-
1
-
-
40849108663
-
Selective blockade of microRNA processing by Lin28
-
Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97-100 (2008).
-
(2008)
Science
, vol.320
, pp. 97-100
-
-
Viswanathan, S.R.1
Daley, G.Q.2
Gregory, R.I.3
-
2
-
-
53949088050
-
Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA
-
Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell 32, 276-284 (2008).
-
(2008)
Mol. Cell
, vol.32
, pp. 276-284
-
-
Heo, I.1
-
3
-
-
48649103982
-
A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment
-
Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol. 10, 987-993 (2008).
-
(2008)
Nature Cell Biol.
, vol.10
, pp. 987-993
-
-
Rybak, A.1
-
4
-
-
47949100595
-
Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing
-
Newman, M. A., Thomson, J. M.&Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539-1549 (2008).
-
(2008)
RNA
, vol.14
, pp. 1539-1549
-
-
Newman, M.A.1
Thomson, J.M.2
Hammond, S.M.3
-
5
-
-
84865589321
-
How does Lin28 let-7 control development and disease?
-
Thornton, J. E. & Gregory, R. I. How does Lin28 let-7 control development and disease? Trends Cell Biol. 22, 474-482 (2012).
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 474-482
-
-
Thornton, J.E.1
Gregory, R.I.2
-
6
-
-
80053481600
-
The Lin28/let-7 axis regulates glucose metabolism
-
Zhu, H. et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 147, 81-94 (2011).
-
(2011)
Cell
, vol.147
, pp. 81-94
-
-
Zhu, H.1
-
7
-
-
84887984423
-
Lin28 enhances tissue repair by reprogramming cellular metabolism
-
Shyh-Chang, N. et al. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155, 778-792 (2013).
-
(2013)
Cell
, vol.155
, pp. 778-792
-
-
Shyh-Chang, N.1
-
8
-
-
84899740983
-
Lin28 sustains early renal progenitors and induces Wilms tumor
-
Urbach, A. et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 28, 971-982 (2014).
-
(2014)
Genes Dev.
, vol.28
, pp. 971-982
-
-
Urbach, A.1
-
9
-
-
81855228621
-
Molecular basis for interaction of let-7 microRNAs with Lin28
-
Nam, Y., Chen, C., Gregory, R. I., Chou, J. J. & Sliz, P. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147, 1080-1091 (2011).
-
(2011)
Cell
, vol.147
, pp. 1080-1091
-
-
Nam, Y.1
Chen, C.2
Gregory, R.I.3
Chou, J.J.4
Sliz, P.5
-
10
-
-
70349820140
-
Lin28 recruits the TUTase Zcchc11 to inhibit let-7maturation inmouseembryonic stemcells
-
Hagan, J. P., Piskounova, E. & Gregory, R. I. Lin28 recruits the TUTase Zcchc11 to inhibit let-7maturation inmouseembryonic stemcells. Nature Struct. Mol. Biol. 16, 1021-1025 (2009).
-
(2009)
Nature Struct. Mol. Biol.
, vol.16
, pp. 1021-1025
-
-
Hagan, J.P.1
Piskounova, E.2
Gregory, R.I.3
-
11
-
-
68749102148
-
TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation
-
Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696-708 (2009).
-
(2009)
Cell
, vol.138
, pp. 696-708
-
-
Heo, I.1
-
12
-
-
84866597456
-
Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7)
-
Thornton, J. E., Chang, H. M., Piskounova, E. & Gregory, R. I. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA 18, 1875-1885 (2012).
-
(2012)
RNA
, vol.18
, pp. 1875-1885
-
-
Thornton, J.E.1
Chang, H.M.2
Piskounova, E.3
Gregory, R.I.4
-
13
-
-
84877757514
-
A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway
-
Chang, H. M., Triboulet, R., Thornton, J. E. & Gregory, R. I. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature 497, 244-248 (2013).
-
(2013)
Nature
, vol.497
, pp. 244-248
-
-
Chang, H.M.1
Triboulet, R.2
Thornton, J.E.3
Gregory, R.I.4
-
14
-
-
84888419614
-
Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs
-
Ustianenko, D. et al. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19, 1632-1638 (2013).
-
(2013)
RNA
, vol.19
, pp. 1632-1638
-
-
Ustianenko, D.1
-
15
-
-
33845407784
-
Reconstitution, activities, and structure of the eukaryotic RNA exosome
-
Liu, Q., Greimann, J. C. & Lima, C. D. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127, 1223-1237 (2006).
-
(2006)
Cell
, vol.127
, pp. 1223-1237
-
-
Liu, Q.1
Greimann, J.C.2
Lima, C.D.3
-
16
-
-
33846068920
-
A single subunit, Dis3, is essentially responsible for yeast exosome core activity
-
Dziembowski, A., Lorentzen, E., Conti, E. & Seraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nature Struct. Mol. Biol. 14, 15-22 (2007).
-
(2007)
Nature Struct. Mol. Biol.
, vol.14
, pp. 15-22
-
-
Dziembowski, A.1
Lorentzen, E.2
Conti, E.3
Seraphin, B.4
-
17
-
-
77954877566
-
The human core exosome interacts with differentially localized processive RNases: HDIS3 and hDIS3L
-
Tomecki, R. et al. The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J. 29, 2342-2357 (2010).
-
(2010)
EMBO J.
, vol.29
, pp. 2342-2357
-
-
Tomecki, R.1
-
18
-
-
84857644144
-
Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility
-
Astuti, D. et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nature Genet. 44, 277-284 (2012).
-
(2012)
Nature Genet.
, vol.44
, pp. 277-284
-
-
Astuti, D.1
-
19
-
-
84880245419
-
The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway
-
Malecki, M. et al. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J. 32, 1842-1854 (2013).
-
(2013)
EMBO J.
, vol.32
, pp. 1842-1854
-
-
Malecki, M.1
-
20
-
-
84880224541
-
Exonuclease hDIS3L2 specifies an exosome-independent 3′-5′ degradation pathway of human cytoplasmic mRNA
-
Lubas, M. et al. Exonuclease hDIS3L2 specifies an exosome-independent 3′-5′ degradation pathway of human cytoplasmic mRNA. EMBO J. 32, 1855-1868 (2013).
-
(2013)
EMBO J.
, vol.32
, pp. 1855-1868
-
-
Lubas, M.1
-
21
-
-
84896405087
-
TAIL-seq: Genome-wide determination of poly(A) tail length and 3′ end modifications
-
Chang, H., Lim, J., Ha, M. & Kim, V. N. TAIL-seq: Genome-wide determination of poly(A) tail length and 3′ end modifications. Mol. Cell 53, 1044-1052 (2014).
-
(2014)
Mol. Cell
, vol.53
, pp. 1044-1052
-
-
Chang, H.1
Lim, J.2
Ha, M.3
Kim, V.N.4
-
22
-
-
84857379318
-
Widespread RNA 3′-end oligouridylation in mammals
-
Choi, Y. S., Patena, W., Leavitt, A. D. & McManus, M. T. Widespread RNA 3′-end oligouridylation in mammals. RNA 18, 394-401 (2012).
-
(2012)
RNA
, vol.18
, pp. 394-401
-
-
Choi, Y.S.1
Patena, W.2
Leavitt, A.D.3
McManus, M.T.4
-
23
-
-
40849106786
-
Structure of the active subunit of the yeast exosome core, Rrp44: Diverse modes of substrate recruitment in the RNase II nuclease family
-
Lorentzen, E., Basquin, J., Tomecki, R., Dziembowski, A. & Conti, E. Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Mol. Cell 29, 717-728 (2008).
-
(2008)
Mol. Cell
, vol.29
, pp. 717-728
-
-
Lorentzen, E.1
Basquin, J.2
Tomecki, R.3
Dziembowski, A.4
Conti, E.5
-
24
-
-
84874742223
-
Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex
-
Makino, D. L., Baumgartner, M. & Conti, E. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 495, 70-75 (2013).
-
(2013)
Nature
, vol.495
, pp. 70-75
-
-
Makino, D.L.1
Baumgartner, M.2
Conti, E.3
-
25
-
-
70350336247
-
The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation
-
Bonneau, F., Basquin, J., Ebert, J., Lorentzen, E. & Conti, E. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139, 547-559 (2009).
-
(2009)
Cell
, vol.139
, pp. 547-559
-
-
Bonneau, F.1
Basquin, J.2
Ebert, J.3
Lorentzen, E.4
Conti, E.5
-
26
-
-
33748414894
-
Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex
-
Frazão, C. et al. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature 443, 110-114 (2006).
-
(2006)
Nature
, vol.443
, pp. 110-114
-
-
Frazão, C.1
-
27
-
-
68949127239
-
Determination of key residues for catalysis and RNA cleavage specificity: One mutation turns RNase II into a "SUPER-ENZYME"
-
Barbas, A. et al. Determination of key residues for catalysis and RNA cleavage specificity: one mutation turns RNase II into a "SUPER-ENZYME". J. Biol. Chem. 284, 20486-20498 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 20486-20498
-
-
Barbas, A.1
-
28
-
-
84893157627
-
Modulating the RNA processing anddecay by the exosome: Altering Rrp44/Dis3 activity and end-product
-
Reis, F. P. et al. Modulating the RNA processing anddecay by the exosome: altering Rrp44/Dis3 activity and end-product. PLoS ONE 8, e76504 (2013).
-
(2013)
PLoS ONE
, vol.8
, pp. e76504
-
-
Reis, F.P.1
-
29
-
-
39049131090
-
RNA chaperones, RNA annealers and RNA helicases
-
Rajkowitsch, L. et al. RNA chaperones, RNA annealers and RNA helicases. RNA Biol. 4, 118-130 (2007).
-
(2007)
RNA Biol.
, vol.4
, pp. 118-130
-
-
Rajkowitsch, L.1
|