-
1
-
-
0034857154
-
Learning the semantics of words and pictures
-
K. Barnard and D. Forsyth. Learning the semantics of words and pictures. In ICCV, 2001.
-
(2001)
ICCV
-
-
Barnard, K.1
Forsyth, D.2
-
3
-
-
84866726859
-
Understanding and predicting importance in images
-
A. C. Berg, T. L. Berg, H. Daume III, J. Dodge, A. Goyal, X. Han, A. Mensch, M. Mitchell, A. Sood, K. Stratos, et al. Understanding and predicting importance in images. In CVPR, 2012.
-
(2012)
CVPR
-
-
Berg, A.C.1
Berg, T.L.2
Daume, H.3
Dodge, J.4
Goyal, A.5
Han, X.6
Mensch, A.7
Mitchell, M.8
Sood, A.9
Stratos, K.10
-
4
-
-
84882935115
-
What stands out in a scene? a study of human explicit saliency judgment
-
A. Borji, D. N. Sihite, and L. Itti. What stands out in a scene? a study of human explicit saliency judgment. Vision research, 91, 2013.
-
(2013)
Vision Research
, vol.91
-
-
Borji, A.1
Sihite, D.N.2
Itti, L.3
-
5
-
-
84907029503
-
Modeling delayed feedback in display advertising
-
O. Chapelle. Modeling delayed feedback in display advertising. In KDD, 2014.
-
(2014)
KDD
-
-
Chapelle, O.1
-
6
-
-
84952349295
-
-
arXiv preprint arXiv:1504.00325
-
X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollar, and C. L. Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint arXiv:1504.00325, 2015.
-
(2015)
Microsoft Coco Captions: Data Collection and Evaluation Server
-
-
Chen, X.1
Fang, H.2
Lin, T.-Y.3
Vedantam, R.4
Gupta, S.5
Dollar, P.6
Zitnick, C.L.7
-
8
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L. jia Li, K. Li, and L. Feifei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Jia Li, L.4
Li, K.5
Feifei, L.6
-
9
-
-
84959236502
-
Long-term recurrent convolutional networks for visual recognition and description
-
J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. In CVPR, 2015.
-
(2015)
CVPR
-
-
Donahue, J.1
Hendricks, L.A.2
Guadarrama, S.3
Rohrbach, M.4
Venugopalan, S.5
Saenko, K.6
Darrell, T.7
-
10
-
-
58149180961
-
Learning classifiers from only positive and unlabeled data
-
C. Elkan and K. Noto. Learning classifiers from only positive and unlabeled data. In SIGKDD, 2008.
-
(2008)
SIGKDD
-
-
Elkan, C.1
Noto, K.2
-
12
-
-
84959250180
-
From captions to visual concepts and back
-
H. Fang, S. Gupta, F. N. Iandola, R. Srivastava, L. Deng, P. Dollár, J. Gao, X. He, M. Mitchell, J. C. Platt, C. L. Zitnick, and G. Zweig. From captions to visual concepts and back. In CVPR, 2015.
-
(2015)
CVPR
-
-
Fang, H.1
Gupta, S.2
Iandola, F.N.3
Srivastava, R.4
Deng, L.5
Dollár, P.6
Gao, J.7
He, X.8
Mitchell, M.9
Platt, J.C.10
Zitnick, C.L.11
Zweig, G.12
-
13
-
-
77955655063
-
Semi-supervised learning in gigantic image collections
-
R. Fergus, Y.Weiss, and A. Torralba. Semi-supervised learning in gigantic image collections. In NIPS, 2009.
-
(2009)
NIPS
-
-
Fergus, R.1
Weiss, Y.2
Torralba, A.3
-
14
-
-
84899651693
-
Classification in the presence of label noise: A survey
-
B. Frénay and M. Verleysen. Classification in the presence of label noise: a survey. NNLS, 25, 2014.
-
(2014)
NNLS
, vol.25
-
-
Frénay, B.1
Verleysen, M.2
-
15
-
-
0019152630
-
Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193-202, 1980.
-
(1980)
Biological Cybernetics
, vol.36
, Issue.4
, pp. 193-202
-
-
Fukushima, K.1
-
19
-
-
84958611219
-
Deep classifiers from image tags in the wild
-
ACM
-
H. Izadinia, B. C. Russell, A. Farhadi, M. D. Hoffman, and A. Hertzmann. Deep classifiers from image tags in the wild. In Workshop on Community-Organized Multimodal Mining: Opportunities for Novel Solutions. ACM, 2015.
-
(2015)
Workshop on Community-Organized Multimodal Mining: Opportunities for Novel Solutions
-
-
Izadinia, H.1
Russell, B.C.2
Farhadi, A.3
Hoffman, M.D.4
Hertzmann, A.5
-
20
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACMM, 2014.
-
(2014)
ACMM
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
22
-
-
0032202014
-
Efficient noise-tolerant learning from statistical queries
-
M. Kearns. Efficient noise-tolerant learning from statistical queries. JACM, 45, 1998.
-
(1998)
JACM
, vol.45
-
-
Kearns, M.1
-
23
-
-
80052410154
-
-
R. Koolen, A. Gatt, M. Goudbeek, and E. Krahmer. Journal of Pragmatics, 43(13):3231-3250, 2011.
-
(2011)
Journal of Pragmatics
, vol.43
, Issue.13
, pp. 3231-3250
-
-
Koolen, R.1
Gatt, A.2
Goudbeek, M.3
Krahmer, E.4
-
24
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
26
-
-
79952448071
-
Design of robust neural network classifiers
-
J. Larsen, L. Nonboe, M. Hintz-Madsen, and L. K. Hansen. Design of robust neural network classifiers. In Acoustics, Speech and Signal Processing, volume 2, 1998.
-
(1998)
Acoustics, Speech and Signal Processing
, vol.2
-
-
Larsen, J.1
Nonboe, L.2
Hintz-Madsen, M.3
Hansen, L.K.4
-
27
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541-551, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
28
-
-
84880798303
-
Learning to classify texts using positive and unlabeled data
-
X. Li and B. Liu. Learning to classify texts using positive and unlabeled data. In IJCAI, volume 3, 2003.
-
(2003)
IJCAI
, vol.3
-
-
Li, X.1
Liu, B.2
-
29
-
-
85009931853
-
Microsoft coco: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV. 2014.
-
(2014)
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
30
-
-
78149306870
-
Building text classifiers using positive and unlabeled examples
-
B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu. Building text classifiers using positive and unlabeled examples. In ICDM, 2003.
-
(2003)
ICDM
-
-
Liu, B.1
Dai, Y.2
Li, X.3
Lee, W.S.4
Yu, P.S.5
-
32
-
-
84890431307
-
Noise tolerance under risk minimization
-
N. Manwani and P. Sastry. Noise tolerance under risk minimization. Cybernetics, 43, 2013.
-
(2013)
Cybernetics
, vol.43
-
-
Manwani, N.1
Sastry, P.2
-
33
-
-
84976702763
-
Wordnet: A lexical database for english
-
G. A. Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39-41, 1995.
-
(1995)
Communications of the ACM
, vol.38
, Issue.11
, pp. 39-41
-
-
Miller, G.A.1
-
34
-
-
84959201998
-
Watch and learn: Semi-supervised learning of object detectors from videos
-
I. Misra, A. Shrivastava, and M. Hebert. Watch and learn: Semi-supervised learning of object detectors from videos. In CVPR, 2015.
-
(2015)
CVPR
-
-
Misra, I.1
Shrivastava, A.2
Hebert, M.3
-
35
-
-
84867136367
-
Learning to label aerial images from noisy data
-
V. Mnih and G. E. Hinton. Learning to label aerial images from noisy data. In ICML, 2012.
-
(2012)
ICML
-
-
Mnih, V.1
Hinton, G.E.2
-
37
-
-
84898030282
-
A study of the effect of different types of noise on the precision of supervised learning techniques
-
D. F. Nettleton, A. Orriols-Puig, and A. Fornells. A study of the effect of different types of noise on the precision of supervised learning techniques. Artificial intelligence review, 33, 2010.
-
(2010)
Artificial Intelligence Review
, vol.33
-
-
Nettleton, D.F.1
Orriols-Puig, A.2
Fornells, A.3
-
38
-
-
85009915143
-
-
NLPcaffe
-
NLPcaffe. http://github.com/Russell91/NLPCaffe.
-
-
-
-
39
-
-
0014824321
-
Language and thought: Aspects of a cognitive theory of semantics
-
D. R. Olson. Language and thought: Aspects of a cognitive theory of semantics. Psychological review, 77, 1970.
-
(1970)
Psychological Review
, vol.77
-
-
Olson, D.R.1
-
40
-
-
84973287072
-
-
arXiv preprint arXiv:1412.6596
-
S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabinovich. Training deep neural networks on noisy labels with bootstrapping. arXiv preprint arXiv:1412.6596, 2014.
-
(2014)
Training Deep Neural Networks on Noisy Labels with Bootstrapping
-
-
Reed, S.1
Lee, H.2
Anguelov, D.3
Szegedy, C.4
Erhan, D.5
Rabinovich, A.6
-
41
-
-
79957911517
-
Principles of categorization
-
E. Rosch. Principles of categorization. Concepts: core readings, pages 189-206, 1999.
-
(1999)
Concepts: Core Readings
, pp. 189-206
-
-
Rosch, E.1
-
43
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 115, 2015.
-
(2015)
IJCV
, vol.115
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
44
-
-
0037944172
-
Pragmatic versus form-based accounts of referential contrast: Evidence for effects of informativity expectations
-
J. C. Sedivy. Pragmatic versus form-based accounts of referential contrast: Evidence for effects of informativity expectations. Journal of psycholinguistic research, 32(1), 2003.
-
(2003)
Journal of Psycholinguistic Research
, vol.32
, Issue.1
-
-
Sedivy, J.C.1
-
45
-
-
84887386223
-
Constrained semisupervised learning using attributes and comparative attributes
-
A. Shrivastava, S. Singh, and A. Gupta. Constrained semisupervised learning using attributes and comparative attributes. In ECCV. 2012.
-
(2012)
ECCV
-
-
Shrivastava, A.1
Singh, S.2
Gupta, A.3
-
47
-
-
85083950731
-
Training convolutional networks with noisy labels
-
S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, and R. Fergus. Training convolutional networks with noisy labels. In ICLR Workshop, 2015.
-
(2015)
ICLR Workshop
-
-
Sukhbaatar, S.1
Bruna, J.2
Paluri, M.3
Bourdev, L.4
Fergus, R.5
-
48
-
-
0008456989
-
On locating objects by their distinguishing features in multisensory images
-
J. M. Tenenbaum. On locating objects by their distinguishing features in multisensory images. Computer Graphics and Image Processing, 2, 1973.
-
(1973)
Computer Graphics and Image Processing
, vol.2
-
-
Tenenbaum, J.M.1
-
49
-
-
84949572890
-
-
arXiv preprint arXiv:1503.01817
-
B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li. The new data and new challenges in multimedia research. arXiv preprint arXiv:1503.01817, 2015.
-
(2015)
The New Data and New Challenges in Multimedia Research
-
-
Thomee, B.1
Shamma, D.A.2
Friedland, G.3
Elizalde, B.4
Ni, K.5
Poland, D.6
Borth, D.7
Li, L.-J.8
-
50
-
-
84898832240
-
Attribute dominance: What pops out
-
N. Turakhia and D. Parikh. Attribute dominance: What pops out? In ICCV, 2013.
-
(2013)
ICCV
-
-
Turakhia, N.1
Parikh, D.2
-
52
-
-
45549083257
-
Multiple instance boosting for object detection
-
P. Viola, J. C. Platt, and C. Zhang. Multiple instance boosting for object detection. In NIPS, 2006.
-
(2006)
NIPS
-
-
Viola, P.1
Platt, J.C.2
Zhang, C.3
-
53
-
-
84977171844
-
Stored object knowledge and the production of referring expressions: The case of color typicality
-
H. Westerbeek, R. Koolen, and A. Maes. Stored object knowledge and the production of referring expressions: The case of color typicality. Frontiers in Psychology, 6, 2015.
-
(2015)
Frontiers in Psychology
, vol.6
-
-
Westerbeek, H.1
Koolen, R.2
Maes, A.3
-
54
-
-
84959207049
-
Learning from massive noisy labeled data for image classification
-
T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang. Learning from massive noisy labeled data for image classification. In CVPR, 2015.
-
(2015)
CVPR
-
-
Xiao, T.1
Xia, T.2
Yang, Y.3
Huang, C.4
Wang, X.5
-
55
-
-
84887396648
-
Studying relationships between human gaze, description, and computer vision
-
K. Yun, Y. Peng, D. Samaras, G. J. Zelinsky, and T. Berg. Studying relationships between human gaze, description, and computer vision. In CVPR, 2013.
-
(2013)
CVPR
-
-
Yun, K.1
Peng, Y.2
Samaras, D.3
Zelinsky, G.J.4
Berg, T.5
-
56
-
-
84899006908
-
Learning with local and global consistency
-
D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency. Advances in neural information processing systems, 16(16):321-328, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, Issue.16
, pp. 321-328
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
58
-
-
1942484430
-
Semi-supervised learning using Gaussian fields and harmonic functions
-
X. Zhu, Z. Ghahramani, J. Lafferty, et al. Semi-supervised learning using Gaussian fields and harmonic functions. In ICML, volume 3, pages 912-919, 2003.
-
(2003)
ICML
, vol.3
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
|