-
1
-
-
0000396062
-
Natural gradientworks efficiently in learning
-
4
-
S.-I. Amari. Natural GradientWorks Efficiently in Learning. Neural computation, 10 (2): 251-276, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.2
, pp. 251-276
-
-
Amari, S.-I.1
-
3
-
-
84891805704
-
Multi-commodity network flow for tracking multiple people
-
7
-
H. BenShitrit, J. Berclaz, F. Fleuret, and P. Fua. Multi-Commodity Network Flow for Tracking Multiple People. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36 (8): 1614-1627, 2014.
-
(2014)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.36
, Issue.8
, pp. 1614-1627
-
-
BenShitrit, H.1
Berclaz, J.2
Fleuret, F.3
Fua, P.4
-
6
-
-
0035509961
-
Fast approximate energy minimization via graph cuts
-
2
-
Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23 (11): 1222-1239, 2001.
-
(2001)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.23
, Issue.11
, pp. 1222-1239
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
8
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
2, 6, 8
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In International Conference for Learning Representations, 2015.
-
(2015)
International Conference for Learning Representations
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.5
-
9
-
-
72349088914
-
A semi-automatic system for ground truth generation of soccer video sequences
-
6, 8
-
T. D'Orazio, M. Leo, N. Mosca, P. Spagnolo, and P. L. Mazzeo. A Semi-Automatic System for Ground Truth Generation of Soccer Video Sequences. In International Conference on Advanced Video and Signal Based Surveillance, pages 559-564, 2009.
-
(2009)
International Conference on Advanced Video and Signal Based Surveillance
, pp. 559-564
-
-
D'Orazio, T.1
Leo, M.2
Mosca, N.3
Spagnolo, P.4
Mazzeo, P.L.5
-
10
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12: 2121-2159, 2011.
-
(2011)
The Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
11
-
-
84898075653
-
Composite objective mirror descent
-
Citeseer, 3
-
J. C. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari. Composite objective mirror descent. In COLT, pages 14-26. Citeseer, 2010.
-
(2010)
COLT
, pp. 14-26
-
-
Duchi, J.C.1
Shalev-Shwartz, S.2
Singer, Y.3
Tewari, A.4
-
12
-
-
85009857135
-
-
6, 8
-
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascalnetwork. org/challenges/VOC/voc2012/workshop/index.html.
-
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
13
-
-
37549025468
-
Multi-camera people tracking with a probabilistic occupancy map
-
February.
-
F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multi-Camera People Tracking with a Probabilistic Occupancy Map. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30 (2): 267-282, February 2008.
-
(2008)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.30
, Issue.2
, pp. 267-282
-
-
Fleuret, F.1
Berclaz, J.2
Lengagne, R.3
Fua, P.4
-
14
-
-
84937942720
-
Simple MAP inference via low-rank relaxations
-
1, 2, 3, 6, 7
-
R. Frostig, S. Wang, P. Liang, and C. Manning. Simple MAP Inference via Low-Rank Relaxations. In Advances in Neural Information Processing Systems, pages 3077-3085, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3077-3085
-
-
Frostig, R.1
Wang, S.2
Liang, P.3
Manning, C.4
-
16
-
-
84911444093
-
Submodularization for binary pairwise energies
-
IEEE, 2
-
L. Gorelick, Y. Boykov, O. Veksler, I. Ben Ayed, and A. Delong. Submodularization for binary pairwise energies. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 1154-1161. IEEE, 2014.
-
(2014)
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on
, pp. 1154-1161
-
-
Gorelick, L.1
Boykov, Y.2
Veksler, O.3
Ben Ayed, I.4
Delong, A.5
-
17
-
-
84878919168
-
Stochastic variational inference
-
May.
-
M. Hoffman, D. Blei, C. Wang, and J. Paisley. Stochastic Variational Inference. Journal of Machine Learning Research, 14 (1): 1303-1347, May 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.1
Blei, D.2
Wang, C.3
Paisley, J.4
-
18
-
-
84942984745
-
A comparative study of modern inference techniques for structured discrete energy minimization problems
-
2
-
J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr, S. Nowozin, D. Batra, S. Kim, B. X. Kausler, T. Kröger, J. Lellmann, et al. A comparative study of modern inference techniques for structured discrete energy minimization problems. International Journal of Computer Vision, 115 (2): 155-184, 2015.
-
(2015)
International Journal of Computer Vision
, vol.115
, Issue.2
, pp. 155-184
-
-
Kappes, J.H.1
Andres, B.2
Hamprecht, F.A.3
Schnörr, C.4
Nowozin, S.5
Batra, D.6
Kim, S.7
Kausler, B.X.8
Kröger, T.9
Lellmann, J.10
-
19
-
-
84965155990
-
Kullback-leibler proximal variational inference
-
4
-
M. E. Khan, P. Baqué, F. Fleuret, and P. Fua. Kullback-Leibler Proximal Variational Inference. In NIPS, 2015.
-
(2015)
NIPS
-
-
Khan, M.E.1
Baqué, P.2
Fleuret, F.3
Fua, P.4
-
24
-
-
84905661038
-
Parameter learning and convergent inference for dense random fields
-
1, 2, 3, 5, 6, 7
-
P. Krähenbühl and V. Koltun. Parameter Learning and Convergent Inference for Dense Random Fields. In International Conference on Machine Learning, pages 513-521, 2013.
-
(2013)
International Conference on Machine Learning
, pp. 513-521
-
-
Krähenbühl, P.1
Koltun, V.2
-
27
-
-
84856642791
-
Decision tree fields
-
November.
-
S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao, and P. Kholi. Decision Tree Fields. In International Conference on Computer Vision, November 2011.
-
(2011)
International Conference on Computer Vision
-
-
Nowozin, S.1
Rother, C.2
Bagon, S.3
Sharp, T.4
Yao, B.5
Kholi, P.6
-
28
-
-
50549197532
-
Some methods of speeding up the convergence of iteration methods
-
5
-
B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Physics, 4 (5): 1-17, 1964.
-
(1964)
USSR Computational Mathematics and Mathematical Physics
, vol.4
, Issue.5
, pp. 1-17
-
-
Polyak, B.T.1
-
31
-
-
0001286634
-
Entropic proximal mappings with applications to nonlinear programming
-
3
-
M. Teboulle. Entropic proximal mappings with applications to nonlinear programming. Mathematics of Operations Research, 17 (3): pp. 670-690, 1992.
-
(1992)
Mathematics of Operations Research
, vol.17
, Issue.3
, pp. 670-690
-
-
Teboulle, M.1
-
32
-
-
84920255614
-
Filter-based mean-field inference for random fields with higher-order terms and product label-spaces
-
1, 2, 3, 6, 8
-
V. Vineet, J. Warrell, and P. Torr. Filter-Based Mean-Field Inference for Random Fields with Higher-Order Terms and Product Label-Spaces. International Journal of Computer Vision, 110 (3): 290-307, 2014.
-
(2014)
International Journal of Computer Vision
, vol.110
, Issue.3
, pp. 290-307
-
-
Vineet, V.1
Warrell, J.2
Torr, P.3
-
33
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Jan.
-
M. Wainwright and M. Jordan. Graphical Models, Exponential Families, and Variational Inference. Foundations and Trends in Machine Learning, 1 (1-2): 1-305, Jan. 2008.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.1
Jordan, M.2
-
35
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
2
-
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. Torr. Conditional random fields as recurrent neural networks. In International Conference on Computer Vision (ICCV), 2015.
-
(2015)
International Conference on Computer Vision (ICCV)
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.8
|