메뉴 건너뛰기




Volumn 27, Issue 24, 2013, Pages 2628-2641

The role of disordered protein regions in the assembly of decapping complexes and RNP granules

Author keywords

DCP2; Decapping; mRNA decay; SLiMs

Indexed keywords

DCP1 PROTEIN; DCP2 PROTEIN; DEAD BOX PROTEIN; MESSENGER RNA; RIBONUCLEOPROTEIN; RNA BINDING PROTEIN; RNA HELICASE; UNCLASSIFIED DRUG;

EID: 84890703972     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.227843.113     Document Type: Review
Times cited : (151)

References (98)
  • 1
    • 3042684849 scopus 로고    scopus 로고
    • Novel Sm-like proteins with long C-terminal tails and associated methyltransferases
    • Albrecht M., Lengauer T. 2004. Novel Sm-like proteins with long C-terminal tails and associated methyltransferases. FEBS Lett 569: 18-26.
    • (2004) FEBS Lett , vol.569 , pp. 18-26
    • Albrecht, M.1    Lengauer, T.2
  • 2
    • 9144267469 scopus 로고    scopus 로고
    • Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability
    • Anantharaman V., Aravind L. 2004. Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability. BMC Genomics 5: 45.
    • (2004) BMC Genomics , vol.5 , pp. 45
    • Anantharaman, V.1    Aravind, L.2
  • 5
    • 84871769556 scopus 로고    scopus 로고
    • The P body protein Dcp1a is hyper-phosphorylated during mitosis
    • Aizer A., Kafri P, Kalo A, Shav-Tal Y. 2013. The P body protein Dcp1a is hyper-phosphorylated during mitosis. PLoS ONE 8: e49783.
    • (2013) PLoS ONE , vol.8
    • Aizer, A.1    Kafri, P.2    Kalo, A.3    Shav-Tal, Y.4
  • 6
    • 84877792802 scopus 로고    scopus 로고
    • Structural and functional control of the eukaryotic mRNA decapping machinery
    • Arribas-Layton M., Wu D, Lykke-Andersen J, Song H. 2013. Structural and functional control of the eukaryotic mRNA decapping machinery. Biochim Biophys Acta 1829: 580-589.
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 580-589
    • Arribas-Layton, M.1    Wu, D.2    Lykke-Andersen, J.3    Song, H.4
  • 7
    • 3042803133 scopus 로고    scopus 로고
    • Targeted mRNA degradation by deadenylation-independent decapping
    • Badis G., Saveanu C, Fromont-Racine M, Jacquier A. 2004. Targeted mRNA degradation by deadenylation-independent decapping. Mol Cell 15: 5-15.
    • (2004) Mol Cell , vol.15 , pp. 5-15
    • Badis, G.1    Saveanu, C.2    Fromont-Racine, M.3    Jacquier, A.4
  • 9
    • 79960838430 scopus 로고    scopus 로고
    • Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel twohybrid assay
    • Bloch D. B, Nobre RA, Bernstein GA, Yang WH. 2011. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel twohybrid assay. Exp Cell Res 317: 2183-2199.
    • (2011) Exp Cell Res , vol.317 , pp. 2183-2199
    • Bloch, D.B.1    Nobre, R.A.2    Bernstein, G.A.3    Yang, W.H.4
  • 10
    • 0033866402 scopus 로고    scopus 로고
    • The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p
    • Bonnerot C., Boeck R, Lapeyre B. 2000. The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p. Mol Cell Biol 20: 5939-5946.
    • (2000) Mol Cell Biol , vol.20 , pp. 5939-5946
    • Bonnerot, C.1    Boeck, R.2    Lapeyre, B.3
  • 11
    • 78751543984 scopus 로고    scopus 로고
    • Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition
    • Borja M. S, Piotukh K, Freund C, Gross JD. 2011. Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition. RNA 17: 278-290.
    • (2011) RNA , vol.17 , pp. 278-290
    • Borja, M.S.1    Piotukh, K.2    Freund, C.3    Gross, J.D.4
  • 12
    • 0034599976 scopus 로고    scopus 로고
    • A Sm-like protein complex that participates in mRNA degradation
    • Bouveret E., Rigaut G, Shevchenko A, Wilm M, Seraphin B. 2000. A Sm-like protein complex that participates in mRNA degradation. EMBO J 19: 1661-1671.
    • (2000) EMBO J , vol.19 , pp. 1661-1671
    • Bouveret, E.1    Rigaut, G.2    Shevchenko, A.3    Wilm, M.4    Seraphin, B.5
  • 17
    • 79952362044 scopus 로고    scopus 로고
    • Structural and biochemical studies of the 59/39 exoribonuclease Xrn1
    • Chang J. H, Xiang S, Xiang K, Manley JL, Tong L. 2011. Structural and biochemical studies of the 59/39 exoribonuclease Xrn1. Nat Struct Mol Biol 18: 270-276.
    • (2011) Nat Struct Mol Biol , vol.18 , pp. 270-276
    • Chang, J.H.1    Xiang, S.2    Xiang, K.3    Manley, J.L.4    Tong, L.5
  • 18
    • 23644449094 scopus 로고    scopus 로고
    • Crystal structure and functional analysis of DEAD-box protein Dhh1p
    • Cheng Z., Coller J, Parker R, Song H. 2005. Crystal structure and functional analysis of DEAD-box protein Dhh1p. RNA 11: 1258-1270.
    • (2005) RNA , vol.11 , pp. 1258-1270
    • Cheng, Z.1    Coller, J.2    Parker, R.3    Song, H.4
  • 19
    • 70349124647 scopus 로고    scopus 로고
    • Activation of decapping involves binding of the mRNA and facilitation of the post-binding steps by the Lsm1-7-Pat1 complex
    • Chowdhury A., Tharun S. 2009. Activation of decapping involves binding of the mRNA and facilitation of the post-binding steps by the Lsm1-7-Pat1 complex. RNA 15: 1837-1848.
    • (2009) RNA , vol.15 , pp. 1837-1848
    • Chowdhury, A.1    Tharun, S.2
  • 20
    • 34250804009 scopus 로고    scopus 로고
    • The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs
    • Chowdhury A., Mukhopadhyay J, Tharun S. 2007. The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA 13: 998-1016.
    • (2007) RNA , vol.13 , pp. 998-1016
    • Chowdhury, A.1    Mukhopadhyay, J.2    Tharun, S.3
  • 21
    • 33745894330 scopus 로고    scopus 로고
    • Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54
    • Chu C. Y, Rana TM. 2006. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4: e210.
    • (2006) PLoS Biol , vol.4
    • Chu, C.Y.1    Rana, T.M.2
  • 22
    • 25144482816 scopus 로고    scopus 로고
    • General translational repression by activators of mRNA decapping
    • Coller J., Parker R. 2005. General translational repression by activators of mRNA decapping. Cell 122: 875-886.
    • (2005) Cell , vol.122 , pp. 875-886
    • Coller, J.1    Parker, R.2
  • 23
    • 0035674477 scopus 로고    scopus 로고
    • The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes
    • Coller J. M, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R. 2001. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7: 1717-1727.
    • (2001) RNA , vol.7 , pp. 1717-1727
    • Coller, J.M.1    Tucker, M.2    Sheth, U.3    Valencia-Sanchez, M.A.4    Parker, R.5
  • 25
    • 33646091499 scopus 로고    scopus 로고
    • CAR-1 and trailer hitch: Driving mRNP granule function at the ER?
    • Decker C. J, Parker R. 2006. CAR-1 and trailer hitch: Driving mRNP granule function at the ER? J Cell Biol 173: 159-163.
    • (2006) J Cell Biol , vol.173 , pp. 159-163
    • Decker, C.J.1    Parker, R.2
  • 26
    • 35948951960 scopus 로고    scopus 로고
    • Edc3p and a glutamine/ asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae
    • Decker C. J, Teixeira D, Parker R. 2007. Edc3p and a glutamine/ asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 179: 437-449.
    • (2007) J Cell Biol , vol.179 , pp. 437-449
    • Decker, C.J.1    Teixeira, D.2    Parker, R.3
  • 28
    • 77951747913 scopus 로고    scopus 로고
    • Degradation of YRA1 premRNA in the cytoplasm requires translational repression, multiple modular intronic elements, Edc3p, and Mex67p
    • Dong S., Jacobson A, He F. 2010. Degradation of YRA1 premRNA in the cytoplasm requires translational repression, multiple modular intronic elements, Edc3p, and Mex67p. PLoS Biol 8: e1000360.
    • (2010) PLoS Biol , vol.8
    • Dong, S.1    Jacobson, A.2    He, F.3
  • 31
    • 34347335707 scopus 로고    scopus 로고
    • P-body formation is a consequence, not the cause of RNAmediated gene silencing
    • Eulalio A., Behm-Ansmant I, Schweizer D, Izaurralde E. 2007b. P-body formation is a consequence, not the cause of RNAmediated gene silencing. Mol Cell Biol 27: 3970-3981.
    • (2007) Mol Cell Biol , vol.27 , pp. 3970-3981
    • Eulalio, A.1    Behm-Ansmant, I.2    Schweizer, D.3    Izaurralde, E.4
  • 33
    • 29144481702 scopus 로고    scopus 로고
    • Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping
    • Fenger-Grøn M., Fillman C, Norrild B, Lykke-Andersen J. 2005. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20: 905-915.
    • (2005) Mol Cell , vol.20 , pp. 905-915
    • Fenger-Grøn, M.1    Fillman, C.2    Norrild, B.3    Lykke-Andersen, J.4
  • 34
  • 35
    • 84857433862 scopus 로고    scopus 로고
    • Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan
    • Floor S. N, Borja MS, Gross JD. 2012. Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan. Proc Natl Acad Sci 109: 2872-2877.
    • (2012) Proc Natl Acad Sci , vol.109 , pp. 2872-2877
    • Floor, S.N.1    Borja, M.S.2    Gross, J.D.3
  • 38
    • 84856782922 scopus 로고    scopus 로고
    • Decapping of long noncoding RNAs regulates inducible genes
    • Geisler S., Lojek L, Khalil AM, Baker KE, Coller J. 2012. Decapping of long noncoding RNAs regulates inducible genes. Mol Cell 45: 279-291.
    • (2012) Mol Cell , vol.45 , pp. 279-291
    • Geisler, S.1    Lojek, L.2    Khalil, A.M.3    Baker, K.E.4    Coller, J.5
  • 40
    • 84860863700 scopus 로고    scopus 로고
    • Cell-free formation of RNA granules: Bound RNAs identify features and components of cellular assemblies
    • Han T. W, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, Chen M, Xie Y, Allen J., Xiao G, et al. 2012. Cell-free formation of RNA granules: Bound RNAs identify features and components of cellular assemblies. Cell 149: 768-779.
    • (2012) Cell , vol.149 , pp. 768-779
    • Han, T.W.1    Kato, M.2    Xie, S.3    Wu, L.C.4    Mirzaei, H.5    Pei, J.6    Chen, M.7    Xie, Y.8    Allen, J.9    Xiao, G.10
  • 41
    • 77749330772 scopus 로고    scopus 로고
    • Identification and analysis of the interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae
    • Harigaya Y., Jones BN, Muhlrad D, Gross JD, Parker R. 2010. Identification and analysis of the interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae. Mol Cell Biol 30: 1446-1456.
    • (2010) Mol Cell Biol , vol.30 , pp. 1446-1456
    • Harigaya, Y.1    Jones, B.N.2    Muhlrad, D.3    Gross, J.D.4    Parker, R.5
  • 42
    • 0035137307 scopus 로고    scopus 로고
    • Upf1p, Nmd2p, and Upf3p regulate the decapping and exonucleolytic degradation of both nonsensecontaining mRNAs and wild-type mRNAs
    • He F., Jacobson A. 2001. Upf1p, Nmd2p, and Upf3p regulate the decapping and exonucleolytic degradation of both nonsensecontaining mRNAs and wild-type mRNAs. Mol Cell Biol 21: 1515-1530.
    • (2001) Mol Cell Biol , vol.21 , pp. 1515-1530
    • He, F.1    Jacobson, A.2
  • 43
    • 0034741815 scopus 로고    scopus 로고
    • The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 39 termini from partial degradation
    • He W., Parker R. 2001. The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 39 termini from partial degradation. Genetics 158: 1445-1455.
    • (2001) Genetics , vol.158 , pp. 1445-1455
    • He, W.1    Parker, R.2
  • 44
    • 70249141564 scopus 로고    scopus 로고
    • Cotranslational mRNA decay in Saccharomyces cerevisiae
    • Hu W., Sweet TJ, Chamnongpol S, Baker KE, Coller J. 2009. Cotranslational mRNA decay in Saccharomyces cerevisiae. Nature 461: 225-229.
    • (2009) Nature , vol.461 , pp. 225-229
    • Hu, W.1    Sweet, T.J.2    Chamnongpol, S.3    Baker, K.E.4    Coller, J.5
  • 45
    • 80052972576 scopus 로고    scopus 로고
    • CUP promotes deadenylation and inhibits decapping of mRNA targets
    • Igreja C., Izaurralde E. 2011. CUP promotes deadenylation and inhibits decapping of mRNA targets. Genes Dev 25: 1955-1967.
    • (2011) Genes Dev , vol.25 , pp. 1955-1967
    • Igreja, C.1    Izaurralde, E.2
  • 46
    • 33751541451 scopus 로고    scopus 로고
    • Identification of an mRNAdecapping regulator implicated in X-linked mental retardation
    • Jiao X., Wang Z, Kiledjian M. 2006. Identification of an mRNAdecapping regulator implicated in X-linked mental retardation. Mol Cell 24: 713-722.
    • (2006) Mol Cell , vol.24 , pp. 713-722
    • Jiao, X.1    Wang, Z.2    Kiledjian, M.3
  • 47
    • 52949146385 scopus 로고    scopus 로고
    • The C-terminal region of Ge-1 presents conserved structural features required for P-body localization
    • Jínek M., Eulalio A, Lingel A, Helms S, Conti E, Izaurralde E. 2008. The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. RNA 14: 1991-1998.
    • (2008) RNA , vol.14 , pp. 1991-1998
    • Jínek, M.1    Eulalio, A.2    Lingel, A.3    Helms, S.4    Conti, E.5    Izaurralde, E.6
  • 48
    • 79951969817 scopus 로고    scopus 로고
    • Coupled 59 nucleotide recognition and processivity in Xrn1-mediated mRNA decay
    • Jínek M., Coyle SM, Doudna JA. 2011. Coupled 59 nucleotide recognition and processivity in Xrn1-mediated mRNA decay. Mol Cell 41: 600-608.
    • (2011) Mol Cell , vol.41 , pp. 600-608
    • Jínek, M.1    Coyle, S.M.2    Doudna, J.A.3
  • 49
    • 84860872161 scopus 로고    scopus 로고
    • Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels
    • Kato M., Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith E. J, Longgood J, Pei J, et al. 2012. Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels. Cell 149: 753-767.
    • (2012) Cell , vol.149 , pp. 753-767
    • Kato, M.1    Han, T.W.2    Xie, S.3    Shi, K.4    Du, X.5    Wu, L.C.6    Mirzaei, H.7    Goldsmith, E.J.8    Longgood, J.9    Pei, J.10
  • 51
    • 84890015775 scopus 로고    scopus 로고
    • Identification of the Rps28 binding motif from yeast Edc3 involved in the autoregulatory feedback loop controlling RPS28B mRNA decay
    • Kolesnikova O., Back R, Graille M, Séraphin B. 2013. Identification of the Rps28 binding motif from yeast Edc3 involved in the autoregulatory feedback loop controlling RPS28B mRNA decay. Nucleic Acids Res 41: 9514-9523.
    • (2013) Nucleic Acids Res , vol.41 , pp. 9514-9523
    • Kolesnikova, O.1    Back, R.2    Graille, M.3    Séraphin, B.4
  • 52
    • 1642343366 scopus 로고    scopus 로고
    • Identification of Edc3p as an enhancer of mRNA decapping in Saccharomyces cerevisiae
    • Kshirsagar M., Parker R. 2004. Identification of Edc3p as an enhancer of mRNA decapping in Saccharomyces cerevisiae. Genetics 166: 729-739.
    • (2004) Genetics , vol.166 , pp. 729-739
    • Kshirsagar, M.1    Parker, R.2
  • 53
    • 84870553285 scopus 로고    scopus 로고
    • Structural basis of the PNRC2-mediated link between mRNA surveillance and decapping
    • Lai T., Cho H, Liu Z, BowlerMW, Piao S, Parker R, Kim YK, Song H. 2012. Structural basis of the PNRC2-mediated link between mRNA surveillance and decapping. Structure 20: 2025-2037.
    • (2012) Structure , vol.20 , pp. 2025-2037
    • Lai, T.1    Cho, H.2    Liu, Z.3    Bowler, M.W.4    Piao, S.5    Parker, R.6    Kim, Y.K.7    Song, H.8
  • 54
    • 33845295461 scopus 로고    scopus 로고
    • Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules
    • Leung A. K, Calabrese JM, Sharp PA. 2006. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci 103: 18125-18130.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 18125-18130
    • Leung, A.K.1    Calabrese, J.M.2    Sharp, P.A.3
  • 55
    • 79957601559 scopus 로고    scopus 로고
    • Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis
    • Leung A. KW, Nagai K, Li J. 2011. Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature 473: 536-539.
    • (2011) Nature , vol.473 , pp. 536-539
    • Leung, A.K.W.1    Nagai, K.2    Li, J.3
  • 57
    • 33646032358 scopus 로고    scopus 로고
    • Bent out of shape: RNA unwinding by the DEAD-box helicase Vasa
    • Linder P., Lasko P. 2006. Bent out of shape: RNA unwinding by the DEAD-box helicase Vasa. Cell 125: 219-221.
    • (2006) Cell , vol.125 , pp. 219-221
    • Linder, P.1    Lasko, P.2
  • 59
    • 0036888905 scopus 로고    scopus 로고
    • Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay
    • Lykke-Andersen J. 2002. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22: 8114-8121.
    • (2002) Mol Cell Biol , vol.22 , pp. 8114-8121
    • Lykke-Andersen, J.1
  • 60
    • 84876337618 scopus 로고    scopus 로고
    • Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse
    • Ma J., Flemr M, Strnad H, Svoboda P, Schultz RM. 2013. Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse. Biol Reprod 88: 11.
    • (2013) Biol Reprod , vol.88 , pp. 11
    • Ma, J.1    Flemr, M.2    Strnad, H.3    Svoboda, P.4    Schultz, R.M.5
  • 62
    • 0027932513 scopus 로고
    • Premature translational termination triggers mRNA decapping
    • Muhlrad D., Parker R. 1994. Premature translational termination triggers mRNA decapping. Nature 370: 578-581.
    • (1994) Nature , vol.370 , pp. 578-581
    • Muhlrad, D.1    Parker, R.2
  • 63
    • 84866951989 scopus 로고    scopus 로고
    • Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability
    • Mukherjee C., Patil DP, Kennedy BA, Bakthavachalu B, Bundschuh R, Schoenberg DR. 2012. Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability. Cell Rep 2: 674-684.
    • (2012) Cell Rep , vol.2 , pp. 674-684
    • Mukherjee, C.1    Patil, D.P.2    Kennedy, B.A.3    Bakthavachalu, B.4    Bundschuh, R.5    Schoenberg, D.R.6
  • 64
    • 84885911691 scopus 로고    scopus 로고
    • MiRISC recruits decapping factors to miRNA targets to enhance their degradation
    • Nishihara T., Zekri L, Braun JE, Izaurralde E. 2013. miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res 41: 8692-8705.
    • (2013) Nucleic Acids Res , vol.41 , pp. 8692-8705
    • Nishihara, T.1    Zekri, L.2    Braun, J.E.3    Izaurralde, E.4
  • 65
    • 77956540817 scopus 로고    scopus 로고
    • Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms
    • Nissan T., Rajyaguru P, She M, Song H, Parker R. 2010. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 39: 773-783.
    • (2010) Mol Cell , vol.39 , pp. 773-783
    • Nissan, T.1    Rajyaguru, P.2    She, M.3    Song, H.4    Parker, R.5
  • 66
    • 77956642517 scopus 로고    scopus 로고
    • Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies
    • Ozgur S., Chekulaeva M, Stoecklin G. 2010. Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Mol Cell Biol 30: 4308-4323.
    • (2010) Mol Cell Biol , vol.30 , pp. 4308-4323
    • Ozgur, S.1    Chekulaeva, M.2    Stoecklin, G.3
  • 67
    • 33847417585 scopus 로고    scopus 로고
    • P bodies and the control of mRNA translation and degradation
    • Parker R., Sheth U. 2007. P bodies and the control of mRNA translation and degradation. Mol Cell 25: 635-646.
    • (2007) Mol Cell , vol.25 , pp. 635-646
    • Parker, R.1    Sheth, U.2
  • 68
    • 38949151861 scopus 로고    scopus 로고
    • Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping
    • Pilkington G. R, Parker R. 2008. Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping. Mol Cell Biol 28: 1298-1312.
    • (2008) Mol Cell Biol , vol.28 , pp. 1298-1312
    • Pilkington, G.R.1    Parker, R.2
  • 69
    • 84856270385 scopus 로고    scopus 로고
    • Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4Gbinding proteins
    • Rajyaguru P., She M, Parker R. 2012. Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4Gbinding proteins. Mol Cell 45: 244-254.
    • (2012) Mol Cell , vol.45 , pp. 244-254
    • Rajyaguru, P.1    She, M.2    Parker, R.3
  • 71
    • 84887017746 scopus 로고    scopus 로고
    • Architecture of the Lsm1-7-Pat1 complex: A conserved assembly in eukaryotic mRNA turnover
    • Sharif H., Conti E. 2013. Architecture of the Lsm1-7-Pat1 complex: A conserved assembly in eukaryotic mRNA turnover. Cell Rep 5: 283-291.
    • (2013) Cell Rep , vol.5 , pp. 283-291
    • Sharif, H.1    Conti, E.2
  • 72
    • 84884971938 scopus 로고    scopus 로고
    • Structural analysis of the yeast Dhh1-Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions
    • Sharif H., Ozgur S, Sharma K, Basquin C, Urlaub H, Conti E. 2013. Structural analysis of the yeast Dhh1-Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions. Nucleic Acids Res 41: 8377-8390.
    • (2013) Nucleic Acids Res , vol.41 , pp. 8377-8390
    • Sharif, H.1    Ozgur, S.2    Sharma, K.3    Basquin, C.4    Urlaub, H.5    Conti, E.6
  • 74
    • 30044439885 scopus 로고    scopus 로고
    • Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe
    • She M., Decker CJ, Chen N, Tumati S, Parker R, Song H. 2006. Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe. Nat Struct Mol Biol 13: 63-70.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 63-70
    • She, M.1    Decker, C.J.2    Chen, N.3    Tumati, S.4    Parker, R.5    Song, H.6
  • 76
    • 33646200678 scopus 로고    scopus 로고
    • ARE-mRNA degradation requires the 59-39 decay pathway
    • Stoecklin G., Mayo T, Anderson P. 2006. ARE-mRNA degradation requires the 59-39 decay pathway. EMBO Rep 7: 72-77.
    • (2006) EMBO Rep , vol.7 , pp. 72-77
    • Stoecklin, G.1    Mayo, T.2    Anderson, P.3
  • 77
    • 84863688029 scopus 로고    scopus 로고
    • The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement
    • Sweet T., Kovalak C, Coller J. 2012. The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement. PLoS Biol 10: e1001342.
    • (2012) PLoS Biol , vol.10
    • Sweet, T.1    Kovalak, C.2    Coller, J.3
  • 78
  • 80
    • 0035930337 scopus 로고    scopus 로고
    • Targeting an mRNA for decapping: Displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs
    • Tharun S., Parker R. 2001. Targeting an mRNA for decapping: Displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol Cell 8: 1075-1083.
    • (2001) Mol Cell , vol.8 , pp. 1075-1083
    • Tharun, S.1    Parker, R.2
  • 82
    • 84870057622 scopus 로고    scopus 로고
    • Intrinsically disordered proteins: A 10-year recap
    • Tompa P. 2012. Intrinsically disordered proteins: A 10-year recap. Trends Biochem Sci 37: 509-516.
    • (2012) Trends Biochem Sci , vol.37 , pp. 509-516
    • Tompa, P.1
  • 86
    • 61649102918 scopus 로고    scopus 로고
    • Structural basis for the mutually exclusive anchoring of P body components EDC3 and Tral to the DEAD box protein DDX6/Me31B
    • Tritschler F., Braun JE, Eulalio A, Truffault V, Izaurralde E, Weichenrieder O. 2009b. Structural basis for the mutually exclusive anchoring of P body components EDC3 and Tral to the DEAD box protein DDX6/Me31B. Mol Cell 33: 661-668.
    • (2009) Mol Cell , vol.33 , pp. 661-668
    • Tritschler, F.1    Braun, J.E.2    Eulalio, A.3    Truffault, V.4    Izaurralde, E.5    Weichenrieder, O.6
  • 87
    • 0037121926 scopus 로고    scopus 로고
    • Human Dcp2: A catalytically active mRNA decapping enzyme located in specific cytoplasmic structures
    • van Dijk E., Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B. 2002. Human Dcp2: A catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21: 6915-6924.
    • (2002) EMBO J , vol.21 , pp. 6915-6924
    • van Dijk, E.1    Cougot, N.2    Meyer, S.3    Babajko, S.4    Wahle, E.5    Seraphin, B.6
  • 89
    • 84874729088 scopus 로고    scopus 로고
    • Pdc1 functions in the assembly of P bodies in Schizosaccharomyces pombe
    • Wang C. Y, Chen WL, Wang SW. 2013. Pdc1 functions in the assembly of P bodies in Schizosaccharomyces pombe. Mol Cell Biol 33: 1244-1253.
    • (2013) Mol Cell Biol , vol.33 , pp. 1244-1253
    • Wang, C.Y.1    Chen, W.L.2    Wang, S.W.3
  • 90
    • 84861964894 scopus 로고    scopus 로고
    • Getting RNA and protein in phase
    • Weber S. C, Brangwynne CP. 2012. Getting RNA and protein in phase. Cell 149: 1188-1191.
    • (2012) Cell , vol.149 , pp. 1188-1191
    • Weber, S.C.1    Brangwynne, C.P.2
  • 91
    • 27644538815 scopus 로고    scopus 로고
    • Efficient protein trafficking requires trailer hitch, a component of a ribonucleoprotein complex localized to the ER in Drosophila
    • Wilhelm J. E, Buszczak M, Sayles S. 2005. Efficient protein trafficking requires trailer hitch, a component of a ribonucleoprotein complex localized to the ER in Drosophila. Dev Cell 9: 675-685.
    • (2005) Dev Cell , vol.9 , pp. 675-685
    • Wilhelm, J.E.1    Buszczak, M.2    Sayles, S.3
  • 92
    • 0028097921 scopus 로고
    • The structure and function of prolinerich regions in proteins
    • Williamson M.P. 1994. The structure and function of prolinerich regions in proteins. Biochem J 297: 249-260.
    • (1994) Biochem J , vol.297 , pp. 249-260
    • Williamson, M.P.1
  • 93
    • 28544442127 scopus 로고    scopus 로고
    • Eukaryotic Lsm proteins: Lessons from bacteria
    • Wilusz C. J, Wilusz J. 2005. Eukaryotic Lsm proteins: Lessons from bacteria. Nat Struct Mol Biol 12: 1031-1036.
    • (2005) Nat Struct Mol Biol , vol.12 , pp. 1031-1036
    • Wilusz, C.J.1    Wilusz, J.2
  • 94
    • 84862781269 scopus 로고    scopus 로고
    • Dehydration stress activates Arabidopsis MPK6 to signal DCP1 phosphorylation
    • Xu J., Chua NH. 2012. Dehydration stress activates Arabidopsis MPK6 to signal DCP1 phosphorylation. EMBO J 31: 1975-1984.
    • (2012) EMBO J , vol.31 , pp. 1975-1984
    • Xu, J.1    Chua, N.H.2
  • 95
    • 33947540895 scopus 로고    scopus 로고
    • Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development
    • Xu J., Yang JY, Niu QW, Chua NH. 2006. Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18: 3386-3398.
    • (2006) Plant Cell , vol.18 , pp. 3386-3398
    • Xu, J.1    Yang, J.Y.2    Niu, Q.W.3    Chua, N.H.4
  • 96
    • 33645465546 scopus 로고    scopus 로고
    • RNAassociated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules
    • Yang W. H, Yu JH, Gulick T, Bloch KD, Bloch DB. 2006. RNAassociated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules. RNA 12: 547-554.
    • (2006) RNA , vol.12 , pp. 547-554
    • Yang, W.H.1    Yu, J.H.2    Gulick, T.3    Bloch, K.D.4    Bloch, D.B.5
  • 97
    • 77953157170 scopus 로고    scopus 로고
    • Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae
    • Yoon J. H, Choi EJ, Parker R. 2010. Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae. J Cell Biol 189: 813-827.
    • (2010) J Cell Biol , vol.189 , pp. 813-827
    • Yoon, J.H.1    Choi, E.J.2    Parker, R.3
  • 98
    • 28344456221 scopus 로고    scopus 로고
    • Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body
    • Yu J. H, Yang WH, Gulick T, Bloch KD, Bloch DB. 2005. Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11: 1795-1802.
    • (2005) RNA , vol.11 , pp. 1795-1802
    • Yu, J.H.1    Yang, W.H.2    Gulick, T.3    Bloch, K.D.4    Bloch, D.B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.