메뉴 건너뛰기




Volumn 514, Issue 7521, 2014, Pages 252-256

Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway

Author keywords

[No Author keywords available]

Indexed keywords

DIS3 PROTEIN, S POMBE; DIS3L2 PROTEIN, MOUSE; EXORIBONUCLEASE; EXOSOME MULTIENZYME RIBONUCLEASE COMPLEX; LIN 28 PROTEIN, MOUSE; LIN-28 PROTEIN, MOUSE; MICRORNA; MIRNLET7 MICRORNA, MOUSE; OLIGO(U); OLIGORIBONUCLEOTIDE; PYRIMIDINE NUCLEOTIDE; RNA BINDING PROTEIN; SCHIZOSACCHAROMYCES POMBE PROTEIN;

EID: 84908311054     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature13553     Document Type: Article
Times cited : (104)

References (29)
  • 1
    • 40849108663 scopus 로고    scopus 로고
    • Selective blockade of microRNA processing by Lin28
    • Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97-100 (2008).
    • (2008) Science , vol.320 , pp. 97-100
    • Viswanathan, S.R.1    Daley, G.Q.2    Gregory, R.I.3
  • 2
    • 53949088050 scopus 로고    scopus 로고
    • Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA
    • Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell 32, 276-284 (2008).
    • (2008) Mol. Cell , vol.32 , pp. 276-284
    • Heo, I.1
  • 3
    • 48649103982 scopus 로고    scopus 로고
    • A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment
    • Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol. 10, 987-993 (2008).
    • (2008) Nature Cell Biol. , vol.10 , pp. 987-993
    • Rybak, A.1
  • 4
    • 47949100595 scopus 로고    scopus 로고
    • Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing
    • Newman, M. A., Thomson, J. M.&Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539-1549 (2008).
    • (2008) RNA , vol.14 , pp. 1539-1549
    • Newman, M.A.1    Thomson, J.M.2    Hammond, S.M.3
  • 5
    • 84865589321 scopus 로고    scopus 로고
    • How does Lin28 let-7 control development and disease?
    • Thornton, J. E. & Gregory, R. I. How does Lin28 let-7 control development and disease? Trends Cell Biol. 22, 474-482 (2012).
    • (2012) Trends Cell Biol. , vol.22 , pp. 474-482
    • Thornton, J.E.1    Gregory, R.I.2
  • 6
    • 80053481600 scopus 로고    scopus 로고
    • The Lin28/let-7 axis regulates glucose metabolism
    • Zhu, H. et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 147, 81-94 (2011).
    • (2011) Cell , vol.147 , pp. 81-94
    • Zhu, H.1
  • 7
    • 84887984423 scopus 로고    scopus 로고
    • Lin28 enhances tissue repair by reprogramming cellular metabolism
    • Shyh-Chang, N. et al. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155, 778-792 (2013).
    • (2013) Cell , vol.155 , pp. 778-792
    • Shyh-Chang, N.1
  • 8
    • 84899740983 scopus 로고    scopus 로고
    • Lin28 sustains early renal progenitors and induces Wilms tumor
    • Urbach, A. et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 28, 971-982 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 971-982
    • Urbach, A.1
  • 9
    • 81855228621 scopus 로고    scopus 로고
    • Molecular basis for interaction of let-7 microRNAs with Lin28
    • Nam, Y., Chen, C., Gregory, R. I., Chou, J. J. & Sliz, P. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147, 1080-1091 (2011).
    • (2011) Cell , vol.147 , pp. 1080-1091
    • Nam, Y.1    Chen, C.2    Gregory, R.I.3    Chou, J.J.4    Sliz, P.5
  • 10
    • 70349820140 scopus 로고    scopus 로고
    • Lin28 recruits the TUTase Zcchc11 to inhibit let-7maturation inmouseembryonic stemcells
    • Hagan, J. P., Piskounova, E. & Gregory, R. I. Lin28 recruits the TUTase Zcchc11 to inhibit let-7maturation inmouseembryonic stemcells. Nature Struct. Mol. Biol. 16, 1021-1025 (2009).
    • (2009) Nature Struct. Mol. Biol. , vol.16 , pp. 1021-1025
    • Hagan, J.P.1    Piskounova, E.2    Gregory, R.I.3
  • 11
    • 68749102148 scopus 로고    scopus 로고
    • TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation
    • Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696-708 (2009).
    • (2009) Cell , vol.138 , pp. 696-708
    • Heo, I.1
  • 12
    • 84866597456 scopus 로고    scopus 로고
    • Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7)
    • Thornton, J. E., Chang, H. M., Piskounova, E. & Gregory, R. I. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA 18, 1875-1885 (2012).
    • (2012) RNA , vol.18 , pp. 1875-1885
    • Thornton, J.E.1    Chang, H.M.2    Piskounova, E.3    Gregory, R.I.4
  • 13
    • 84877757514 scopus 로고    scopus 로고
    • A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway
    • Chang, H. M., Triboulet, R., Thornton, J. E. & Gregory, R. I. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature 497, 244-248 (2013).
    • (2013) Nature , vol.497 , pp. 244-248
    • Chang, H.M.1    Triboulet, R.2    Thornton, J.E.3    Gregory, R.I.4
  • 14
    • 84888419614 scopus 로고    scopus 로고
    • Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs
    • Ustianenko, D. et al. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19, 1632-1638 (2013).
    • (2013) RNA , vol.19 , pp. 1632-1638
    • Ustianenko, D.1
  • 15
    • 33845407784 scopus 로고    scopus 로고
    • Reconstitution, activities, and structure of the eukaryotic RNA exosome
    • Liu, Q., Greimann, J. C. & Lima, C. D. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127, 1223-1237 (2006).
    • (2006) Cell , vol.127 , pp. 1223-1237
    • Liu, Q.1    Greimann, J.C.2    Lima, C.D.3
  • 16
    • 33846068920 scopus 로고    scopus 로고
    • A single subunit, Dis3, is essentially responsible for yeast exosome core activity
    • Dziembowski, A., Lorentzen, E., Conti, E. & Seraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nature Struct. Mol. Biol. 14, 15-22 (2007).
    • (2007) Nature Struct. Mol. Biol. , vol.14 , pp. 15-22
    • Dziembowski, A.1    Lorentzen, E.2    Conti, E.3    Seraphin, B.4
  • 17
    • 77954877566 scopus 로고    scopus 로고
    • The human core exosome interacts with differentially localized processive RNases: HDIS3 and hDIS3L
    • Tomecki, R. et al. The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J. 29, 2342-2357 (2010).
    • (2010) EMBO J. , vol.29 , pp. 2342-2357
    • Tomecki, R.1
  • 18
    • 84857644144 scopus 로고    scopus 로고
    • Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility
    • Astuti, D. et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nature Genet. 44, 277-284 (2012).
    • (2012) Nature Genet. , vol.44 , pp. 277-284
    • Astuti, D.1
  • 19
    • 84880245419 scopus 로고    scopus 로고
    • The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway
    • Malecki, M. et al. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J. 32, 1842-1854 (2013).
    • (2013) EMBO J. , vol.32 , pp. 1842-1854
    • Malecki, M.1
  • 20
    • 84880224541 scopus 로고    scopus 로고
    • Exonuclease hDIS3L2 specifies an exosome-independent 3′-5′ degradation pathway of human cytoplasmic mRNA
    • Lubas, M. et al. Exonuclease hDIS3L2 specifies an exosome-independent 3′-5′ degradation pathway of human cytoplasmic mRNA. EMBO J. 32, 1855-1868 (2013).
    • (2013) EMBO J. , vol.32 , pp. 1855-1868
    • Lubas, M.1
  • 21
    • 84896405087 scopus 로고    scopus 로고
    • TAIL-seq: Genome-wide determination of poly(A) tail length and 3′ end modifications
    • Chang, H., Lim, J., Ha, M. & Kim, V. N. TAIL-seq: Genome-wide determination of poly(A) tail length and 3′ end modifications. Mol. Cell 53, 1044-1052 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 1044-1052
    • Chang, H.1    Lim, J.2    Ha, M.3    Kim, V.N.4
  • 22
    • 84857379318 scopus 로고    scopus 로고
    • Widespread RNA 3′-end oligouridylation in mammals
    • Choi, Y. S., Patena, W., Leavitt, A. D. & McManus, M. T. Widespread RNA 3′-end oligouridylation in mammals. RNA 18, 394-401 (2012).
    • (2012) RNA , vol.18 , pp. 394-401
    • Choi, Y.S.1    Patena, W.2    Leavitt, A.D.3    McManus, M.T.4
  • 23
    • 40849106786 scopus 로고    scopus 로고
    • Structure of the active subunit of the yeast exosome core, Rrp44: Diverse modes of substrate recruitment in the RNase II nuclease family
    • Lorentzen, E., Basquin, J., Tomecki, R., Dziembowski, A. & Conti, E. Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Mol. Cell 29, 717-728 (2008).
    • (2008) Mol. Cell , vol.29 , pp. 717-728
    • Lorentzen, E.1    Basquin, J.2    Tomecki, R.3    Dziembowski, A.4    Conti, E.5
  • 24
    • 84874742223 scopus 로고    scopus 로고
    • Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex
    • Makino, D. L., Baumgartner, M. & Conti, E. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 495, 70-75 (2013).
    • (2013) Nature , vol.495 , pp. 70-75
    • Makino, D.L.1    Baumgartner, M.2    Conti, E.3
  • 25
    • 70350336247 scopus 로고    scopus 로고
    • The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation
    • Bonneau, F., Basquin, J., Ebert, J., Lorentzen, E. & Conti, E. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139, 547-559 (2009).
    • (2009) Cell , vol.139 , pp. 547-559
    • Bonneau, F.1    Basquin, J.2    Ebert, J.3    Lorentzen, E.4    Conti, E.5
  • 26
    • 33748414894 scopus 로고    scopus 로고
    • Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex
    • Frazão, C. et al. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature 443, 110-114 (2006).
    • (2006) Nature , vol.443 , pp. 110-114
    • Frazão, C.1
  • 27
    • 68949127239 scopus 로고    scopus 로고
    • Determination of key residues for catalysis and RNA cleavage specificity: One mutation turns RNase II into a "SUPER-ENZYME"
    • Barbas, A. et al. Determination of key residues for catalysis and RNA cleavage specificity: one mutation turns RNase II into a "SUPER-ENZYME". J. Biol. Chem. 284, 20486-20498 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 20486-20498
    • Barbas, A.1
  • 28
    • 84893157627 scopus 로고    scopus 로고
    • Modulating the RNA processing anddecay by the exosome: Altering Rrp44/Dis3 activity and end-product
    • Reis, F. P. et al. Modulating the RNA processing anddecay by the exosome: altering Rrp44/Dis3 activity and end-product. PLoS ONE 8, e76504 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e76504
    • Reis, F.P.1
  • 29
    • 39049131090 scopus 로고    scopus 로고
    • RNA chaperones, RNA annealers and RNA helicases
    • Rajkowitsch, L. et al. RNA chaperones, RNA annealers and RNA helicases. RNA Biol. 4, 118-130 (2007).
    • (2007) RNA Biol. , vol.4 , pp. 118-130
    • Rajkowitsch, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.