메뉴 건너뛰기




Volumn 9906 LNCS, Issue , 2016, Pages 524-540

Higher order conditional random fields in deep neural networks

Author keywords

Conditional random fields; Convolutional neural networks; Deep learning; Semantic segmentation

Indexed keywords

BENCHMARKING; COMPUTER VISION; CONVOLUTION; INFERENCE ENGINES; NEURAL NETWORKS; OBJECT DETECTION; RANDOM PROCESSES; SEMANTICS;

EID: 84990864139     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46475-6_33     Document Type: Conference Paper
Times cited : (171)

References (49)
  • 1
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097-1105 (2012)
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 2
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 3
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 5
    • 77953225585 scopus 로고    scopus 로고
    • Associative hierarchical CRFs for object class image segmentation
    • Ladicky, L., Russell, C., Kohli, P., Torr, P.H.: Associative hierarchical CRFs for object class image segmentation. In: ICCV, pp. 739-746 (2009)
    • (2009) ICCV , pp. 739-746
    • Ladicky, L.1    Russell, C.2    Kohli, P.3    Torr, P.H.4
  • 6
    • 78149356342 scopus 로고    scopus 로고
    • What, where and how many? Combining object detectors and CRFs
    • Daniilidis, K., Maragos, P., Paragios, N. (eds.), Part IV. LNCS, Springer, Heidelberg
    • Ladický, Ľ., Sturgess, P., Alahari, K., Russell, C., Torr, P.H.S.: What, where and how many? Combining object detectors and CRFs. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 424-437. Springer, Heidelberg (2010)
    • (2010) ECCV 2010 , vol.6314 , pp. 424-437
    • Ladický, L.1    Sturgess, P.2    Alahari, K.3    Russell, C.4    Torr, P.H.S.5
  • 7
    • 84920255614 scopus 로고    scopus 로고
    • Filter-based mean-field inference for random fields with higher-order terms and product label-spaces
    • Vineet, V., Warrell, J., Torr, P.H.: Filter-based mean-field inference for random fields with higher-order terms and product label-spaces. IJCV 110, 290-307 (2014)
    • (2014) IJCV , vol.110 , pp. 290-307
    • Vineet, V.1    Warrell, J.2    Torr, P.H.3
  • 8
    • 84906342998 scopus 로고    scopus 로고
    • Simultaneous detection and segmentation
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Part VII. LNCS, Springer, Heidelberg
    • Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VII. LNCS, vol. 8695, pp. 297-312. Springer, Heidelberg (2014)
    • (2014) ECCV 2014 , vol.8695 , pp. 297-312
    • Hariharan, B.1    Arbeláez, P.2    Girshick, R.3    Malik, J.4
  • 9
    • 84973860883 scopus 로고    scopus 로고
    • Semantic image segmentation via deep parsing network
    • Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via deep parsing network. In: ICCV (2015)
    • (2015) ICCV
    • Liu, Z.1    Li, X.2    Luo, P.3    Loy, C.C.4    Tang, X.5
  • 11
    • 84986261676 scopus 로고    scopus 로고
    • Efficient piecewise training of deep structured models for semantic segmentation
    • Lin, G., Shen, C., Reid, I.: Efficient piecewise training of deep structured models for semantic segmentation. In: CVPR (2016)
    • (2016) CVPR
    • Lin, G.1    Shen, C.2    Reid, I.3
  • 12
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs
    • Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In:ICLR (2015)
    • (2015) ICLR
    • Chen, L.C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 14
    • 58149151266 scopus 로고    scopus 로고
    • TextonBoost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost for image understanding:multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV 81, 2-23 (2009)
    • (2009) IJCV , vol.81 , pp. 2-23
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 15
    • 61349174704 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • Kohli, P., Ladicky, L., Torr, P.: Robust higher order potentials for enforcing label consistency. IJCV 82(3), 302-324 (2009)
    • (2009) IJCV , vol.82 , Issue.3 , pp. 302-324
    • Kohli, P.1    Ladicky, L.2    Torr, P.3
  • 16
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected CRFs with Gaussian edge potentials
    • Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: NIPS (2011)
    • (2011) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 17
    • 78149343534 scopus 로고    scopus 로고
    • Graph cut based inference with co-occurrence statistics
    • Daniilidis, K., Maragos, P., Paragios, N. (eds.), Springer, Heidelberg
    • Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S.: Graph cut based inference with co-occurrence statistics. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 239-253. Springer, Heidelberg (2010)
    • (2010) ECCV 2010, Part V. LNCS , vol.6315 , pp. 239-253
    • Ladicky, L.1    Russell, C.2    Kohli, P.3    Torr, P.H.S.4
  • 20
    • 84866687133 scopus 로고    scopus 로고
    • Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
    • Yao, J., Fidler, S., Urtasun, R.: Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In: CVPR, pp. 702-709 (2012)
    • (2012) CVPR , pp. 702-709
    • Yao, J.1    Fidler, S.2    Urtasun, R.3
  • 21
    • 57149143156 scopus 로고    scopus 로고
    • A dynamic conditional random field model for joint labeling of object and scene classes
    • Forsyth, D., Torr, P., Zisserman, A. (eds.), Springer, Heidelberg
    • Wojek, C., Schiele, B.: A dynamic conditional random field model for joint labeling of object and scene classes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 733-747. Springer, Heidelberg (2008)
    • (2008) ECCV 2008, Part IV. LNCS , vol.5305 , pp. 733-747
    • Wojek, C.1    Schiele, B.2
  • 22
    • 84965128185 scopus 로고    scopus 로고
    • Deeply learning the messages in message passing inference
    • Lin, G., Shen, C., Reid, I., van den Hengel, A.: Deeply learning the messages in message passing inference. In: NIPS, pp. 361-369 (2015)
    • (2015) NIPS , pp. 361-369
    • Lin, G.1    Shen, C.2    Reid, I.3    Van Den Hengel, A.4
  • 23
    • 84865582931 scopus 로고    scopus 로고
    • Layered object models for image segmentation
    • Yang, Y., Hallman, S., Ramanan, D., Fowlkes, C.C.: Layered object models for image segmentation. PAMI 34, 1731-1743 (2012)
    • (2012) PAMI , vol.34 , pp. 1731-1743
    • Yang, Y.1    Hallman, S.2    Ramanan, D.3    Fowlkes, C.C.4
  • 24
    • 84903211110 scopus 로고    scopus 로고
    • Relating things and stuff via object property interactions
    • Sun, M., Kim, B.S., Kohli, P., Savarese, S.: Relating things and stuff via object property interactions. PAMI 36(7), 1370-1383 (2014)
    • (2014) PAMI , vol.36 , Issue.7 , pp. 1370-1383
    • Sun, M.1    Kim, B.S.2    Kohli, P.3    Savarese, S.4
  • 25
    • 84867872703 scopus 로고    scopus 로고
    • Semantic segmentation with second-order pooling
    • Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.), Springer, Heidelberg
    • Carreira, J., Caseiro, R., Batista, J., Sminchisescu, C.: Semantic segmentation with second-order pooling. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 430-443. Springer, Heidelberg (2012)
    • (2012) ECCV 2012, Part VII. LNCS , vol.7578 , pp. 430-443
    • Carreira, J.1    Caseiro, R.2    Batista, J.3    Sminchisescu, C.4
  • 26
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. PAMI 35, 1915-1929 (2013)
    • (2013) PAMI , vol.35 , pp. 1915-1929
    • Farabet, C.1    Couprie, C.2    Najman, L.3    LeCun, Y.4
  • 27
    • 84959216100 scopus 로고    scopus 로고
    • Convolutional feature masking for joint object and stuff segmentation
    • Dai, J., He, K., Sun, J.: Convolutional feature masking for joint object and stuff segmentation. In: CVPR (2015)
    • (2015) CVPR
    • Dai, J.1    He, K.2    Sun, J.3
  • 28
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. In: NIPS, pp. 1799-1807 (2014)
    • (2014) NIPS , pp. 1799-1807
    • Tompson, J.J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 30
    • 84973922889 scopus 로고    scopus 로고
    • Matrix backpropagation for deep networks with structured layers
    • Ionescu, C., Vantzos, O., Sminchisescu, C.: Matrix backpropagation for deep networks with structured layers. In: ICCV, pp. 2965-2973 (2015)
    • (2015) ICCV , pp. 2965-2973
    • Ionescu, C.1    Vantzos, O.2    Sminchisescu, C.3
  • 31
    • 84883162364 scopus 로고    scopus 로고
    • Learning graphical model parameters with approximate marginal inference
    • Domke, J.: Learning graphical model parameters with approximate marginal inference. PAMI 35, 2454-2467 (2013)
    • (2013) PAMI , vol.35 , pp. 2454-2467
    • Domke, J.1
  • 32
    • 84897536915 scopus 로고    scopus 로고
    • Parameter learning and convergent inference for dense random fields
    • Krähenbühl, P., Koltun, V.: Parameter learning and convergent inference for dense random fields. In: ICML (2013)
    • (2013) ICML
    • Krähenbühl, P.1    Koltun, V.2
  • 33
    • 80052872903 scopus 로고    scopus 로고
    • Learning message-passing inference machines for structured prediction
    • Ross, S., Munoz, D., Hebert, M., Bagnell, J.A.: Learning message-passing inference machines for structured prediction. In: CVPR (2011)
    • (2011) CVPR
    • Ross, S.1    Munoz, D.2    Hebert, M.3    Bagnell, J.A.4
  • 34
    • 84973890848 scopus 로고    scopus 로고
    • BoxSup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
    • Dai, J., He, K., Sun, J.: BoxSup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV (2015)
    • (2015) ICCV
    • Dai, J.1    He, K.2    Sun, J.3
  • 35
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • Girshick, R.: Fast R-CNN. In: ICCV (2015)
    • (2015) ICCV
    • Girshick, R.1
  • 36
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: NIPS (2015)
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 37
    • 84877632511 scopus 로고    scopus 로고
    • GrabCut: Interactive foreground extraction using iterated graph cuts
    • Rother, C., Kolmogorov, V., Blake, A.: GrabCut: Interactive foreground extraction using iterated graph cuts. ACM TOG 23, 309-314 (2004)
    • (2004) ACM TOG , vol.23 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 38
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59, 167-181 (2004)
    • (2004) IJCV , vol.59 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 39
    • 84866657764 scopus 로고    scopus 로고
    • SLIC superpixels compared to state-of-the-art superpixel methods
    • Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. PAMI 34(11), 2274-2282 (2012)
    • (2012) PAMI , vol.34 , Issue.11 , pp. 2274-2282
    • Achanta, R.1    Shaji, A.2    Smith, K.3    Lucchi, A.4    Fua, P.5    Susstrunk, S.6
  • 40
    • 34948905773 scopus 로고    scopus 로고
    • P3 & beyond: Solving energies with higher order cliques
    • Kohli, P., Kumar, M.P., Torr, P.H.: P3 & beyond: Solving energies with higher order cliques. In: CVPR (2007)
    • (2007) CVPR
    • Kohli, P.1    Kumar, M.P.2    Torr, P.H.3
  • 41
    • 84986275913 scopus 로고    scopus 로고
    • Principled parallel mean-field inference for discrete random fields
    • Baqu, P., Bagautdinov, T., Fleuret, F., Fua, P.: Principled parallel mean-field inference for discrete random fields. In: CVPR (2016)
    • (2016) CVPR
    • Baqu, P.1    Bagautdinov, T.2    Fleuret, F.3    Fua, P.4
  • 43
    • 84906493406 scopus 로고    scopus 로고
    • Microsoft COCO: Common objects in context
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740-755. Springer, Heidelberg (2014)
    • (2014) ECCV 2014, Part V. LNCS , vol.8693 , pp. 740-755
    • Lin, T.-Y.1    Maire, M.2    Belongie, S.3    Hays, J.4    Perona, P.5    Ramanan, D.6    Dollár, P.7    Zitnick, C.L.8
  • 44
    • 85083952789 scopus 로고    scopus 로고
    • Pushing the boundaries of boundary detection using deep learning
    • Kokkinos, I.: Pushing the boundaries of boundary detection using deep learning. In: ICLR (2016)
    • (2016) ICLR
    • Kokkinos, I.1
  • 45
    • 85083952059 scopus 로고    scopus 로고
    • Multi-scale context aggregation by dilated convolutions
    • Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In:ICLR (2016)
    • (2016) ICLR
    • Yu, F.1    Koltun, V.2
  • 46
    • 84986244054 scopus 로고    scopus 로고
    • Attention to scale: Scaleaware semantic image segmentation
    • Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: Scaleaware semantic image segmentation. In: CVPR (2016)
    • (2016) CVPR
    • Chen, L.C.1    Yang, Y.2    Wang, J.3    Xu, W.4    Yuille, A.L.5
  • 47
    • 84965124068 scopus 로고    scopus 로고
    • Weakly-and semi-supervised learning of a DCNN for semantic image segmentation
    • Papandreou, G., Chen, L., Murphy, K., Yuille, A.L.: Weakly-and semi-supervised learning of a DCNN for semantic image segmentation. In: ICCV (2015)
    • (2015) ICCV
    • Papandreou, G.1    Chen, L.2    Murphy, K.3    Yuille, A.L.4
  • 49
    • 84911444024 scopus 로고    scopus 로고
    • The role of context for object detection and semantic segmentation in the wild
    • Mottaghi, R., Chen, X., Liu, X., Cho, N.G., Lee, S.W., Fidler, S., Urtasun, R., et al.: The role of context for object detection and semantic segmentation in the wild. In: IEEE on CVPR, pp. 891-898 (2014)
    • (2014) IEEE on CVPR , pp. 891-898
    • Mottaghi, R.1    Chen, X.2    Liu, X.3    Cho, N.G.4    Lee, S.W.5    Fidler, S.6    Urtasun, R.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.