메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 2965-2973

Matrix backpropagation for deep networks with structured layers

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; CALCULATIONS; COMPUTATION THEORY; COMPUTER VISION; NETWORK ARCHITECTURE; NETWORK LAYERS; NEURAL NETWORKS;

EID: 84973922889     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.339     Document Type: Conference Paper
Times cited : (308)

References (42)
  • 1
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • May
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. PAMI, 33 (5): 898-916, May 2011.
    • (2011) PAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 3
    • 33749317042 scopus 로고    scopus 로고
    • Learning spectral clustering, with application to speech separation
    • F. R. Bach and M. I. Jordan. Learning spectral clustering, with application to speech separation. JMLR, 7: 1963-2001, 2006.
    • (2006) JMLR , vol.7 , pp. 1963-2001
    • Bach, F.R.1    Jordan, M.I.2
  • 4
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 15 (6): 1373-1396, 2003.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 0030648914 scopus 로고    scopus 로고
    • Global training of document processing systems using graph transformer networks
    • IEEE
    • L. Bottou, Y. Bengio, and Y. Le Cun. Global training of document processing systems using graph transformer networks. In CVPR, pages 489-494. IEEE, 1997.
    • (1997) CVPR , pp. 489-494
    • Bottou, L.1    Bengio, Y.2    Le Cun, Y.3
  • 6
    • 84867872703 scopus 로고    scopus 로고
    • Semantic segmentation with second-order pooling
    • Springer
    • J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic segmentation with second-order pooling. In ECCV, pages 430-443. Springer, 2012.
    • (2012) ECCV , pp. 430-443
    • Carreira, J.1    Caseiro, R.2    Batista, J.3    Sminchisescu, C.4
  • 7
    • 84861335581 scopus 로고    scopus 로고
    • CPMC: Automatic object segmentation using constrained parametric min-cuts
    • J. Carreira and C. Sminchisescu. CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts. PAMI, 2012.
    • (2012) PAMI
    • Carreira, J.1    Sminchisescu, C.2
  • 8
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 10
    • 24644435537 scopus 로고    scopus 로고
    • Spectral segmentation with multiscale graph decomposition
    • T. Cour, F. Benezit, and J. Shi. Spectral segmentation with multiscale graph decomposition. In CVPR, 2005.
    • (2005) CVPR
    • Cour, T.1    Benezit, F.2    Shi, J.3
  • 11
    • 84959216100 scopus 로고    scopus 로고
    • Convolutional feature masking for joint object and stuff segmentation
    • J. Dai, K. He, and J. Sun. Convolutional feature masking for joint object and stuff segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Dai, J.1    He, K.2    Sun, J.3
  • 14
    • 78651550503 scopus 로고    scopus 로고
    • Collected matrix derivative results for forward and reverse mode algorithmic differentiation
    • Springer
    • M. B. Giles. Collected matrix derivative results for forward and reverse mode algorithmic differentiation. In Advances in Automatic Differentiation, pages 35-44. Springer, 2008.
    • (2008) Advances in Automatic Differentiation , pp. 35-44
    • Giles, M.B.1
  • 15
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • IEEE
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587. IEEE, 2014.
    • (2014) CVPR , pp. 580-587
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 18
    • 84973653900 scopus 로고
    • A combined corner and edge detector
    • Manchester, UK
    • C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision conference, volume 15, page 50. Manchester, UK, 1988.
    • (1988) Alvey Vision Conference , vol.15 , pp. 50
    • Harris, C.1    Stephens, M.2
  • 20
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. PAMI, 2015.
    • (2015) PAMI
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 23
    • 84907053001 scopus 로고    scopus 로고
    • Kernel methods on the riemannian manifold of symmetric positive definite matrices
    • S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandi. Kernel methods on the riemannian manifold of symmetric positive definite matrices. In CVPR. IEEE, 2013.
    • (2013) CVPR. IEEE
    • Jayasumana, S.1    Hartley, R.2    Salzmann, M.3    Li, H.4    Harandi, M.5
  • 25
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 26
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86 (11): 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 27
    • 84887381281 scopus 로고    scopus 로고
    • Composite statistical inference for semantic segmentation
    • IEEE
    • F. Li, J. Carreira, G. Lebanon, and C. Sminchisescu. Composite statistical inference for semantic segmentation. In CVPR, pages 3302-3309. IEEE, 2013.
    • (2013) CVPR , pp. 3302-3309
    • Li, F.1    Carreira, J.2    Lebanon, G.3    Sminchisescu, C.4
  • 30
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic Segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 31
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • Ieee
    • D. G. Lowe. Object recognition from local scale-invariant features. In ICCV, volume 2, pages 1150-1157. Ieee, 1999.
    • (1999) ICCV , vol.2 , pp. 1150-1157
    • Lowe, D.G.1
  • 33
    • 84863373241 scopus 로고    scopus 로고
    • Conditional neural fields
    • J. Peng, L. Bo, and J. Xu. Conditional neural fields. In NIPS, pages 1419-1427, 2009.
    • (2009) NIPS , pp. 1419-1427
    • Peng, J.1    Bo, L.2    Xu, J.3
  • 35
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61: 85-117, 2015.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 36
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Aug
    • J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, 22 (8): 888-905, Aug 2000.
    • (2000) PAMI , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 38
    • 0026943737 scopus 로고
    • Shape and motion from image streams under orthography: A factorization method
    • C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9 (2): 137-154, 1992.
    • (1992) IJCV , vol.9 , Issue.2 , pp. 137-154
    • Tomasi, C.1    Kanade, T.2
  • 41
    • 84962815548 scopus 로고    scopus 로고
    • Matconvnet-convolutional neural networks for MATLAB
    • A. Vedaldi and K. Lenc. MatConvNet-Convolutional Neural Networks for MATLAB. In Int. Conf. Multimedia, 2015.
    • (2015) Int. Conf. Multimedia
    • Vedaldi, A.1    Lenc, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.