-
1
-
-
65349103899
-
Blinded by the light: The growing complexity of p53
-
Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413–31.
-
(2009)
Cell
, vol.137
, pp. 413-431
-
-
Vousden, K.H.1
Prives, C.2
-
2
-
-
84877574804
-
Another fork in the road—life or death decisions by the tumour suppressor p53
-
Carvajal LA, Manfredi JJ. Another fork in the road—life or death decisions by the tumour suppressor p53. EMBO Rep 2013; 14: 414–21.
-
(2013)
EMBO Rep
, vol.14
, pp. 414-421
-
-
Carvajal, L.A.1
Manfredi, J.J.2
-
3
-
-
84877311822
-
Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses
-
Kenzelmann Broz D, Mello SS, Bieging KT, Jiang D, Dusek RL, Brady CA, et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev 2013; 27: 1016–31.
-
(2013)
Genes Dev
, vol.27
, pp. 1016-1031
-
-
Kenzelmann Broz, D.1
Mello, S.S.2
Bieging, K.T.3
Jiang, D.4
Dusek, R.L.5
Brady, C.A.6
-
4
-
-
84899622427
-
Unravelling mechanisms of p53- mediated tumour suppression
-
Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53- mediated tumour suppression. Nat Rev 2014; 14: 359–70.
-
(2014)
Nat Rev
, vol.14
, pp. 359-370
-
-
Bieging, K.T.1
Mello, S.S.2
Attardi, L.D.3
-
5
-
-
79955795151
-
Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression
-
Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 2011; 145: 571–83.
-
(2011)
Cell
, vol.145
, pp. 571-583
-
-
Brady, C.A.1
Jiang, D.2
Mello, S.S.3
Johnson, T.M.4
Jarvis, L.A.5
Kozak, M.M.6
-
6
-
-
84878546043
-
P53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa
-
Valente LJ, Gray Daniel HD, Michalak EM, Pinon-Hofbauer J, Egle A, Scott Clare L, et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep 2013; 3: 1339–45.
-
(2013)
Cell Rep
, vol.3
, pp. 1339-1345
-
-
Valente, L.J.1
Gray Daniel, H.D.2
Michalak, E.M.3
Pinon-Hofbauer, J.4
Egle, A.5
Scott Clare, L.6
-
7
-
-
84878582588
-
P53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo
-
Timofeev O, Schlereth K, Wanzel M, Braun A, Nieswandt B, Pagenstecher A, et al. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep 2013; 3: 1512–25.
-
(2013)
Cell Rep
, vol.3
, pp. 1512-1525
-
-
Timofeev, O.1
Schlereth, K.2
Wanzel, M.3
Braun, A.4
Nieswandt, B.5
Pagenstecher, A.6
-
8
-
-
84861973567
-
Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence
-
Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 2012; 149: 1269–83.
-
(2012)
Cell
, vol.149
, pp. 1269-1283
-
-
Li, T.1
Kon, N.2
Jiang, L.3
Tan, M.4
Ludwig, T.5
Zhao, Y.6
-
9
-
-
0030998441
-
CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein
-
Prasad KV, Ao Z, Yoon Y, Wu MX, Rizk M, Jacquot S, et al. CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein. Proc Natl Acad Sci U S A 1997; 94: 6346–51.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 6346-6351
-
-
Prasad, K.V.1
Ao, Z.2
Yoon, Y.3
Wu, M.X.4
Rizk, M.5
Jacquot, S.6
-
10
-
-
0036947870
-
GITR interacts with the pro-apoptotic protein Siva and induces apoptosis
-
Spinicelli S, Nocentini G, Ronchetti S, Krausz LT, Bianchini R, Riccardi C. GITR interacts with the pro-apoptotic protein Siva and induces apoptosis. Cell Death Differ 2002; 9: 1382–4.
-
(2002)
Cell Death Differ
, vol.9
, pp. 1382-1384
-
-
Spinicelli, S.1
Nocentini, G.2
Ronchetti, S.3
Krausz, L.T.4
Bianchini, R.5
Riccardi, C.6
-
11
-
-
34250705250
-
Siva is an apoptosis- selective p53 target gene important for neuronal cell death
-
Jacobs S, Basak S, Murray JL, Pathak N, Attardi LD. Siva is an apoptosis- selective p53 target gene important for neuronal cell death. Cell Death Differ 2007; 14: 1374–85.
-
(2007)
Cell Death Differ
, vol.14
, pp. 1374-1385
-
-
Jacobs, S.1
Basak, S.2
Murray, J.L.3
Pathak, N.4
Attardi, L.D.5
-
12
-
-
3142546882
-
The proapoptotic gene Siva is a direct transcriptional target for the tumor suppressors p53 and E2F1
-
Fortin A, Maclaurin JG, Arbour N, Cregan SP, Kushwaha N, Callaghan SM, et al. The proapoptotic gene Siva is a direct transcriptional target for the tumor suppressors p53 and E2F1. J Biol Chem 2004; 279: 28706–14.
-
(2004)
J Biol Chem
, vol.279
, pp. 28706-28714
-
-
Fortin, A.1
Maclaurin, J.G.2
Arbour, N.3
Cregan, S.P.4
Kushwaha, N.5
Callaghan, S.M.6
-
13
-
-
1642362507
-
Siva-1 and an alternate splice form lacking the death domain, Siva-2, similarly induce apoptosis in T lymphocytes via a caspase-dependent mitochondrial pathway
-
Py B, Slomianny C, Auberger P, Petit PX, Benichou S. Siva-1 and an alternate splice form lacking the death domain, Siva-2, similarly induce apoptosis in T lymphocytes via a caspase-dependent mitochondrial pathway. J Immunol 2004; 172: 4008–17.
-
(2004)
J Immunol
, vol.172
, pp. 4008-4017
-
-
Py, B.1
Slomianny, C.2
Auberger, P.3
Petit, P.X.4
Benichou, S.5
-
14
-
-
70350025180
-
Suppression of p53 activity by Siva1
-
Du W, Jiang P, Li N, Mei Y, Wang X, Wen L, et al. Suppression of p53 activity by Siva1. Cell Death Differ 2009; 16: 1493–504.
-
(2009)
Cell Death Differ
, vol.16
, pp. 1493-1504
-
-
Du, W.1
Jiang, P.2
Li, N.3
Mei, Y.4
Wang, X.5
Wen, L.6
-
15
-
-
84875909623
-
Siva1 inhibits p53 function by acting as an ARF E3 ubiquitin ligase
-
Wang X, Zha M, Zhao X, Jiang P, Du W, Tam A, et al. Siva1 inhibits p53 function by acting as an ARF E3 ubiquitin ligase. Nat Commun 2013; 4: 1551.
-
(2013)
Nat Commun
, vol.4
, pp. 1551
-
-
Wang, X.1
Zha, M.2
Zhao, X.3
Jiang, P.4
Du, W.5
Tam, A.6
-
16
-
-
0033789016
-
Identification of THW, a putative new tumor suppressor gene
-
Hildebrandt T, Preiherr J, Tarbe N, Klostermann S, Van Muijen GN, Weidle UH. Identification of THW, a putative new tumor suppressor gene. Anticancer Res 2000; 20: 2801–9.
-
(2000)
Anticancer Res
, vol.20
, pp. 2801-2809
-
-
Hildebrandt, T.1
Preiherr, J.2
Tarbe, N.3
Klostermann, S.4
Van Muijen, G.N.5
Weidle, U.H.6
-
17
-
-
28544432790
-
The differential effects of mutant p53 alleles on advanced murine lung cancer
-
Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M, et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res 2005; 65: 10280–8.
-
(2005)
Cancer Res
, vol.65
, pp. 10280-10288
-
-
Jackson, E.L.1
Olive, K.P.2
Tuveson, D.A.3
Bronson, R.4
Crowley, D.5
Brown, M.6
-
18
-
-
68149157175
-
Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase
-
Dupage M, Dooley AL, Jacks T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 2009; 4: 1064–72.
-
(2009)
Nat Protoc
, vol.4
, pp. 1064-1072
-
-
Dupage, M.1
Dooley, A.L.2
Jacks, T.3
-
19
-
-
84869219069
-
Crossspecies functional analysis of cancer-associated fibroblasts identifies a critical role for Clcf1 and Il-6 in non–small cell lung cancer in vivo
-
Vicent S, Sayles LC, Vaka D, Khatri P, Gevaert O, Chen R, et al. Crossspecies functional analysis of cancer-associated fibroblasts identifies a critical role for Clcf1 and Il-6 in non–small cell lung cancer in vivo. Cancer Res 2012; 72: 5744–56.
-
(2012)
Cancer Res
, vol.72
, pp. 5744-5756
-
-
Vicent, S.1
Sayles, L.C.2
Vaka, D.3
Khatri, P.4
Gevaert, O.5
Chen, R.6
-
20
-
-
84860903681
-
Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovariancancer using microarray data from 1287 patients
-
Györffy B, Lánczky A, Szállási Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovariancancer using microarray data from 1287 patients. Endocr Relat Cancer 2012; 19: 197–208.
-
(2012)
Endocr Relat Cancer
, vol.19
, pp. 197-208
-
-
Györffy, B.1
Lánczky, A.2
Szállási, Z.3
-
21
-
-
84893181929
-
Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non–small-cell lung cancer
-
Györffy B, Surowiak P, Budczies J, Lánczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non–small-cell lung cancer. PLoS ONE 2013; 8: E82241.
-
(2013)
Plos ONE
, vol.8
-
-
Györffy, B.1
Surowiak, P.2
Budczies, J.3
Lánczky, A.4
-
22
-
-
84875208605
-
Mechanism and in vitro pharmacology of TAK1 inhibition by (5z)-7-oxozeaenol
-
Wu J, Powell F, Larsen NA, Lai Z, Byth KF, Read J, et al. Mechanism and in vitro pharmacology of TAK1 inhibition by (5z)-7-oxozeaenol. ACS Chem Biol 2012; 8: 643–50.
-
(2012)
ACS Chem Biol
, vol.8
, pp. 643-650
-
-
Wu, J.1
Powell, F.2
Larsen, N.A.3
Lai, Z.4
Byth, K.F.5
Read, J.6
-
23
-
-
69549113279
-
Siva1 is a xiap-interacting protein that balances NF{Kappa}B and JNK signalling to promote apoptosis
-
Resch U, Schichl YM, Winsauer G, Gudi R, Prasad K, De Martin R. Siva1 is a xiap-interacting protein that balances NF{Kappa}B and JNK signalling to promote apoptosis. J Cell Sci 2009; 122: 2651–61.
-
(2009)
J Cell Sci
, vol.122
, pp. 2651-2661
-
-
Resch, U.1
Schichl, Y.M.2
Winsauer, G.3
Gudi, R.4
Prasad, K.5
De Martin, R.6
-
24
-
-
34347344990
-
AMBRA1 regulates autophagy and development of the nervous system
-
Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, et al. AMBRA1 regulates autophagy and development of the nervous system. Nature 2007; 447: 1121–5.
-
(2007)
Nature
, vol.447
, pp. 1121-1125
-
-
Fimia, G.M.1
Stoykova, A.2
Romagnoli, A.3
Giunta, L.4
Di Bartolomeo, S.5
Nardacci, R.6
-
25
-
-
33745751085
-
Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG
-
Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh B-H, et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 2006; 8: 688–98.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 688-698
-
-
Liang, C.1
Feng, P.2
Ku, B.3
Dotan, I.4
Canaani, D.5
Oh, B.-H.6
-
26
-
-
0033485542
-
NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase
-
Pomerantz JL, Baltimore D. NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J 1999; 18: 6694–704.
-
(1999)
EMBO J
, vol.18
, pp. 6694-6704
-
-
Pomerantz, J.L.1
Baltimore, D.2
-
27
-
-
84912123676
-
Growing knowledge of the mTOR signaling network
-
Huang K, Fingar DC. Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol 2014; 36: 79–90.
-
(2014)
Semin Cell Dev Biol
, vol.36
, pp. 79-90
-
-
Huang, K.1
Fingar, D.C.2
-
28
-
-
77949655175
-
TSC1 loss synergizes with KRAS activation in lung cancer development in the mouse and confers rapamycin sensitivity
-
Liang MC, Ma J, Chen L, Kozlowski P, Qin W, Li D, et al. TSC1 loss synergizes with KRAS activation in lung cancer development in the mouse and confers rapamycin sensitivity. Oncogene 2010; 29: 1588–97.
-
(2010)
Oncogene
, vol.29
, pp. 1588-1597
-
-
Liang, M.C.1
Ma, J.2
Chen, L.3
Kozlowski, P.4
Qin, W.5
Li, D.6
-
29
-
-
84859090262
-
Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice
-
Menon S, Yecies JL, Zhang HH, Howell JJ, Nicholatos J, Harputlugil E, et al. Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci Signal 2012; 5: ra24.
-
(2012)
Sci Signal
, vol.5
, pp. 24
-
-
Menon, S.1
Yecies, J.L.2
Zhang, H.H.3
Howell, J.J.4
Nicholatos, J.5
Harputlugil, E.6
-
30
-
-
84892882660
-
A dual role for autophagy in a murine model of lung cancer
-
Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R, et al. A dual role for autophagy in a murine model of lung cancer. Nat Commun 2014; 5: 3056.
-
(2014)
Nat Commun
, vol.5
, pp. 3056
-
-
Rao, S.1
Tortola, L.2
Perlot, T.3
Wirnsberger, G.4
Novatchkova, M.5
Nitsch, R.6
-
31
-
-
0032802177
-
E2F1 has both oncogenic and tumor-suppressive properties in a transgenic model
-
Pierce AM, Schneider-Broussard R, Gimenez-Conti IB, Russell JL, Conti CJ, Johnson DG. E2F1 has both oncogenic and tumor-suppressive properties in a transgenic model. Mol Cell Biol 1999; 19: 6408–14.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 6408-6414
-
-
Pierce, A.M.1
Schneider-Broussard, R.2
Gimenez-Conti, I.B.3
Russell, J.L.4
Conti, C.J.5
Johnson, D.G.6
-
32
-
-
84878981053
-
TIGAR is required for efficient intestinal regeneration and tumorigenesis
-
Cheung EC, Athineos D, Lee P, Ridgway RA, Lambie W, Nixon C, et al. TIGAR is required for efficient intestinal regeneration and tumorigenesis. Dev Cell 2013; 25: 463–77.
-
(2013)
Dev Cell
, vol.25
, pp. 463-477
-
-
Cheung, E.C.1
Athineos, D.2
Lee, P.3
Ridgway, R.A.4
Lambie, W.5
Nixon, C.6
-
33
-
-
84904973235
-
TIGAR, TIGAR, burning bright
-
Lee P, Vousden K, Cheung E. TIGAR, TIGAR, burning bright. Cancer Metab 2014; 2: 1.
-
(2014)
Cancer Metab
, vol.2
, pp. 1
-
-
Lee, P.1
Vousden, K.2
Cheung, E.3
-
34
-
-
84887415150
-
MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
-
Morita M, Gravel S-P, Chénard V, Sikström K, Zheng L, Alain T, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 2013; 18: 698–711.
-
(2013)
Cell Metab
, vol.18
, pp. 698-711
-
-
Morita, M.1
Gravel, S.-P.2
Chénard, V.3
Sikström, K.4
Zheng, L.5
Alain, T.6
-
35
-
-
33748752151
-
The mammalian target of rapamycin (MTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity
-
Schieke SM, Phillips D, Mccoy JP, Aponte AM, Shen R-F, Balaban RS, et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006; 281: 27643–52.
-
(2006)
J Biol Chem
, vol.281
, pp. 27643-27652
-
-
Schieke, S.M.1
Phillips, D.2
McCoy, J.P.3
Aponte, A.M.4
Shen, R.-F.5
Balaban, R.S.6
-
36
-
-
80053476420
-
The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
-
Egan D, Kim J, Shaw RJ, Guan K-L. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011; 7: 643–4.
-
(2011)
Autophagy
, vol.7
, pp. 643-644
-
-
Egan, D.1
Kim, J.2
Shaw, R.J.3
Guan, K.-L.4
-
37
-
-
84894523716
-
Making new contacts: The mTOR network in metabolism and signalling crosstalk
-
Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 2014; 15: 155–62.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 155-162
-
-
Shimobayashi, M.1
Hall, M.N.2
-
38
-
-
84873560331
-
Negative regulation of mTOR activity by LKB1-AMPK signaling in non–small cell lung cancer cells
-
Dong L-X, Sun L-L, Zhang X, Pan L, Lian L-J, Chen Z, et al. Negative regulation of mTOR activity by LKB1-AMPK signaling in non–small cell lung cancer cells. Acta Pharmacol Sin 2013; 34: 314–8.
-
(2013)
Acta Pharmacol Sin
, vol.34
, pp. 314-318
-
-
Dong, L.-X.1
Sun, L.-L.2
Zhang, X.3
Pan, L.4
Lian, L.-J.5
Chen, Z.6
-
39
-
-
12944303650
-
Growth factor regulation of autophagy and cell survival in the absence of apoptosis
-
Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005; 120: 237–48.
-
(2005)
Cell
, vol.120
, pp. 237-248
-
-
Lum, J.J.1
Bauer, D.E.2
Kong, M.3
Harris, M.H.4
Li, C.5
Lindsten, T.6
-
40
-
-
33845974091
-
Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling
-
Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE, et al. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem 2006; 281: 36883–90.
-
(2006)
J Biol Chem
, vol.281
, pp. 36883-36890
-
-
Kim, K.W.1
Mutter, R.W.2
Cao, C.3
Albert, J.M.4
Freeman, M.5
Hallahan, D.E.6
-
41
-
-
37249087334
-
The mitochondrial respiratory chain is a modulator of apoptosis
-
Kwong JQ, Henning MS, Starkov AA, Manfredi G. The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol 2007; 179: 1163–77.
-
(2007)
J Cell Biol
, vol.179
, pp. 1163-1177
-
-
Kwong, J.Q.1
Henning, M.S.2
Starkov, A.A.3
Manfredi, G.4
-
42
-
-
77954586489
-
Inhibition of mitochondrial respiration mediates apoptosis induced by the anti-tumoral alkaloid lamellarin D
-
Ballot C, Kluza J, Lancel S, Martoriati A, Hassoun S, Mortier L, et al. Inhibition of mitochondrial respiration mediates apoptosis induced by the anti-tumoral alkaloid lamellarin D. Apoptosis 2010; 15: 769–81.
-
(2010)
Apoptosis
, vol.15
, pp. 769-781
-
-
Ballot, C.1
Kluza, J.2
Lancel, S.3
Martoriati, A.4
Hassoun, S.5
Mortier, L.6
-
43
-
-
84870527124
-
TBK1 kinase addiction in lung cancer cells is mediated via autophagy of TAX1BP1/NDP52 and non-canonical NF-κB signalling
-
Newman AC, Scholefield CL, Kemp AJ, Newman M, Mciver EG, Kamal A, et al. TBK1 kinase addiction in lung cancer cells is mediated via autophagy of TAX1BP1/NDP52 and non-canonical NF-κB signalling. PLoS ONE 2012; 7: E50672.
-
(2012)
Plos ONE
, vol.7
-
-
Newman, A.C.1
Scholefield, C.L.2
Kemp, A.J.3
Newman, M.4
McIver, E.G.5
Kamal, A.6
-
44
-
-
84884366121
-
TBK1 regulates prostate cancer dormancy through mTOR inhibition
-
Kim JK, Jung Y, Wang J, Joseph J, Mishra A, Hill EE, et al. TBK1 regulates prostate cancer dormancy through mTOR inhibition. Neoplasia 2013; 15: 1064–74.
-
(2013)
Neoplasia
, vol.15
, pp. 1064-1074
-
-
Kim, J.K.1
Jung, Y.2
Wang, J.3
Joseph, J.4
Mishra, A.5
Hill, E.E.6
-
45
-
-
77951837150
-
The HIPPO–YAP pathway in organ size control and tumorigenesis: An updated version
-
Zhao B, Li L, Lei Q, Guan K-L. The HIPPO–YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 2010; 24: 862–74.
-
(2010)
Genes Dev
, vol.24
, pp. 862-874
-
-
Zhao, B.1
Li, L.2
Lei, Q.3
Guan, K.-L.4
-
46
-
-
84870610975
-
YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing pTEN via miR-29
-
Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, M ahadevan N, et al. YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing pTEN via miR-29. Nat Cell Biol 2012; 14: 1322–9.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 1322-1329
-
-
Tumaneng, K.1
Schlegelmilch, K.2
Russell, R.C.3
Yimlamai, D.4
Basnet, H.5
M Ahadevan, N.6
-
47
-
-
50149092414
-
BMI1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion
-
Dovey JS, Zacharek SJ, Kim CF, Lees JA. BMI1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proc Natl Acad Sci U S A 2008; 105: 11857–62.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 11857-11862
-
-
Dovey, J.S.1
Zacharek, S.J.2
Kim, C.F.3
Lees, J.A.4
-
48
-
-
67349156082
-
BMI1 regulates mitochondrial function and the DNA damage response pathway
-
Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C, et al. BMI1 regulates mitochondrial function and the DNA damage response pathway. Nature 2009; 459: 387–92.
-
(2009)
Nature
, vol.459
, pp. 387-392
-
-
Liu, J.1
Cao, L.2
Chen, J.3
Song, S.4
Lee, I.H.5
Quijano, C.6
-
49
-
-
32944478995
-
Sulforhodamine B assay and chemosensitivity
-
Blumenthal R, editor, Totowa, NJ: Humana Press
-
Voigt W. Sulforhodamine B assay and chemosensitivity. In: Blumenthal R, editor. Chemosensitivity. Totowa, NJ: Humana Press; 2005. p. 39–48.
-
(2005)
Chemosensitivity
, pp. 39-48
-
-
Voigt, W.1
-
50
-
-
27344435774
-
Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
-
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005; 102: 15545–50.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 15545-15550
-
-
Subramanian, A.1
Tamayo, P.2
Mootha, V.K.3
Mukherjee, S.4
Ebert, B.L.5
Gillette, M.A.6
|