.J.2
  • 35
    • 84881494757 scopus 로고    scopus 로고
    • Uridylation prevents 3′ trimming of oligoadenylated mRNAs
    • 35 Sement, F.M., et al. Uridylation prevents 3′ trimming of oligoadenylated mRNAs. Nucleic Acids Res. 41 (2013), 7115–7127.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 7115-7127
    • Sement, F.M.1
  • 36
    • 77749325035 scopus 로고    scopus 로고
    • RET1-catalyzed uridylylation shapes the mitochondrial transcriptome in Trypanosoma brucei
    • 36 Aphasizheva, I., Aphasizhev, R., RET1-catalyzed uridylylation shapes the mitochondrial transcriptome in Trypanosoma brucei. Mol. Cell. Biol. 30 (2010), 1555–1567.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 1555-1567
    • Aphasizheva, I.1    Aphasizhev, R.2
  • 37
    • 84922260726 scopus 로고    scopus 로고
    • Uridylation by TUT4 and TUT7 marks mRNA for degradation
    • 37 Lim, J., et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159 (2014), 1365–1376.
    • (2014) Cell , vol.159 , pp. 1365-1376
    • Lim, J.1
  • 38
    • 44649128170 scopus 로고    scopus 로고
    • 3′ Adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria
    • 38 Etheridge, R.D., et al. 3′ Adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. EMBO J. 27 (2008), 1596–1608.
    • (2008) EMBO J. , vol.27 , pp. 1596-1608
    • Etheridge, R.D.1
  • 39
    • 19644400971 scopus 로고    scopus 로고
    • Uridine addition after microRNA-directed cleavage
    • 39 Shen, B., Goodman, H.M., Uridine addition after microRNA-directed cleavage. Science, 306, 2004, 997.
    • (2004) Science , vol.306 , pp. 997
    • Shen, B.1    Goodman, H.M.2
  • 40
    • 84979681445 scopus 로고    scopus 로고
    • MicroRNA-mediated target mRNA cleavage and 3′-uridylation in human cells
    • 40 Xu, K., et al. MicroRNA-mediated target mRNA cleavage and 3′-uridylation in human cells. Sci. Rep., 6, 2016, 30242.
    • (2016) Sci. Rep. , vol.6 , pp. 30242
    • Xu, K.1
  • 41
    • 36248947229 scopus 로고    scopus 로고
    • 3′ Terminal oligo U-tract-mediated stimulation of decapping
    • 41 Song, M-G., Kiledjian, M., 3′ Terminal oligo U-tract-mediated stimulation of decapping. RNA 13 (2007), 2356–2365.
    • (2007) RNA , vol.13 , pp. 2356-2365
    • Song, M.-G.1    Kiledjian, M.2
  • 42
    • 84899654405 scopus 로고    scopus 로고
    • Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage
    • 42 Ren, G., et al. Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 6365–6370.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 6365-6370
    • Ren, G.1
  • 43
    • 54149091257 scopus 로고    scopus 로고
    • Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail
    • 43 Marzluff, W.F., et al. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9 (2008), 843–854.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 843-854
    • Marzluff, W.F.1
  • 44
    • 38149023239 scopus 로고    scopus 로고
    • Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′
    • 44 Mullen, T.E., Marzluff, W.F., Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev. 22 (2008), 50–65.
    • (2008) Genes Dev. , vol.22 , pp. 50-65
    • Mullen, T.E.1    Marzluff, W.F.2
  • 45
    • 84872474666 scopus 로고    scopus 로고
    • Structure of histone mRNA stem-loop, human stem-loop binding protein, and 3′hExo ternary complex
    • 45 Tan, D., et al. Structure of histone mRNA stem-loop, human stem-loop binding protein, and 3′hExo ternary complex. Science 339 (2013), 318–321.
    • (2013) Science , vol.339 , pp. 318-321
    • Tan, D.1
  • 46
    • 84906250930 scopus 로고    scopus 로고
    • The mRNP remodeling mediated by UPF1 promotes rapid degradation of replication-dependent histone mRNA
    • 46 Choe, J., et al. The mRNP remodeling mediated by UPF1 promotes rapid degradation of replication-dependent histone mRNA. Nucleic Acids Res. 42 (2014), 9334–9349.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 9334-9349
    • Choe, J.1
  • 47
    • 84872026333 scopus 로고    scopus 로고
    • Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay
    • 47 Hoefig, K.P., et al. Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay. Nat. Struct. Mol. Biol. 20 (2013), 73–81.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 73-81
    • Hoefig, K.P.1
  • 48
    • 84896327838 scopus 로고    scopus 로고
    • Deep sequencing shows multiple oligouridylations are required for 3′ to 5′ degradation of histone mRNAs on polyribosomes
    • 48 Slevin, M.K., et al. Deep sequencing shows multiple oligouridylations are required for 3′ to 5′ degradation of histone mRNAs on polyribosomes. Mol. Cell 53 (2014), 1020–1030.
    • (2014) Mol. Cell , vol.53 , pp. 1020-1030
    • Slevin, M.K.1
  • 49
    • 84871455409 scopus 로고    scopus 로고
    • mRNAs containing the histone 3′ stem-loop are degraded primarily by decapping mediated by oligouridylation of the 3′ end
    • 49 Su, W., et al. mRNAs containing the histone 3′ stem-loop are degraded primarily by decapping mediated by oligouridylation of the 3′ end. RNA 19 (2013), 1–16.
    • (2013) RNA , vol.19 , pp. 1-16
    • Su, W.1
  • 50
    • 78650446573 scopus 로고    scopus 로고
    • The human cytoplasmic RNA terminal U-transferase ZCCHC11 targets histone mRNAs for degradation
    • 50 Schmidt, M-J., et al. The human cytoplasmic RNA terminal U-transferase ZCCHC11 targets histone mRNAs for degradation. RNA 17 (2010), 39–44.
    • (2010) RNA , vol.17 , pp. 39-44
    • Schmidt, M.-J.1
  • 51
    • 84992536185 scopus 로고    scopus 로고
    • TUT7 catalyzes the uridylation of the 3′ end for rapid degradation of histone mRNA
    • (in press)
    • 51 Lackey, P.E., et al. TUT7 catalyzes the uridylation of the 3′ end for rapid degradation of histone mRNA. RNA., 2016, 10.1261/rna.058107.116 (in press).
    • (2016) RNA.
    • Lackey, P.E.1
  • 52
    • 84897571308 scopus 로고    scopus 로고
    • Poly(A)-tail profiling reveals an embryonic switch in translational control
    • 52 Subtelny, A.O., et al. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508 (2014), 66–71.
    • (2014) Nature , vol.508 , pp. 66-71
    • Subtelny, A.O.1
  • 53
    • 84880245419 scopus 로고    scopus 로고
    • The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway
    • 53 Malecki, M., et al. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J. 32 (2013), 1842–1854.
    • (2013) EMBO J. , vol.32 , pp. 1842-1854
    • Malecki, M.1
  • 54
    • 84880224541 scopus 로고    scopus 로고
    • Exonuclease hDIS3L2 specifies an exosome-independent 3′-5′ degradation pathway of human cytoplasmic mRNA
    • 54 Lubas, M., et al. Exonuclease hDIS3L2 specifies an exosome-independent 3′-5′ degradation pathway of human cytoplasmic mRNA. EMBO J. 32 (2013), 1855–1868.
    • (2013) EMBO J. , vol.32 , pp. 1855-1868
    • Lubas, M.1
  • 55
    • 84933670234 scopus 로고    scopus 로고
    • TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms
    • 55 Kim, B., et al. TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms. EMBO J. 34 (2015), 1801–1815.
    • (2015) EMBO J. , vol.34 , pp. 1801-1815
    • Kim, B.1
  • 56
    • 84888419614 scopus 로고    scopus 로고
    • Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs
    • 56 Ustianenko, D., et al. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19 (2013), 1632–1638.
    • (2013) RNA , vol.19 , pp. 1632-1638
    • Ustianenko, D.1
  • 57
    • 84991101660 scopus 로고    scopus 로고
    • Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs
    • (in press)
    • 57 Łabno, A., et al. Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs. Nucleic Acids Res., 2016, 10.1093/nar/gkw649 (in press).
    • (2016) Nucleic Acids Res.
    • Łabno, A.1
  • 58
    • 84908311054 scopus 로고    scopus 로고
    • Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway
    • 58 Faehnle, C.R., et al. Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway. Nature 514 (2014), 252–256.
    • (2014) Nature , vol.514 , pp. 252-256
    • Faehnle, C.R.1
  • 59
    • 84929703584 scopus 로고    scopus 로고
    • Apoptosis triggers specific, rapid, and global mRNA decay with 3′ uridylated intermediates degraded by DIS3L2
    • 59 Thomas, M.P., et al. Apoptosis triggers specific, rapid, and global mRNA decay with 3′ uridylated intermediates degraded by DIS3L2. Cell Rep. 11 (2015), 1079–1089.
    • (2015) Cell Rep. , vol.11 , pp. 1079-1089
    • Thomas, M.P.1
  • 60
    • 84921643969 scopus 로고    scopus 로고
    • Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition
    • 60 Baejen, C., et al. Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Mol. Cell 55 (2014), 745–757.
    • (2014) Mol. Cell , vol.55 , pp. 745-757
    • Baejen, C.1
  • 61
    • 84902497730 scopus 로고    scopus 로고
    • Poly(A)-binding proteins: structure, domain organization, and activity regulation
    • 61 Eliseeva, I.A., et al. Poly(A)-binding proteins: structure, domain organization, and activity regulation. Biochem. Mosc. 78 (2013), 1377–1391.
    • (2013) Biochem. Mosc. , vol.78 , pp. 1377-1391
    • Eliseeva, I.A.1
  • 62
    • 85009754220 scopus 로고    scopus 로고
    • Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs
    • 62 Kini, H.K., et al. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. RNA 22 (2016), 61–74.
    • (2016) RNA , vol.22 , pp. 61-74
    • Kini, H.K.1
  • 63
    • 1642480256 scopus 로고    scopus 로고
    • Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4
    • 63 Sladic, R.T., et al. Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4. Eur. J. Biochem. 271 (2004), 450–457.
    • (2004) Eur. J. Biochem. , vol.271 , pp. 450-457
    • Sladic, R.T.1
  • 64
    • 33947706276 scopus 로고    scopus 로고
    • Poly(A)-binding protein binds to A-rich sequences via RNA-binding domains 1 + 2 and 3 + 4
    • 64 Khanam, T., et al. Poly(A)-binding protein binds to A-rich sequences via RNA-binding domains 1 + 2 and 3 + 4. RNA Biol. 3 (2006), 170–177.
    • (2006) RNA Biol. , vol.3 , pp. 170-177
    • Khanam, T.1
  • 65
    • 0038063499 scopus 로고    scopus 로고
    • Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction
    • 65 Kühn, U., Pieler, T., Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction. J. Mol. Biol. 256 (1996), 20–30.
    • (1996) J. Mol. Biol. , vol.256 , pp. 20-30
    • Kühn, U.1    Pieler, T.2
  • 66
    • 33845478578 scopus 로고    scopus 로고
    • IMP1 interacts with poly(A)-binding protein (PABP) and the autoregulatory translational control element of PABP-mRNA through the KH III-IV domain
    • 66 Patel, G.P., Bag, J., IMP1 interacts with poly(A)-binding protein (PABP) and the autoregulatory translational control element of PABP-mRNA through the KH III-IV domain. FEBS J. 273 (2006), 5678–5690.
    • (2006) FEBS J. , vol.273 , pp. 5678-5690
    • Patel, G.P.1    Bag, J.2
  • 67
    • 6344286064 scopus 로고    scopus 로고
    • Interaction of rat poly(A)-binding protein with poly(A)- and non-poly(A) sequences is preferentially mediated by RNA recognition motifs 3 + 4
    • 67 Mullin, C., et al. Interaction of rat poly(A)-binding protein with poly(A)- and non-poly(A) sequences is preferentially mediated by RNA recognition motifs 3 + 4. FEBS Lett. 576 (2004), 437–441.
    • (2004) FEBS Lett. , vol.576 , pp. 437-441
    • Mullin, C.1
  • 68
    • 84860307087 scopus 로고    scopus 로고
    • Uridylation of miRNAs by HEN1 SUPPRESSOR1 in Arabidopsis
    • 68 Ren, G., et al. Uridylation of miRNAs by HEN1 SUPPRESSOR1 in Arabidopsis. Curr. Biol. 22 (2012), 695–700.
    • (2012) Curr. Biol. , vol.22 , pp. 695-700
    • Ren, G.1
  • 69
    • 84860301401 scopus 로고    scopus 로고
    • The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation
    • 69 Zhao, Y., et al. The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation. Curr. Biol. 22 (2012), 689–694.
    • (2012) Curr. Biol. , vol.22 , pp. 689-694
    • Zhao, Y.1
  • 70
    • 84930372546 scopus 로고    scopus 로고
    • Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3′ tailing of small RNAs in Arabidopsis
    • 70 Wang, X., et al. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3′ tailing of small RNAs in Arabidopsis. PLoS Genet., 11, 2015, e1005091.
    • (2015) PLoS Genet. , vol.11 , pp. e1005091
    • Wang, X.1
  • 71
    • 84930348374 scopus 로고    scopus 로고
    • Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis
    • 71 Tu, B., et al. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet., 11, 2015, e1005119.
    • (2015) PLoS Genet. , vol.11 , pp. e1005119
    • Tu, B.1
  • 72
    • 84931096986 scopus 로고    scopus 로고
    • EnD-Seq and AppEnD: sequencing 3′ ends to identify nontemplated tails and degradation intermediates
    • 72 Welch, J.D., et al. EnD-Seq and AppEnD: sequencing 3′ ends to identify nontemplated tails and degradation intermediates. RNA 21 (2015), 1375–1389.
    • (2015) RNA , vol.21 , pp. 1375-1389
    • Welch, J.D.1
  • 73
    • 79953329769 scopus 로고    scopus 로고
    • Marked for translation: long A/U tails as an interface between completion of RNA editing and ribosome recruitment
    • 73 Read, L.K., et al. Marked for translation: long A/U tails as an interface between completion of RNA editing and ribosome recruitment. Mol. Cell 42 (2011), 6–8.
    • (2011) Mol. Cell , vol.42 , pp. 6-8
    • Read, L.K.1
  • 74
    • 68749102148 scopus 로고    scopus 로고
    • TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation
    • 74 Heo, I., et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138 (2009), 696–708.
    • (2009) Cell , vol.138 , pp. 696-708
    • Heo, I.1
  • 75
    • 53949088050 scopus 로고    scopus 로고
    • Lin28 mediates the terminal uridylation of let-7 precursor microRNA
    • 75 Heo, I., et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32 (2008), 276–284.
    • (2008) Mol. Cell , vol.32 , pp. 276-284
    • Heo, I.1
  • 76
    • 84868153864 scopus 로고    scopus 로고
    • Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs
    • 76 Heo, I., et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151 (2012), 521–532.
    • (2012) Cell , vol.151 , pp. 521-532
    • Heo, I.1
  • 77
    • 84912070093 scopus 로고    scopus 로고
    • Trim25 is an RNA-specific activator of Lin28a/TuT4-mediated uridylation
    • 77 Choudhury, N.R., et al. Trim25 is an RNA-specific activator of Lin28a/TuT4-mediated uridylation. Cell Rep. 9 (2014), 1265–1272.
    • (2014) Cell Rep. , vol.9 , pp. 1265-1272
    • Choudhury, N.R.1
  • 78
    • 70349820140 scopus 로고    scopus 로고
    • Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells
    • 78 Hagan, J.P., et al. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 16 (2009), 1021–1025.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 1021-1025
    • Hagan, J.P.1
  • 79
    • 84866951989 scopus 로고    scopus 로고
    • Identification of cytoplasmic capping targets reveals a role for Cap homeostasis in translation and mRNA stability
    • 79 Mukherjee, C., et al. Identification of cytoplasmic capping targets reveals a role for Cap homeostasis in translation and mRNA stability. Cell Rep. 2 (2012), 674–684.
    • (2012) Cell Rep. , vol.2 , pp. 674-684
    • Mukherjee, C.1
  • 80
    • 84959485943 scopus 로고    scopus 로고
    • Cap homeostasis is independent of poly(A) tail length
    • 80 Kiss, D.L., et al. Cap homeostasis is independent of poly(A) tail length. Nucleic Acids Res. 44 (2016), 304–314.
    • (2016) Nucleic Acids Res. , vol.44 , pp. 304-314
    • Kiss, D.L.1
  • 81
    • 84880059154 scopus 로고    scopus 로고
    • The nucleic acid-binding domain and translational repression activity of a Xenopus terminal uridylyl transferase
    • 81 Lapointe, C.P., Wickens, M., The nucleic acid-binding domain and translational repression activity of a Xenopus terminal uridylyl transferase. J. Biol. Chem. 288 (2013), 20723–20733.
    • (2013) J. Biol. Chem. , vol.288 , pp. 20723-20733
    • Lapointe, C.P.1    Wickens, M.2
  • 82
    • 84970948132 scopus 로고    scopus 로고
    • Hormonal stimulation of starfish oocytes induces partial degradation of the 3′ termini of cyclin B mRNAs with oligo(U) tails, followed by poly(A) elongation
    • 82 Ochi, H., Chiba, K., Hormonal stimulation of starfish oocytes induces partial degradation of the 3′ termini of cyclin B mRNAs with oligo(U) tails, followed by poly(A) elongation. RNA 22 (2016), 822–829.
    • (2016) RNA , vol.22 , pp. 822-829
    • Ochi, H.1    Chiba, K.2
  • 83
    • 84877801967 scopus 로고    scopus 로고
    • RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes
    • 83 Wahle, E., Winkler, G.S., RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim. Biophys. Acta 1829 (2013), 561–570.
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 561-570
    • Wahle, E.1    Winkler, G.S.2
  • 84
    • 84868159990 scopus 로고    scopus 로고
    • Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity
    • 84 Lunde, B.M., et al. Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity. Nucleic Acids Res. 40 (2012), 9815–9824.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 9815-9824
    • Lunde, B.M.1
  • 85
    • 84864655761 scopus 로고    scopus 로고
    • Structural basis for the activity of a cytoplasmic RNA terminal U-transferase
    • 85 Yates, L.A., et al. Structural basis for the activity of a cytoplasmic RNA terminal U-transferase. Nat. Struct. Mol. Biol. 19 (2012), 782–787.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 782-787
    • Yates, L.A.1
  • 86
    • 82755167738 scopus 로고    scopus 로고
    • Terminal uridyltransferase enzyme Zcchc11 promotes cell proliferation independent of its uridyltransferase activity
    • 86 Blahna, M.T., et al. Terminal uridyltransferase enzyme Zcchc11 promotes cell proliferation independent of its uridyltransferase activity. J. Biol. Chem. 286 (2011), 42381–42389.
    • (2011) J. Biol. Chem. , vol.286 , pp. 42381-42389
    • Blahna, M.T.1
  • 87
    • 13844297911 scopus 로고    scopus 로고
    • Zinc finger proteins: getting a grip on RNA
    • 87 Brown, R.S., Zinc finger proteins: getting a grip on RNA. Curr. Opin. Struct. Biol. 15 (2005), 94–98.
    • (2005) Curr. Opin. Struct. Biol. , vol.15 , pp. 94-98
    • Brown, R.S.1
  • 88
    • 34250157355 scopus 로고    scopus 로고
    • Zinc fingers are known as domains for binding DNA and RNA. Do they also mediate protein-protein interactions?
    • 88 Loughlin, F.E., Mackay, J.P., Zinc fingers are known as domains for binding DNA and RNA. Do they also mediate protein-protein interactions?. IUBMB Life 58 (2006), 731–733.
    • (2006) IUBMB Life , vol.58 , pp. 731-733
    • Loughlin, F.E.1    Mackay, J.P.2
  • 89
    • 84855421472 scopus 로고    scopus 로고
    • Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28
    • 89 Loughlin, F.E., et al. Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28. Nat. Struct. Mol. Biol. 19 (2012), 84–89.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 84-89
    • Loughlin, F.E.1
  • 90
    • 84964434640 scopus 로고    scopus 로고
    • The new (dis)order in RNA regulation
    • 90 Järvelin, A.I., et al. The new (dis)order in RNA regulation. Cell Commun. Signal., 14, 2016, 9.
    • (2016) Cell Commun. Signal. , vol.14 , pp. 9
    • Järvelin, A.I.1
  • 91
    • 84925251625 scopus 로고    scopus 로고
    • DISOPRED3: precise disordered region predictions with annotated protein-binding activity
    • 91 Jones, D.T., Cozzetto, D., DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31 (2015), 857–863.
    • (2015) Bioinformatics , vol.31 , pp. 857-863
    • Jones, D.T.1    Cozzetto, D.2
  • 92
    • 84951845194 scopus 로고    scopus 로고
    • Emerging roles of disordered sequences in RNA-binding proteins
    • 92 Calabretta, S., Richard, S., Emerging roles of disordered sequences in RNA-binding proteins. Trends Biochem. Sci. 40 (2015), 662–672.
    • (2015) Trends Biochem. Sci. , vol.40 , pp. 662-672
    • Calabretta, S.1    Richard, S.2
  • 93
    • 84861969926 scopus 로고    scopus 로고
    • Insights into RNA biology from an atlas of mammalian mRNA-binding proteins
    • 93 Castello, A., et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149 (2012), 1393–1406.
    • (2012) Cell , vol.149 , pp. 1393-1406
    • Castello, A.1
  • 94
    • 84992740396 scopus 로고    scopus 로고
    • Comprehensive identification of RNA-binding domains in human cells
    • Published online July 19
    • 94 Castello, A., et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell, 2016, 10.1016/j.molcel.2016.06.029 Published online July 19.
    • (2016) Mol. Cell
    • Castello, A.1
  • 95
    • 84890703972 scopus 로고    scopus 로고
    • The role of disordered protein regions in the assembly of decapping complexes and RNP granules
    • 95 Jonas, S., Izaurralde, E., The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes Dev. 27 (2013), 2628–2641.
    • (2013) Genes Dev. , vol.27 , pp. 2628-2641
    • Jonas, S.1    Izaurralde, E.2
  • 96
    • 77951163053 scopus 로고    scopus 로고
    • Distinct roles for Caf1, Ccr4, Edc3 and CutA in the co-ordination of transcript deadenylation, decapping and P-body formation in Aspergillus nidulans
    • 96 Morozov, I.Y., et al. Distinct roles for Caf1, Ccr4, Edc3 and CutA in the co-ordination of transcript deadenylation, decapping and P-body formation in Aspergillus nidulans. Mol. Microbiol. 76 (2010), 503–516.
    • (2010) Mol. Microbiol. , vol.76 , pp. 503-516
    • Morozov, I.Y.1
  • 97
    • 84963815743 scopus 로고    scopus 로고
    • Identification of factors involved in target RNA-directed microRNA degradation
    • 97 Haas, G., et al. Identification of factors involved in target RNA-directed microRNA degradation. Nucleic Acids Res. 44 (2016), 2873–2887.
    • (2016) Nucleic Acids Res. , vol.44 , pp. 2873-2887
    • Haas, G.1
  • 98
    • 23944493378 scopus 로고    scopus 로고
    • Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis
    • 98 Li, J., et al. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol. 15 (2005), 1501–1507.
    • (2005) Curr. Biol. , vol.15 , pp. 1501-1507
    • Li, J.1
  • 99
    • 13644256193 scopus 로고    scopus 로고
    • Methylation as a crucial step in plant microRNA biogenesis
    • 99 Yu, B., et al. Methylation as a crucial step in plant microRNA biogenesis. Science 307 (2005), 932–935.
    • (2005) Science , vol.307 , pp. 932-935
    • Yu, B.1
  • 100
    • 34347378274 scopus 로고    scopus 로고
    • Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ ends
    • 100 Saito, K., et al. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ ends. Genes Dev. 21 (2007), 1603–1608.
    • (2007) Genes Dev. , vol.21 , pp. 1603-1608
    • Saito, K.1
  • 101
    • 34447291602 scopus 로고    scopus 로고
    • The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC
    • 101 Horwich, M.D., et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17 (2007), 1265–1272.
    • (2007) Curr. Biol. , vol.17 , pp. 1265-1272
    • Horwich, M.D.1
  • 102
    • 84937391821 scopus 로고    scopus 로고
    • Uridylation of RNA hairpins by tailor confines the emergence of microRNAs in Drosophila
    • 102 Reimão-Pinto, M.M., et al. Uridylation of RNA hairpins by tailor confines the emergence of microRNAs in Drosophila. Mol. Cell 59 (2015), 203–216.
    • (2015) Mol. Cell , vol.59 , pp. 203-216
    • Reimão-Pinto, M.M.1
  • 103
    • 84908000972 scopus 로고    scopus 로고
    • A microRNA precursor surveillance system in quality control of MicroRNA synthesis
    • 103 Liu, X., et al. A microRNA precursor surveillance system in quality control of MicroRNA synthesis. Mol. Cell 55 (2014), 868–879.
    • (2014) Mol. Cell , vol.55 , pp. 868-879
    • Liu, X.1
  • 104
    • 84904985459 scopus 로고    scopus 로고
    • Regulation of microRNA biogenesis
    • 104 Ha, M., Kim, V.N., Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15 (2014), 509–524.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 509-524
    • Ha, M.1    Kim, V.N.2
  • 105
    • 0033977681 scopus 로고    scopus 로고
    • Trypanosoma brucei guide RNA poly(U) tail formation is stabilized by cognate mRNA
    • 105 McManus, M.T., et al. Trypanosoma brucei guide RNA poly(U) tail formation is stabilized by cognate mRNA. Mol. Cell. Biol. 20 (2000), 883–891.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 883-891
    • McManus, M.T.1
  • 106
    • 33746489955 scopus 로고    scopus 로고
    • Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase
    • 106 Trippe, R., et al. Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. RNA 12 (2006), 1494–1504.
    • (2006) RNA , vol.12 , pp. 1494-1504
    • Trippe, R.1
  • 107
    • 84877269808 scopus 로고    scopus 로고
    • Gradual processing of the ITS1 from the nucleolus to the cytoplasm during synthesis of the human 18S rRNA
    • 107 Preti, M., et al. Gradual processing of the ITS1 from the nucleolus to the cytoplasm during synthesis of the human 18S rRNA. Nucleic Acids Res. 41 (2013), 4709–4723.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 4709-4723
    • Preti, M.1
  • 108
    • 84941120550 scopus 로고    scopus 로고
    • Distinct 18S rRNA precursors are targets of the exosome complex, the exoribonuclease RRP6L2 and the terminal nucleotidyltransferase TRL in Arabidopsis thaliana
    • 108 Sikorski, P.J., et al. Distinct 18S rRNA precursors are targets of the exosome complex, the exoribonuclease RRP6L2 and the terminal nucleotidyltransferase TRL in Arabidopsis thaliana. Plant J. 83 (2015), 991–1004.
    • (2015) Plant J. , vol.83 , pp. 991-1004
    • Sikorski, P.J.1
  • 109
    • 84958696014 scopus 로고    scopus 로고
    • circTAIL-seq, a targeted method for deep analysis of RNA 3′ tails, reveals transcript-specific differences by multiple metrics
    • 109 Gazestani, V.H., et al. circTAIL-seq, a targeted method for deep analysis of RNA 3′ tails, reveals transcript-specific differences by multiple metrics. RNA 22 (2016), 477–486.
    • (2016) RNA , vol.22 , pp. 477-486
    • Gazestani, V.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.