메뉴 건너뛰기




Volumn 12, Issue 5, 2016, Pages 311-316

Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome

Author keywords

[No Author keywords available]

Indexed keywords

1 METHYLADENOSINE; 1 N METHYLADENOSINE METHYLOME; 6 N METHYLADENOSINE; MESSENGER RNA; METHYLTRANSFERASE; PROTEIN ALKBH3; RIBOSOME RNA; TRANSCRIPTOME; UNCLASSIFIED DRUG; UNTRANSLATED RNA; 1-METHYLADENOSINE; ADENOSINE; ALKBH3 PROTEIN, HUMAN; ANTIBODY; DIOXYGENASE; DNA LIGASE;

EID: 84957828213     PISSN: 15524450     EISSN: 15524469     Source Type: Journal    
DOI: 10.1038/nchembio.2040     Document Type: Article
Times cited : (500)

References (49)
  • 1
    • 84875692043 scopus 로고    scopus 로고
    • MODOMICS: A database of RNA modification pathways - 2013 update
    • Machnicka, M.A. et al. MODOMICS: a database of RNA modification pathways - 2013 update. Nucleic Acids Res. 41, D262-D267 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. D262-D267
    • Machnicka, M.A.1
  • 2
    • 23644456550 scopus 로고    scopus 로고
    • The bipartite structure of the tRNA m1A58 methyltransferase from S. Cerevisiae is conserved in humans
    • Ozanick, S., Krecic, A., Andersland, J. & Anderson, J.T. The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans. RNA 11, 1281-1290 (2005).
    • (2005) RNA , vol.11 , pp. 1281-1290
    • Ozanick, S.1    Krecic, A.2    Andersland, J.3    Anderson, J.T.4
  • 3
    • 84869768792 scopus 로고    scopus 로고
    • Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs
    • Chujo, T. & Suzuki, T. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA 18, 2269-2276 (2012).
    • (2012) RNA , vol.18 , pp. 2269-2276
    • Chujo, T.1    Suzuki, T.2
  • 4
    • 0018425441 scopus 로고
    • Crystal structure of a eukaryotic initiator tRNA
    • Schevitz, R.W. et al. Crystal structure of a eukaryotic initiator tRNA. Nature 278, 188-190 (1979).
    • (1979) Nature , vol.278 , pp. 188-190
    • Schevitz, R.W.1
  • 5
    • 77953643795 scopus 로고    scopus 로고
    • Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs
    • Saikia, M., Fu, Y., Pavon-Eternod, M., He, C. & Pan, T. Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs. RNA 16, 1317-1327 (2010).
    • (2010) RNA , vol.16 , pp. 1317-1327
    • Saikia, M.1    Fu, Y.2    Pavon-Eternod, M.3    He, C.4    Pan, T.5
  • 6
    • 0032052242 scopus 로고    scopus 로고
    • The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA
    • Helm, M. et al. The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res. 26, 1636-1643 (1998).
    • (1998) Nucleic Acids Res. , vol.26 , pp. 1636-1643
    • Helm, M.1
  • 7
    • 58149191272 scopus 로고    scopus 로고
    • TRNAdb 2009: Compilation of tRNA sequences and tRNA genes
    • Jühling, F. et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 37, D159-D162 (2009).
    • (2009) Nucleic Acids Res. , vol.37 , pp. D159-D162
    • Jühling, F.1
  • 8
    • 80755169463 scopus 로고    scopus 로고
    • Human mitochondrial tRNAs: Biogenesis, function, structural aspects, and diseases
    • Suzuki, T., Nagao, A. & Suzuki, T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 45, 299-329 (2011).
    • (2011) Annu. Rev. Genet. , vol.45 , pp. 299-329
    • Suzuki, T.1    Nagao, A.2    Suzuki, T.3
  • 9
    • 84878583858 scopus 로고    scopus 로고
    • Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae
    • Sharma, S., Watzinger, P., Kötter, P. & Entian, K.D. Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res. 41, 5428-5443 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. 5428-5443
    • Sharma, S.1    Watzinger, P.2    Kötter, P.3    Entian, K.D.4
  • 10
    • 0023555405 scopus 로고
    • Ribosomal RNA methylation in Mycobacterium smegmatis SN2
    • Srivastava, R. & Gopinathan, K.P. Ribosomal RNA methylation in Mycobacterium smegmatis SN2. Biochem. Int. 15, 1179-1188 (1987).
    • (1987) Biochem. Int. , vol.15 , pp. 1179-1188
    • Srivastava, R.1    Gopinathan, K.P.2
  • 11
    • 84875410311 scopus 로고    scopus 로고
    • Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA
    • Peifer, C. et al. Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA. Nucleic Acids Res. 41, 1151-1163 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. 1151-1163
    • Peifer, C.1
  • 12
    • 78650683942 scopus 로고    scopus 로고
    • A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress
    • Chan, C.T. et al. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 6, e1001247 (2010).
    • (2010) PLoS Genet , vol.6
    • Chan, C.T.1
  • 13
    • 84894436024 scopus 로고    scopus 로고
    • Posttranscriptional RNA modifications: Playing metabolic games in a cell's chemical Legoland
    • Helm, M. & Alfonzo, J.D. Posttranscriptional RNA modifications: playing metabolic games in a cell's chemical Legoland. Chem. Biol. 21, 174-185 (2014).
    • (2014) Chem. Biol. , vol.21 , pp. 174-185
    • Helm, M.1    Alfonzo, J.D.2
  • 14
    • 0025837123 scopus 로고
    • Site-specific methylation of 16S rRNA caused by pct, a pactamycin resistance determinant from the producing organism, Streptomyces pactum
    • Ballesta, J.P. & Cundliffe, E. Site-specific methylation of 16S rRNA caused by pct, a pactamycin resistance determinant from the producing organism, Streptomyces pactum. J. Bacteriol. 173, 7213-7218 (1991).
    • (1991) J. Bacteriol. , vol.173 , pp. 7213-7218
    • Ballesta, J.P.1    Cundliffe, E.2
  • 15
    • 34548726200 scopus 로고    scopus 로고
    • Identification of modified residues in RNAs by reverse transcription-based methods
    • Motorin, Y., Muller, S., Behm-Ansmant, I. & Branlant, C. Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol. 425, 21-53 (2007).
    • (2007) Methods Enzymol. , vol.425 , pp. 21-53
    • Motorin, Y.1    Muller, S.2    Behm-Ansmant, I.3    Branlant, C.4
  • 16
    • 84863821425 scopus 로고    scopus 로고
    • Use of specific chemical reagents for detection of modified nucleotides in RNA
    • Behm-Ansmant, I., Helm, M. & Motorin, Y. Use of specific chemical reagents for detection of modified nucleotides in RNA. J. Nucleic Acids 2011, 408053 (2011).
    • (2011) J. Nucleic Acids , vol.2011 , pp. 408053
    • Behm-Ansmant, I.1    Helm, M.2    Motorin, Y.3
  • 17
    • 84899507134 scopus 로고    scopus 로고
    • High-resolution genomic analysis of human mitochondrial RNA sequence variation
    • Hodgkinson, A. et al. High-resolution genomic analysis of human mitochondrial RNA sequence variation. Science 344, 413-415 (2014).
    • (2014) Science , vol.344 , pp. 413-415
    • Hodgkinson, A.1
  • 18
    • 84951734126 scopus 로고    scopus 로고
    • The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent
    • Hauenschild, R. et al. The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Res. 43, 9950-9964 (2015).
    • (2015) Nucleic Acids Res. , vol.43 , pp. 9950-9964
    • Hauenschild, R.1
  • 19
    • 0037068433 scopus 로고    scopus 로고
    • AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli
    • Falnes, P.O., Johansen, R.F. & Seeberg, E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419, 178-182 (2002).
    • (2002) Nature , vol.419 , pp. 178-182
    • Falnes, P.O.1    Johansen, R.F.2    Seeberg, E.3
  • 20
    • 0037068446 scopus 로고    scopus 로고
    • Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage
    • Trewick, S.C., Henshaw, T.F., Hausinger, R.P., Lindahl, T. & Sedgwick, B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419, 174-178 (2002).
    • (2002) Nature , vol.419 , pp. 174-178
    • Trewick, S.C.1    Henshaw, T.F.2    Hausinger, R.P.3    Lindahl, T.4    Sedgwick, B.5
  • 21
    • 0037168654 scopus 로고    scopus 로고
    • Reversal of DNA alkylation damage by two human dioxygenases
    • Duncan, T. et al. Reversal of DNA alkylation damage by two human dioxygenases. Proc. Natl. Acad. Sci. USA 99, 16660-16665 (2002).
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 16660-16665
    • Duncan, T.1
  • 22
    • 0037456369 scopus 로고    scopus 로고
    • Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA
    • Aas, P.A. et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421, 859-863 (2003).
    • (2003) Nature , vol.421 , pp. 859-863
    • Aas, P.A.1
  • 23
    • 4944254870 scopus 로고    scopus 로고
    • AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation
    • Ougland, R. et al. AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol. Cell 16, 107-116 (2004).
    • (2004) Mol. Cell , vol.16 , pp. 107-116
    • Ougland, R.1
  • 24
    • 80555127349 scopus 로고    scopus 로고
    • DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation
    • Dango, S. et al. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol. Cell 44, 373-384 (2011).
    • (2011) Mol. Cell , vol.44 , pp. 373-384
    • Dango, S.1
  • 25
    • 84937514684 scopus 로고    scopus 로고
    • Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome
    • Li, X. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11, 592-597 (2015).
    • (2015) Nat. Chem. Biol. , vol.11 , pp. 592-597
    • Li, X.1
  • 26
    • 0014340979 scopus 로고
    • 1-Methyladenosine. Dimroth rearrangement and reversible reduction
    • Macon, J.B. & Wolfenden, R. 1-Methyladenosine. Dimroth rearrangement and reversible reduction. Biochemistry 7, 3453-3458 (1968).
    • (1968) Biochemistry , vol.7 , pp. 3453-3458
    • Macon, J.B.1    Wolfenden, R.2
  • 27
    • 81355146483 scopus 로고    scopus 로고
    • N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO
    • Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885-887 (2011).
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 885-887
    • Jia, G.1
  • 28
    • 84872274463 scopus 로고    scopus 로고
    • ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility
    • Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18-29 (2013).
    • (2013) Mol. Cell , vol.49 , pp. 18-29
    • Zheng, G.1
  • 29
    • 0025580878 scopus 로고
    • The numerous modified nucleotides in eukaryotic ribosomal RNA
    • Maden, B.E. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 39, 241-303 (1990).
    • (1990) Prog. Nucleic Acid Res. Mol. Biol. , vol.39 , pp. 241-303
    • Maden, B.E.1
  • 30
    • 84940484187 scopus 로고    scopus 로고
    • Efficient and quantitative high-throughput tRNA sequencing
    • Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835-837 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 835-837
    • Zheng, G.1
  • 31
    • 84940551378 scopus 로고    scopus 로고
    • ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments
    • Cozen, A.E. et al. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods 12, 879-884 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 879-884
    • Cozen, A.E.1
  • 32
    • 84860779086 scopus 로고    scopus 로고
    • Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
    • Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201-206 (2012).
    • (2012) Nature , vol.485 , pp. 201-206
    • Dominissini, D.1
  • 33
    • 84862649489 scopus 로고    scopus 로고
    • Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons
    • Meyer, K.D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635-1646 (2012).
    • (2012) Cell , vol.149 , pp. 1635-1646
    • Meyer, K.D.1
  • 34
    • 84943570207 scopus 로고    scopus 로고
    • A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation
    • Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29, 2037-2053 (2015).
    • (2015) Genes Dev , vol.29 , pp. 2037-2053
    • Ke, S.1
  • 35
    • 84938417580 scopus 로고    scopus 로고
    • Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome
    • Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767-772 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 767-772
    • Linder, B.1
  • 36
    • 84862302019 scopus 로고    scopus 로고
    • Before it gets started: Regulating translation at the 5′ UTR
    • Araujo, P.R. et al. Before it gets started: regulating translation at the 5′ UTR. Comp. Funct. Genomics 2012, 475731 (2012).
    • (2012) Comp. Funct. Genomics , vol.2012 , pp. 475731
    • Araujo, P.R.1
  • 37
    • 84945288814 scopus 로고    scopus 로고
    • Dynamic m6A mRNA methylation directs translational control of heat shock response
    • Zhou, J. et al. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526, 591-594 (2015).
    • (2015) Nature , vol.526 , pp. 591-594
    • Zhou, J.1
  • 38
    • 84946228509 scopus 로고    scopus 로고
    • 5′ UTR m6A promotes cap-independent translation
    • Meyer, K.D. et al. 5′ UTR m6A promotes cap-independent translation. Cell 163, 999-1010 (2015).
    • (2015) Cell , vol.163 , pp. 999-1010
    • Meyer, K.D.1
  • 39
    • 84959386536 scopus 로고    scopus 로고
    • The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA
    • Dominissini, D. et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature http://dx.doi.org/10.1038/nature16998 (2016).
    • (2016) Nature
    • Dominissini, D.1
  • 40
    • 84924072927 scopus 로고    scopus 로고
    • N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions
    • Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560-564 (2015).
    • (2015) Nature , vol.518 , pp. 560-564
    • Liu, N.1
  • 41
    • 84922780316 scopus 로고    scopus 로고
    • Structure and thermodynamics of N6-methyladenosine in RNA: A spring-loaded base modification
    • Roost, C. et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 137, 2107-2115 (2015).
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 2107-2115
    • Roost, C.1
  • 42
    • 84892372347 scopus 로고    scopus 로고
    • N6-methyladenosine-dependent regulation of messenger RNA stability
    • Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117-120 (2014).
    • (2014) Nature , vol.505 , pp. 117-120
    • Wang, X.1
  • 43
    • 84930621650 scopus 로고    scopus 로고
    • N6-methyladenosine modulates messenger RNA translation efficiency
    • Wang, X. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388-1399 (2015).
    • (2015) Cell , vol.161 , pp. 1388-1399
    • Wang, X.1
  • 44
    • 84941424170 scopus 로고    scopus 로고
    • HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events
    • Alarcón, C.R. et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162, 1299-1308 (2015).
    • (2015) Cell , vol.162 , pp. 1299-1308
    • Alarcón, C.R.1
  • 45
    • 84897110592 scopus 로고    scopus 로고
    • A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation
    • Liu, J. et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93-95 (2014).
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 93-95
    • Liu, J.1
  • 46
    • 84904035764 scopus 로고    scopus 로고
    • Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites
    • Schwartz, S. et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Reports 8, 284-296 (2014).
    • (2014) Cell Reports , vol.8 , pp. 284-296
    • Schwartz, S.1
  • 47
    • 84893746230 scopus 로고    scopus 로고
    • Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase
    • Ping, X.L. et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24, 177-189 (2014).
    • (2014) Cell Res. , vol.24 , pp. 177-189
    • Ping, X.L.1
  • 48
    • 84897404290 scopus 로고    scopus 로고
    • Switching demethylation activities between AlkB family RNA/ DNA demethylases through exchange of active-site residues
    • Zhu, C. & Yi, C. Switching demethylation activities between AlkB family RNA/ DNA demethylases through exchange of active-site residues. Angew. Chem. Int. Edn Engl. 53, 3659-3662 (2014).
    • (2014) Angew. Chem. Int. Edn Engl. , vol.53 , pp. 3659-3662
    • Zhu, C.1    Yi, C.2
  • 49
    • 84926519013 scopus 로고    scopus 로고
    • HISAT: A fast spliced aligner with low memory requirements
    • Kim, D., Langmead, B. & Salzberg, S.L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 357-360
    • Kim, D.1    Langmead, B.2    Salzberg, S.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.