-
3
-
-
84862296173
-
Choosing a variable to clamp
-
Eaton, Frederik and Ghahramani, Zoubin. Choosing a variable to clamp. JMLR, 5:145-152, 2009.
-
(2009)
JMLR
, vol.5
, pp. 145-152
-
-
Eaton, F.1
Ghahramani, Z.2
-
4
-
-
5044223520
-
Multiscale conditional random fields for image labeling
-
He, Xuming, Zemel, Richard S., and Carreira-Perpinan, Miguel A. Multiscale conditional random fields for image labeling. In CVPR, 2004.
-
(2004)
CVPR
-
-
He, X.1
Zemel, R.S.2
Carreira-Perpinan, M.A.3
-
5
-
-
61349174704
-
Robust higher order potentials for enforcing label consistency
-
Kohli, Pushmeet, Ladický, Lubor, and Torr, Philip H. S. Robust higher order potentials for enforcing label consistency. IJCV, 82(3), 2009.
-
(2009)
IJCV
, vol.82
, Issue.3
-
-
Kohli, P.1
Ladický, L.2
Torr, P.H.S.3
-
7
-
-
85162351107
-
Efficient inference in fully connected CRFs with Gaussian edge potentials
-
Krähenbühl, Philipp and Koltun, Vladlen. Efficient inference in fully connected CRFs with Gaussian edge potentials. In NIPS, 2011.
-
(2011)
NIPS
-
-
Krähenbühl, P.1
Koltun, V.2
-
8
-
-
85047013878
-
Structured learning with approximate inference
-
Kulesza, Alex and Pereira, Fernando. Structured learning with approximate inference. In NIPS, 2007.
-
(2007)
NIPS
-
-
Kulesza, A.1
Pereira, F.2
-
10
-
-
35148893484
-
A tutorial on energy-based learning
-
MIT Press
-
LeCun, Yann, Chopra, Sumit, Hadsell, Raia, Ranzato, Marc'Aurelio, and Huang, Fu Jie. A tutorial on energy-based learning. In Predicting Structured Data. MIT Press, 2006.
-
(2006)
Predicting Structured Data
-
-
LeCun, Y.1
Chopra, S.2
Hadsell, R.3
Ranzato, M.4
Huang, F.J.5
-
11
-
-
58049184640
-
Learning to combine bottom-up and top-down segmentation
-
Levin, Anat and Weiss, Yair. Learning to combine bottom-up and top-down segmentation. IJCV, 81: 105-118, 2009.
-
(2009)
IJCV
, vol.81
, pp. 105-118
-
-
Levin, A.1
Weiss, Y.2
-
12
-
-
84863626688
-
On learning conditional random fields for stereo
-
Pal, Christopher J., Weinman, Jerod J., Tran, Lam C., and Scharstein, Daniel. On learning conditional random fields for stereo. IJCV, 99(3):319-337, 2012.
-
(2012)
IJCV
, vol.99
, Issue.3
, pp. 319-337
-
-
Pal, C.J.1
Weinman, J.J.2
Tran, L.C.3
Scharstein, D.4
-
13
-
-
60449120149
-
Fields of experts
-
Roth, Stefan and Black, Michael J. Fields of experts. IJCV, 82(2):205-229, 2009.
-
(2009)
IJCV
, vol.82
, Issue.2
, pp. 205-229
-
-
Roth, S.1
Black, M.J.2
-
14
-
-
70450207702
-
Learning optimized MAP estimates in continuously-valued MRF models
-
Samuel, Kegan G. G. and Tappen, Marshall F. Learning optimized MAP estimates in continuously-valued MRF models. In CVPR, 2009.
-
(2009)
CVPR
-
-
Samuel, K.G.G.1
Tappen, M.F.2
-
15
-
-
58149151266
-
Textonboost for image understanding
-
Shotton, Jamie, Winn, John M., Rother, Carsten, and Criminisi, Antonio. Textonboost for image understanding. IJCV, 81(1), 2009.
-
(2009)
IJCV
, vol.81
, Issue.1
-
-
Shotton, J.1
Winn, J.M.2
Rother, C.3
Criminisi, A.4
-
16
-
-
78149477774
-
On the convergence of the concave-convex procedure
-
Sriperumbudur, Bharath K. and Lanckriet, Gert R. G. On the convergence of the concave-convex procedure. In NIPS, 2009.
-
(2009)
NIPS
-
-
Sriperumbudur, B.K.1
Lanckriet, G.R.G.2
-
17
-
-
80053230819
-
Piecewise training for undirected models
-
Sutton, Charles A. and McCallum, Andrew. Piecewise training for undirected models. In UAI, 2005.
-
(2005)
UAI
-
-
Sutton, C.A.1
McCallum, A.2
-
18
-
-
34948890052
-
Utilizing variational optimization to learn Markov random fields
-
Tappen, Marshall F. Utilizing variational optimization to learn Markov random fields. In CVPR, 2007.
-
(2007)
CVPR
-
-
Tappen, M.F.1
-
20
-
-
84898488394
-
Improved initialization and Gaussian mixture pairwise terms for dense random fields with mean-field inference
-
Vineet, Vibhav, Warrell, Jonathan, Sturgess, Paul, and Torr, Philip H. S. Improved initialization and Gaussian mixture pairwise terms for dense random fields with mean-field inference. In BMVC, 2012a.
-
(2012)
BMVC
-
-
Vineet, V.1
Warrell, J.2
Sturgess, P.3
Torr, P.H.S.4
-
21
-
-
84898435739
-
Filter-based mean-field inference for random fields with higher-order terms and product labelspaces
-
Vineet, Vibhav, Warrell, Jonathan, and Torr, Philip H. S. Filter-based mean-field inference for random fields with higher-order terms and product labelspaces. In ECCV, 2012b.
-
(2012)
ECCV
-
-
Vineet, V.1
Warrell, J.2
Torr, P.H.S.3
-
22
-
-
33749243756
-
Accelerated training of conditional random fields with stochastic gradient methods
-
Vishwanathan, S. V. N., Schraudolph, Nicol N., Schmidt, Mark W., and Murphy, Kevin P. Accelerated training of conditional random fields with stochastic gradient methods. In ICML, 2006.
-
(2006)
ICML
-
-
Vishwanathan, S.V.N.1
Schraudolph, N.N.2
Schmidt, M.W.3
Murphy, K.P.4
-
23
-
-
33748685798
-
Estimating the "wrong" graphical model: Benefits in the computation-limited setting
-
Wainwright, Martin J. Estimating the "wrong" graphical model: Benefits in the computation-limited setting. JMLR, 7:1829-1859, 2006.
-
(2006)
JMLR
, vol.7
, pp. 1829-1859
-
-
Wainwright, M.J.1
-
24
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Wainwright, Martin J. and Jordan, Michael I. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2), 2008.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
25
-
-
29344473978
-
Tree-reweighted belief propagation algorithms and approximate ML estimation by pseudo-moment matching
-
Wainwright, Martin J., Jaakkola, Tommi S., and Willsky, Alan S. Tree-reweighted belief propagation algorithms and approximate ML estimation by pseudo-moment matching. In Proc. Workshop on Artificial Intelligence and Statistics, 2003.
-
Proc. Workshop on Artificial Intelligence and Statistics, 2003
-
-
Wainwright, M.J.1
Jaakkola, T.S.2
Willsky, A.S.3
-
26
-
-
33747138721
-
The concave-convex procedure (CCCP)
-
Yuille, Alan L. and Rangarajan, Anand. The concave-convex procedure (CCCP). In NIPS, 2001.
-
(2001)
NIPS
-
-
Yuille, A.L.1
Rangarajan, A.2
|