-
1
-
-
84922394767
-
Dynamic RNA modifications in posttranscriptional Regulation
-
1 Wang, X., He, C., Dynamic RNA modifications in posttranscriptional Regulation. Mol. Cell 56 (2014), 5–12.
-
(2014)
Mol. Cell
, vol.56
, pp. 5-12
-
-
Wang, X.1
He, C.2
-
2
-
-
84959540513
-
RNA epigenetics–chemical messages for posttranscriptional gene regulation
-
2 Roundtree, I.A., He, C., RNA epigenetics–chemical messages for posttranscriptional gene regulation. Curr. Opin. Chem. Biol. 30 (2016), 46–51.
-
(2016)
Curr. Opin. Chem. Biol.
, vol.30
, pp. 46-51
-
-
Roundtree, I.A.1
He, C.2
-
3
-
-
84860779086
-
Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
-
3 Dominissini, D., et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485 (2012), 201–206.
-
(2012)
Nature
, vol.485
, pp. 201-206
-
-
Dominissini, D.1
-
4
-
-
84879642219
-
Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5 C within archaeal mRNAs
-
4 Edelheit, S., et al. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5 C within archaeal mRNAs. PLoS Genet., 9, 2013, e1003602.
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003602
-
-
Edelheit, S.1
-
5
-
-
84922607221
-
Unique features of the m6A methylome in Arabidopsis thaliana
-
5 Luo, G-Z., et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat. Commun., 5, 2014, 5630.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5630
-
-
Luo, G.-Z.1
-
6
-
-
84939603227
-
Widespread occurrence of N6-methyladenosine in bacterial mRNA
-
6 Deng, X., et al. Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. 43 (2015), 6557–6567.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 6557-6567
-
-
Deng, X.1
-
7
-
-
84959386536
-
The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA
-
7 Dominissini, D., et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530 (2016), 441–446.
-
(2016)
Nature
, vol.530
, pp. 441-446
-
-
Dominissini, D.1
-
8
-
-
84898814417
-
6A RNA methylation
-
6A RNA methylation. Nat. Rev. Genet. 15 (2014), 293–306.
-
(2014)
Nat. Rev. Genet.
, vol.15
, pp. 293-306
-
-
Fu, Y.1
-
9
-
-
84965072236
-
Nucleic acid modifications in regulation of gene expression
-
9 Chen, K., et al. Nucleic acid modifications in regulation of gene expression. Cell Chem. Biol. 23 (2016), 74–85.
-
(2016)
Cell Chem. Biol.
, vol.23
, pp. 74-85
-
-
Chen, K.1
-
10
-
-
84964957465
-
Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications
-
10 Licht, K., Jantsch, M.F., Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. J. Cell Biol. 213 (2016), 15–22.
-
(2016)
J. Cell Biol.
, vol.213
, pp. 15-22
-
-
Licht, K.1
Jantsch, M.F.2
-
11
-
-
84899586607
-
The dynamic epitranscriptome: N6-methyladenosine and gene expression control
-
11 Meyer, K.D., Jaffrey, S.R., The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol. 15 (2014), 313–326.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 313-326
-
-
Meyer, K.D.1
Jaffrey, S.R.2
-
12
-
-
84954349048
-
Transcriptome-wide distribution and function of RNA hydroxymethylcytosine
-
12 Delatte, B., et al. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351 (2016), 282–285.
-
(2016)
Science
, vol.351
, pp. 282-285
-
-
Delatte, B.1
-
13
-
-
84979530501
-
Pseudouridine: the fifth RNA nucleotide with renewed interests
-
13 Li, X., et al. Pseudouridine: the fifth RNA nucleotide with renewed interests. Curr. Opin. Chem. Biol. 33 (2016), 108–116.
-
(2016)
Curr. Opin. Chem. Biol.
, vol.33
, pp. 108-116
-
-
Li, X.1
-
14
-
-
84957828213
-
Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome
-
14 Li, X., et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol. 12 (2016), 311–316.
-
(2016)
Nat. Chem. Biol.
, vol.12
, pp. 311-316
-
-
Li, X.1
-
15
-
-
69449096380
-
Polyadenylation-assisted RNA degradation processes in plants
-
15 Lange, H., et al. Polyadenylation-assisted RNA degradation processes in plants. Trends Plant Sci. 14 (2009), 497–504.
-
(2009)
Trends Plant Sci.
, vol.14
, pp. 497-504
-
-
Lange, H.1
-
16
-
-
84864295706
-
Mitochondrial poly(A) polymerase and polyadenylation
-
16 Chang, J.H., Tong, L., Mitochondrial poly(A) polymerase and polyadenylation. Biochim. Biophys. Acta 1819 (2012), 992–997.
-
(2012)
Biochim. Biophys. Acta
, vol.1819
, pp. 992-997
-
-
Chang, J.H.1
Tong, L.2
-
17
-
-
84946923766
-
Uridylation and adenylation of RNAs
-
17 Song, J., et al. Uridylation and adenylation of RNAs. Sci. China Life Sci. 58 (2015), 1057–1066.
-
(2015)
Sci. China Life Sci.
, vol.58
, pp. 1057-1066
-
-
Song, J.1
-
18
-
-
84879161085
-
Specificity factors in cytoplasmic polyadenylation
-
18 Charlesworth, A., et al. Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip. Rev. RNA 4 (2013), 437–461.
-
(2013)
Wiley Interdiscip. Rev. RNA
, vol.4
, pp. 437-461
-
-
Charlesworth, A.1
-
19
-
-
84886404826
-
Cytoplasmic RNA: a case of the tail wagging the dog
-
19 Norbury, C.J., Cytoplasmic RNA: a case of the tail wagging the dog. Nat. Rev. Mol. Cell Biol. 14 (2013), 643–653.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 643-653
-
-
Norbury, C.J.1
-
20
-
-
73549112185
-
CUCU modification of mRNA promotes decapping and transcript degradation in Aspergillus nidulans
-
20 Morozov, I.Y., et al. CUCU modification of mRNA promotes decapping and transcript degradation in Aspergillus nidulans. Mol. Cell. Biol. 30 (2010), 460–469.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 460-469
-
-
Morozov, I.Y.1
-
21
-
-
84863994303
-
mRNA 3′ tagging is induced by nonsense-mediated decay and promotes ribosome dissociation
-
21 Morozov, I.Y., et al. mRNA 3′ tagging is induced by nonsense-mediated decay and promotes ribosome dissociation. Mol. Cell. Biol. 32 (2012), 2585–2595.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 2585-2595
-
-
Morozov, I.Y.1
-
22
-
-
84896405087
-
TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications
-
22 Chang, H., et al. TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol. Cell 53 (2014), 1044–1052.
-
(2014)
Mol. Cell
, vol.53
, pp. 1044-1052
-
-
Chang, H.1
-
23
-
-
84959929478
-
Uridylation and PABP cooperate to repair mRNA deadenylated ends in Arabidopsis
-
23 Zuber, H., et al. Uridylation and PABP cooperate to repair mRNA deadenylated ends in Arabidopsis. Cell Rep. 14 (2016), 2707–2717.
-
(2016)
Cell Rep.
, vol.14
, pp. 2707-2717
-
-
Zuber, H.1
-
24
-
-
35548959608
-
RNA-specific ribonucleotidyl transferases
-
24 Martin, G., Keller, W., RNA-specific ribonucleotidyl transferases. RNA 13 (2007), 1834–1849.
-
(2007)
RNA
, vol.13
, pp. 1834-1849
-
-
Martin, G.1
Keller, W.2
-
25
-
-
34249026025
-
A family of poly(U) polymerases
-
25 Kwak, J.E., Wickens, M., A family of poly(U) polymerases. RNA 13 (2007), 860–867.
-
(2007)
RNA
, vol.13
, pp. 860-867
-
-
Kwak, J.E.1
Wickens, M.2
-
26
-
-
79960890415
-
Mitochondrial RNA processing in trypanosomes
-
26 Aphasizhev, R., Aphasizheva, I., Mitochondrial RNA processing in trypanosomes. Res. Microbiol. 162 (2011), 655–663.
-
(2011)
Res. Microbiol.
, vol.162
, pp. 655-663
-
-
Aphasizhev, R.1
Aphasizheva, I.2
-
27
-
-
79953326716
-
Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes
-
27 Aphasizheva, I., et al. Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes. Mol. Cell 42 (2011), 106–117.
-
(2011)
Mol. Cell
, vol.42
, pp. 106-117
-
-
Aphasizheva, I.1
-
28
-
-
84957671354
-
Antisense transcripts delimit exonucleolytic activity of the mitochondrial 3′ processome to generate guide RNAs
-
28 Suematsu, T., et al. Antisense transcripts delimit exonucleolytic activity of the mitochondrial 3′ processome to generate guide RNAs. Mol. Cell 61 (2016), 364–378.
-
(2016)
Mol. Cell
, vol.61
, pp. 364-378
-
-
Suematsu, T.1
-
29
-
-
84907341968
-
Emerging roles of RNA modification: m6A and U-Tail
-
29 Lee, M., et al. Emerging roles of RNA modification: m6A and U-Tail. Cell 158 (2014), 980–987.
-
(2014)
Cell
, vol.158
, pp. 980-987
-
-
Lee, M.1
-
31
-
-
84930679709
-
Polyuridylation in eukaryotes: a 3′-end modification regulating RNA Life
-
31 Munoz-Tello, P., et al. Polyuridylation in eukaryotes: a 3′-end modification regulating RNA Life. BioMed Res. Int., 2015, 2015, 968127.
-
(2015)
BioMed Res. Int.
, vol.2015
, pp. 968127
-
-
Munoz-Tello, P.1
-
32
-
-
84967012320
-
Widespread 3′-end uridylation in eukaryotic RNA viruses
-
32 Huo, Y., et al. Widespread 3′-end uridylation in eukaryotic RNA viruses. Sci. Rep., 6, 2016, 25454.
-
(2016)
Sci. Rep.
, vol.6
, pp. 25454
-
-
Huo, Y.1
-
33
-
-
34248225381
-
Efficient RNA polyuridylation by noncanonical poly(A) polymerases
-
33 Rissland, O.S., et al. Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Mol. Cell. Biol. 27 (2007), 3612–3624.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 3612-3624
-
-
Rissland, O.S.1
-
34
-
-
66849122924
-
Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover
-
34 Rissland, O.S., Norbury, C.J., Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nat. Struct. Mol. Biol. 16 (2009), 616–623.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 616-623
-
-
Rissland, O.S.1
Norbury, C.J.2
-
35
-
-
84881494757
-
Uridylation prevents 3′ trimming of oligoadenylated mRNAs
-
35 Sement, F.M., et al. Uridylation prevents 3′ trimming of oligoadenylated mRNAs. Nucleic Acids Res. 41 (2013), 7115–7127.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 7115-7127
-
-
Sement, F.M.1
-
36
-
-
77749325035
-
RET1-catalyzed uridylylation shapes the mitochondrial transcriptome in Trypanosoma brucei
-
36 Aphasizheva, I., Aphasizhev, R., RET1-catalyzed uridylylation shapes the mitochondrial transcriptome in Trypanosoma brucei. Mol. Cell. Biol. 30 (2010), 1555–1567.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 1555-1567
-
-
Aphasizheva, I.1
Aphasizhev, R.2
-
37
-
-
84922260726
-
Uridylation by TUT4 and TUT7 marks mRNA for degradation
-
37 Lim, J., et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159 (2014), 1365–1376.
-
(2014)
Cell
, vol.159
, pp. 1365-1376
-
-
Lim, J.1
-
38
-
-
44649128170
-
3′ Adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria
-
38 Etheridge, R.D., et al. 3′ Adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. EMBO J. 27 (2008), 1596–1608.
-
(2008)
EMBO J.
, vol.27
, pp. 1596-1608
-
-
Etheridge, R.D.1
-
39
-
-
19644400971
-
Uridine addition after microRNA-directed cleavage
-
39 Shen, B., Goodman, H.M., Uridine addition after microRNA-directed cleavage. Science, 306, 2004, 997.
-
(2004)
Science
, vol.306
, pp. 997
-
-
Shen, B.1
Goodman, H.M.2
-
40
-
-
84979681445
-
MicroRNA-mediated target mRNA cleavage and 3′-uridylation in human cells
-
40 Xu, K., et al. MicroRNA-mediated target mRNA cleavage and 3′-uridylation in human cells. Sci. Rep., 6, 2016, 30242.
-
(2016)
Sci. Rep.
, vol.6
, pp. 30242
-
-
Xu, K.1
-
41
-
-
36248947229
-
3′ Terminal oligo U-tract-mediated stimulation of decapping
-
41 Song, M-G., Kiledjian, M., 3′ Terminal oligo U-tract-mediated stimulation of decapping. RNA 13 (2007), 2356–2365.
-
(2007)
RNA
, vol.13
, pp. 2356-2365
-
-
Song, M.-G.1
Kiledjian, M.2
-
42
-
-
84899654405
-
Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage
-
42 Ren, G., et al. Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 6365–6370.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 6365-6370
-
-
Ren, G.1
-
43
-
-
54149091257
-
Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail
-
43 Marzluff, W.F., et al. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9 (2008), 843–854.
-
(2008)
Nat. Rev. Genet.
, vol.9
, pp. 843-854
-
-
Marzluff, W.F.1
-
44
-
-
38149023239
-
Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′
-
44 Mullen, T.E., Marzluff, W.F., Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev. 22 (2008), 50–65.
-
(2008)
Genes Dev.
, vol.22
, pp. 50-65
-
-
Mullen, T.E.1
Marzluff, W.F.2
-
45
-
-
84872474666
-
Structure of histone mRNA stem-loop, human stem-loop binding protein, and 3′hExo ternary complex
-
45 Tan, D., et al. Structure of histone mRNA stem-loop, human stem-loop binding protein, and 3′hExo ternary complex. Science 339 (2013), 318–321.
-
(2013)
Science
, vol.339
, pp. 318-321
-
-
Tan, D.1
-
46
-
-
84906250930
-
The mRNP remodeling mediated by UPF1 promotes rapid degradation of replication-dependent histone mRNA
-
46 Choe, J., et al. The mRNP remodeling mediated by UPF1 promotes rapid degradation of replication-dependent histone mRNA. Nucleic Acids Res. 42 (2014), 9334–9349.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 9334-9349
-
-
Choe, J.1
-
47
-
-
84872026333
-
Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay
-
47 Hoefig, K.P., et al. Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay. Nat. Struct. Mol. Biol. 20 (2013), 73–81.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 73-81
-
-
Hoefig, K.P.1
-
48
-
-
84896327838
-
Deep sequencing shows multiple oligouridylations are required for 3′ to 5′ degradation of histone mRNAs on polyribosomes
-
48 Slevin, M.K., et al. Deep sequencing shows multiple oligouridylations are required for 3′ to 5′ degradation of histone mRNAs on polyribosomes. Mol. Cell 53 (2014), 1020–1030.
-
(2014)
Mol. Cell
, vol.53
, pp. 1020-1030
-
-
Slevin, M.K.1
-
49
-
-
84871455409
-
mRNAs containing the histone 3′ stem-loop are degraded primarily by decapping mediated by oligouridylation of the 3′ end
-
49 Su, W., et al. mRNAs containing the histone 3′ stem-loop are degraded primarily by decapping mediated by oligouridylation of the 3′ end. RNA 19 (2013), 1–16.
-
(2013)
RNA
, vol.19
, pp. 1-16
-
-
Su, W.1
-
50
-
-
78650446573
-
The human cytoplasmic RNA terminal U-transferase ZCCHC11 targets histone mRNAs for degradation
-
50 Schmidt, M-J., et al. The human cytoplasmic RNA terminal U-transferase ZCCHC11 targets histone mRNAs for degradation. RNA 17 (2010), 39–44.
-
(2010)
RNA
, vol.17
, pp. 39-44
-
-
Schmidt, M.-J.1
-
51
-
-
84992536185
-
TUT7 catalyzes the uridylation of the 3′ end for rapid degradation of histone mRNA
-
(in press)
-
51 Lackey, P.E., et al. TUT7 catalyzes the uridylation of the 3′ end for rapid degradation of histone mRNA. RNA., 2016, 10.1261/rna.058107.116 (in press).
-
(2016)
RNA.
-
-
Lackey, P.E.1
-
52
-
-
84897571308
-
Poly(A)-tail profiling reveals an embryonic switch in translational control
-
52 Subtelny, A.O., et al. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508 (2014), 66–71.
-
(2014)
Nature
, vol.508
, pp. 66-71
-
-
Subtelny, A.O.1
-
53
-
-
84880245419
-
The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway
-
53 Malecki, M., et al. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J. 32 (2013), 1842–1854.
-
(2013)
EMBO J.
, vol.32
, pp. 1842-1854
-
-
Malecki, M.1
-
54
-
-
84880224541
-
Exonuclease hDIS3L2 specifies an exosome-independent 3′-5′ degradation pathway of human cytoplasmic mRNA
-
54 Lubas, M., et al. Exonuclease hDIS3L2 specifies an exosome-independent 3′-5′ degradation pathway of human cytoplasmic mRNA. EMBO J. 32 (2013), 1855–1868.
-
(2013)
EMBO J.
, vol.32
, pp. 1855-1868
-
-
Lubas, M.1
-
55
-
-
84933670234
-
TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms
-
55 Kim, B., et al. TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms. EMBO J. 34 (2015), 1801–1815.
-
(2015)
EMBO J.
, vol.34
, pp. 1801-1815
-
-
Kim, B.1
-
56
-
-
84888419614
-
Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs
-
56 Ustianenko, D., et al. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19 (2013), 1632–1638.
-
(2013)
RNA
, vol.19
, pp. 1632-1638
-
-
Ustianenko, D.1
-
57
-
-
84991101660
-
Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs
-
(in press)
-
57 Łabno, A., et al. Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs. Nucleic Acids Res., 2016, 10.1093/nar/gkw649 (in press).
-
(2016)
Nucleic Acids Res.
-
-
Łabno, A.1
-
58
-
-
84908311054
-
Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway
-
58 Faehnle, C.R., et al. Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway. Nature 514 (2014), 252–256.
-
(2014)
Nature
, vol.514
, pp. 252-256
-
-
Faehnle, C.R.1
-
59
-
-
84929703584
-
Apoptosis triggers specific, rapid, and global mRNA decay with 3′ uridylated intermediates degraded by DIS3L2
-
59 Thomas, M.P., et al. Apoptosis triggers specific, rapid, and global mRNA decay with 3′ uridylated intermediates degraded by DIS3L2. Cell Rep. 11 (2015), 1079–1089.
-
(2015)
Cell Rep.
, vol.11
, pp. 1079-1089
-
-
Thomas, M.P.1
-
60
-
-
84921643969
-
Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition
-
60 Baejen, C., et al. Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Mol. Cell 55 (2014), 745–757.
-
(2014)
Mol. Cell
, vol.55
, pp. 745-757
-
-
Baejen, C.1
-
61
-
-
84902497730
-
Poly(A)-binding proteins: structure, domain organization, and activity regulation
-
61 Eliseeva, I.A., et al. Poly(A)-binding proteins: structure, domain organization, and activity regulation. Biochem. Mosc. 78 (2013), 1377–1391.
-
(2013)
Biochem. Mosc.
, vol.78
, pp. 1377-1391
-
-
Eliseeva, I.A.1
-
62
-
-
85009754220
-
Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs
-
62 Kini, H.K., et al. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. RNA 22 (2016), 61–74.
-
(2016)
RNA
, vol.22
, pp. 61-74
-
-
Kini, H.K.1
-
63
-
-
1642480256
-
Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4
-
63 Sladic, R.T., et al. Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4. Eur. J. Biochem. 271 (2004), 450–457.
-
(2004)
Eur. J. Biochem.
, vol.271
, pp. 450-457
-
-
Sladic, R.T.1
-
64
-
-
33947706276
-
Poly(A)-binding protein binds to A-rich sequences via RNA-binding domains 1 + 2 and 3 + 4
-
64 Khanam, T., et al. Poly(A)-binding protein binds to A-rich sequences via RNA-binding domains 1 + 2 and 3 + 4. RNA Biol. 3 (2006), 170–177.
-
(2006)
RNA Biol.
, vol.3
, pp. 170-177
-
-
Khanam, T.1
-
65
-
-
0038063499
-
Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction
-
65 Kühn, U., Pieler, T., Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction. J. Mol. Biol. 256 (1996), 20–30.
-
(1996)
J. Mol. Biol.
, vol.256
, pp. 20-30
-
-
Kühn, U.1
Pieler, T.2
-
66
-
-
33845478578
-
IMP1 interacts with poly(A)-binding protein (PABP) and the autoregulatory translational control element of PABP-mRNA through the KH III-IV domain
-
66 Patel, G.P., Bag, J., IMP1 interacts with poly(A)-binding protein (PABP) and the autoregulatory translational control element of PABP-mRNA through the KH III-IV domain. FEBS J. 273 (2006), 5678–5690.
-
(2006)
FEBS J.
, vol.273
, pp. 5678-5690
-
-
Patel, G.P.1
Bag, J.2
-
67
-
-
6344286064
-
Interaction of rat poly(A)-binding protein with poly(A)- and non-poly(A) sequences is preferentially mediated by RNA recognition motifs 3 + 4
-
67 Mullin, C., et al. Interaction of rat poly(A)-binding protein with poly(A)- and non-poly(A) sequences is preferentially mediated by RNA recognition motifs 3 + 4. FEBS Lett. 576 (2004), 437–441.
-
(2004)
FEBS Lett.
, vol.576
, pp. 437-441
-
-
Mullin, C.1
-
68
-
-
84860307087
-
Uridylation of miRNAs by HEN1 SUPPRESSOR1 in Arabidopsis
-
68 Ren, G., et al. Uridylation of miRNAs by HEN1 SUPPRESSOR1 in Arabidopsis. Curr. Biol. 22 (2012), 695–700.
-
(2012)
Curr. Biol.
, vol.22
, pp. 695-700
-
-
Ren, G.1
-
69
-
-
84860301401
-
The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation
-
69 Zhao, Y., et al. The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation. Curr. Biol. 22 (2012), 689–694.
-
(2012)
Curr. Biol.
, vol.22
, pp. 689-694
-
-
Zhao, Y.1
-
70
-
-
84930372546
-
Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3′ tailing of small RNAs in Arabidopsis
-
70 Wang, X., et al. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3′ tailing of small RNAs in Arabidopsis. PLoS Genet., 11, 2015, e1005091.
-
(2015)
PLoS Genet.
, vol.11
, pp. e1005091
-
-
Wang, X.1
-
71
-
-
84930348374
-
Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis
-
71 Tu, B., et al. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet., 11, 2015, e1005119.
-
(2015)
PLoS Genet.
, vol.11
, pp. e1005119
-
-
Tu, B.1
-
72
-
-
84931096986
-
EnD-Seq and AppEnD: sequencing 3′ ends to identify nontemplated tails and degradation intermediates
-
72 Welch, J.D., et al. EnD-Seq and AppEnD: sequencing 3′ ends to identify nontemplated tails and degradation intermediates. RNA 21 (2015), 1375–1389.
-
(2015)
RNA
, vol.21
, pp. 1375-1389
-
-
Welch, J.D.1
-
73
-
-
79953329769
-
Marked for translation: long A/U tails as an interface between completion of RNA editing and ribosome recruitment
-
73 Read, L.K., et al. Marked for translation: long A/U tails as an interface between completion of RNA editing and ribosome recruitment. Mol. Cell 42 (2011), 6–8.
-
(2011)
Mol. Cell
, vol.42
, pp. 6-8
-
-
Read, L.K.1
-
74
-
-
68749102148
-
TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation
-
74 Heo, I., et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138 (2009), 696–708.
-
(2009)
Cell
, vol.138
, pp. 696-708
-
-
Heo, I.1
-
75
-
-
53949088050
-
Lin28 mediates the terminal uridylation of let-7 precursor microRNA
-
75 Heo, I., et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32 (2008), 276–284.
-
(2008)
Mol. Cell
, vol.32
, pp. 276-284
-
-
Heo, I.1
-
76
-
-
84868153864
-
Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs
-
76 Heo, I., et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151 (2012), 521–532.
-
(2012)
Cell
, vol.151
, pp. 521-532
-
-
Heo, I.1
-
77
-
-
84912070093
-
Trim25 is an RNA-specific activator of Lin28a/TuT4-mediated uridylation
-
77 Choudhury, N.R., et al. Trim25 is an RNA-specific activator of Lin28a/TuT4-mediated uridylation. Cell Rep. 9 (2014), 1265–1272.
-
(2014)
Cell Rep.
, vol.9
, pp. 1265-1272
-
-
Choudhury, N.R.1
-
78
-
-
70349820140
-
Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells
-
78 Hagan, J.P., et al. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 16 (2009), 1021–1025.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 1021-1025
-
-
Hagan, J.P.1
-
79
-
-
84866951989
-
Identification of cytoplasmic capping targets reveals a role for Cap homeostasis in translation and mRNA stability
-
79 Mukherjee, C., et al. Identification of cytoplasmic capping targets reveals a role for Cap homeostasis in translation and mRNA stability. Cell Rep. 2 (2012), 674–684.
-
(2012)
Cell Rep.
, vol.2
, pp. 674-684
-
-
Mukherjee, C.1
-
80
-
-
84959485943
-
Cap homeostasis is independent of poly(A) tail length
-
80 Kiss, D.L., et al. Cap homeostasis is independent of poly(A) tail length. Nucleic Acids Res. 44 (2016), 304–314.
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. 304-314
-
-
Kiss, D.L.1
-
81
-
-
84880059154
-
The nucleic acid-binding domain and translational repression activity of a Xenopus terminal uridylyl transferase
-
81 Lapointe, C.P., Wickens, M., The nucleic acid-binding domain and translational repression activity of a Xenopus terminal uridylyl transferase. J. Biol. Chem. 288 (2013), 20723–20733.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 20723-20733
-
-
Lapointe, C.P.1
Wickens, M.2
-
82
-
-
84970948132
-
Hormonal stimulation of starfish oocytes induces partial degradation of the 3′ termini of cyclin B mRNAs with oligo(U) tails, followed by poly(A) elongation
-
82 Ochi, H., Chiba, K., Hormonal stimulation of starfish oocytes induces partial degradation of the 3′ termini of cyclin B mRNAs with oligo(U) tails, followed by poly(A) elongation. RNA 22 (2016), 822–829.
-
(2016)
RNA
, vol.22
, pp. 822-829
-
-
Ochi, H.1
Chiba, K.2
-
83
-
-
84877801967
-
RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes
-
83 Wahle, E., Winkler, G.S., RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim. Biophys. Acta 1829 (2013), 561–570.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 561-570
-
-
Wahle, E.1
Winkler, G.S.2
-
84
-
-
84868159990
-
Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity
-
84 Lunde, B.M., et al. Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity. Nucleic Acids Res. 40 (2012), 9815–9824.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 9815-9824
-
-
Lunde, B.M.1
-
85
-
-
84864655761
-
Structural basis for the activity of a cytoplasmic RNA terminal U-transferase
-
85 Yates, L.A., et al. Structural basis for the activity of a cytoplasmic RNA terminal U-transferase. Nat. Struct. Mol. Biol. 19 (2012), 782–787.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 782-787
-
-
Yates, L.A.1
-
86
-
-
82755167738
-
Terminal uridyltransferase enzyme Zcchc11 promotes cell proliferation independent of its uridyltransferase activity
-
86 Blahna, M.T., et al. Terminal uridyltransferase enzyme Zcchc11 promotes cell proliferation independent of its uridyltransferase activity. J. Biol. Chem. 286 (2011), 42381–42389.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 42381-42389
-
-
Blahna, M.T.1
-
87
-
-
13844297911
-
Zinc finger proteins: getting a grip on RNA
-
87 Brown, R.S., Zinc finger proteins: getting a grip on RNA. Curr. Opin. Struct. Biol. 15 (2005), 94–98.
-
(2005)
Curr. Opin. Struct. Biol.
, vol.15
, pp. 94-98
-
-
Brown, R.S.1
-
88
-
-
34250157355
-
Zinc fingers are known as domains for binding DNA and RNA. Do they also mediate protein-protein interactions?
-
88 Loughlin, F.E., Mackay, J.P., Zinc fingers are known as domains for binding DNA and RNA. Do they also mediate protein-protein interactions?. IUBMB Life 58 (2006), 731–733.
-
(2006)
IUBMB Life
, vol.58
, pp. 731-733
-
-
Loughlin, F.E.1
Mackay, J.P.2
-
89
-
-
84855421472
-
Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28
-
89 Loughlin, F.E., et al. Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28. Nat. Struct. Mol. Biol. 19 (2012), 84–89.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 84-89
-
-
Loughlin, F.E.1
-
90
-
-
84964434640
-
The new (dis)order in RNA regulation
-
90 Järvelin, A.I., et al. The new (dis)order in RNA regulation. Cell Commun. Signal., 14, 2016, 9.
-
(2016)
Cell Commun. Signal.
, vol.14
, pp. 9
-
-
Järvelin, A.I.1
-
91
-
-
84925251625
-
DISOPRED3: precise disordered region predictions with annotated protein-binding activity
-
91 Jones, D.T., Cozzetto, D., DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31 (2015), 857–863.
-
(2015)
Bioinformatics
, vol.31
, pp. 857-863
-
-
Jones, D.T.1
Cozzetto, D.2
-
92
-
-
84951845194
-
Emerging roles of disordered sequences in RNA-binding proteins
-
92 Calabretta, S., Richard, S., Emerging roles of disordered sequences in RNA-binding proteins. Trends Biochem. Sci. 40 (2015), 662–672.
-
(2015)
Trends Biochem. Sci.
, vol.40
, pp. 662-672
-
-
Calabretta, S.1
Richard, S.2
-
93
-
-
84861969926
-
Insights into RNA biology from an atlas of mammalian mRNA-binding proteins
-
93 Castello, A., et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149 (2012), 1393–1406.
-
(2012)
Cell
, vol.149
, pp. 1393-1406
-
-
Castello, A.1
-
94
-
-
84992740396
-
Comprehensive identification of RNA-binding domains in human cells
-
Published online July 19
-
94 Castello, A., et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell, 2016, 10.1016/j.molcel.2016.06.029 Published online July 19.
-
(2016)
Mol. Cell
-
-
Castello, A.1
-
95
-
-
84890703972
-
The role of disordered protein regions in the assembly of decapping complexes and RNP granules
-
95 Jonas, S., Izaurralde, E., The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes Dev. 27 (2013), 2628–2641.
-
(2013)
Genes Dev.
, vol.27
, pp. 2628-2641
-
-
Jonas, S.1
Izaurralde, E.2
-
96
-
-
77951163053
-
Distinct roles for Caf1, Ccr4, Edc3 and CutA in the co-ordination of transcript deadenylation, decapping and P-body formation in Aspergillus nidulans
-
96 Morozov, I.Y., et al. Distinct roles for Caf1, Ccr4, Edc3 and CutA in the co-ordination of transcript deadenylation, decapping and P-body formation in Aspergillus nidulans. Mol. Microbiol. 76 (2010), 503–516.
-
(2010)
Mol. Microbiol.
, vol.76
, pp. 503-516
-
-
Morozov, I.Y.1
-
97
-
-
84963815743
-
Identification of factors involved in target RNA-directed microRNA degradation
-
97 Haas, G., et al. Identification of factors involved in target RNA-directed microRNA degradation. Nucleic Acids Res. 44 (2016), 2873–2887.
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. 2873-2887
-
-
Haas, G.1
-
98
-
-
23944493378
-
Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis
-
98 Li, J., et al. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol. 15 (2005), 1501–1507.
-
(2005)
Curr. Biol.
, vol.15
, pp. 1501-1507
-
-
Li, J.1
-
99
-
-
13644256193
-
Methylation as a crucial step in plant microRNA biogenesis
-
99 Yu, B., et al. Methylation as a crucial step in plant microRNA biogenesis. Science 307 (2005), 932–935.
-
(2005)
Science
, vol.307
, pp. 932-935
-
-
Yu, B.1
-
100
-
-
34347378274
-
Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ ends
-
100 Saito, K., et al. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ ends. Genes Dev. 21 (2007), 1603–1608.
-
(2007)
Genes Dev.
, vol.21
, pp. 1603-1608
-
-
Saito, K.1
-
101
-
-
34447291602
-
The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC
-
101 Horwich, M.D., et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17 (2007), 1265–1272.
-
(2007)
Curr. Biol.
, vol.17
, pp. 1265-1272
-
-
Horwich, M.D.1
-
102
-
-
84937391821
-
Uridylation of RNA hairpins by tailor confines the emergence of microRNAs in Drosophila
-
102 Reimão-Pinto, M.M., et al. Uridylation of RNA hairpins by tailor confines the emergence of microRNAs in Drosophila. Mol. Cell 59 (2015), 203–216.
-
(2015)
Mol. Cell
, vol.59
, pp. 203-216
-
-
Reimão-Pinto, M.M.1
-
103
-
-
84908000972
-
A microRNA precursor surveillance system in quality control of MicroRNA synthesis
-
103 Liu, X., et al. A microRNA precursor surveillance system in quality control of MicroRNA synthesis. Mol. Cell 55 (2014), 868–879.
-
(2014)
Mol. Cell
, vol.55
, pp. 868-879
-
-
Liu, X.1
-
104
-
-
84904985459
-
Regulation of microRNA biogenesis
-
104 Ha, M., Kim, V.N., Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15 (2014), 509–524.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 509-524
-
-
Ha, M.1
Kim, V.N.2
-
105
-
-
0033977681
-
Trypanosoma brucei guide RNA poly(U) tail formation is stabilized by cognate mRNA
-
105 McManus, M.T., et al. Trypanosoma brucei guide RNA poly(U) tail formation is stabilized by cognate mRNA. Mol. Cell. Biol. 20 (2000), 883–891.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 883-891
-
-
McManus, M.T.1
-
106
-
-
33746489955
-
Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase
-
106 Trippe, R., et al. Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. RNA 12 (2006), 1494–1504.
-
(2006)
RNA
, vol.12
, pp. 1494-1504
-
-
Trippe, R.1
-
107
-
-
84877269808
-
Gradual processing of the ITS1 from the nucleolus to the cytoplasm during synthesis of the human 18S rRNA
-
107 Preti, M., et al. Gradual processing of the ITS1 from the nucleolus to the cytoplasm during synthesis of the human 18S rRNA. Nucleic Acids Res. 41 (2013), 4709–4723.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 4709-4723
-
-
Preti, M.1
-
108
-
-
84941120550
-
Distinct 18S rRNA precursors are targets of the exosome complex, the exoribonuclease RRP6L2 and the terminal nucleotidyltransferase TRL in Arabidopsis thaliana
-
108 Sikorski, P.J., et al. Distinct 18S rRNA precursors are targets of the exosome complex, the exoribonuclease RRP6L2 and the terminal nucleotidyltransferase TRL in Arabidopsis thaliana. Plant J. 83 (2015), 991–1004.
-
(2015)
Plant J.
, vol.83
, pp. 991-1004
-
-
Sikorski, P.J.1
-
109
-
-
84958696014
-
circTAIL-seq, a targeted method for deep analysis of RNA 3′ tails, reveals transcript-specific differences by multiple metrics
-
109 Gazestani, V.H., et al. circTAIL-seq, a targeted method for deep analysis of RNA 3′ tails, reveals transcript-specific differences by multiple metrics. RNA 22 (2016), 477–486.
-
(2016)
RNA
, vol.22
, pp. 477-486
-
-
Gazestani, V.H.1
|