메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 1473-1482

From captions to visual concepts and back

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; COMPUTER VISION; PATTERN RECOGNITION; SEMANTICS; SYNTACTICS;

EID: 84959250180     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298754     Document Type: Conference Paper
Times cited : (1298)

References (51)
  • 5
    • 84898803720 scopus 로고    scopus 로고
    • Neil: Extracting visual knowledge from web data
    • X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge from web data. In ICCV, 2013
    • (2013) ICCV
    • Chen, X.1    Shrivastava, A.2    Gupta, A.3
  • 6
    • 84957029470 scopus 로고    scopus 로고
    • Mind's eye: A recurrent visual representation for image caption generation
    • X. Chen and C. L. Zitnick. Mind's eye: A recurrent visual representation for image caption generation. CVPR, 2015
    • (2015) CVPR
    • Chen, X.1    Zitnick, C.L.2
  • 8
    • 84911368326 scopus 로고    scopus 로고
    • Learning everything about anything: Webly-supervised visual concept learning
    • S. Divvala, A. Farhadi, and C. Guestrin. Learning everything about anything: Webly-supervised visual concept learning. In CVPR, 2014
    • (2014) CVPR
    • Divvala, S.1    Farhadi, A.2    Guestrin, C.3
  • 10
    • 84906928552 scopus 로고    scopus 로고
    • Comparing automatic evaluation measures for image description
    • D. Elliott and F. Keller. Comparing automatic evaluation measures for image description. In ACL, 2014
    • (2014) ACL
    • Elliott, D.1    Keller, F.2
  • 13
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 14
    • 84911427286 scopus 로고    scopus 로고
    • Using k-poselets for detecting people and localizing their keypoints
    • G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. Using k-poselets for detecting people and localizing their keypoints. In CVPR, 2014
    • (2014) CVPR
    • Gkioxari, G.1    Hariharan, B.2    Girshick, R.3    Malik, J.4
  • 15
    • 84883394520 scopus 로고    scopus 로고
    • Framing image description as a ranking task: Data, models and evaluation metrics
    • M. Hodosh, P. Young, and J. Hockenmaier. Framing image description as a ranking task: Data, models and evaluation metrics. JAIR, 47:853-899, 2013
    • (2013) JAIR , vol.47 , pp. 853-899
    • Hodosh, M.1    Young, P.2    Hockenmaier, J.3
  • 16
    • 84889566627 scopus 로고    scopus 로고
    • Learning deep structured semantic models for web search using clickthrough data
    • P. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning deep structured semantic models for web search using clickthrough data. In CIKM, 2013
    • (2013) CIKM
    • Huang, P.1    He, X.2    Gao, J.3    Deng, L.4    Acero, A.5    Heck, L.6
  • 18
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. CVPR, 2015
    • (2015) CVPR
    • Karpathy, A.1    Fei-Fei, L.2
  • 21
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 0027252194 scopus 로고
    • Trigger-based language models: A maximum entropy approach
    • R. Lau, R. Rosenfeld, and S. Roukos. Trigger-based language models: A maximum entropy approach. In ICASSP, 1993
    • (1993) ICASSP
    • Lau, R.1    Rosenfeld, R.2    Roukos, S.3
  • 26
    • 84862279067 scopus 로고    scopus 로고
    • Composing simple image descriptions using web-scale n-grams
    • S. Li, G. Kulkarni, T. L. Berg, A. C. Berg, and Y. Choi. Composing simple image descriptions using web-scale n-grams. In CoNLL, 2011
    • (2011) CoNLL
    • Li, S.1    Kulkarni, G.2    Berg, T.L.3    Berg, A.C.4    Choi, Y.5
  • 27
    • 85149140250 scopus 로고    scopus 로고
    • Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics
    • Stroudsburg, PA, USA. Association for Computational Linguistics
    • C.-Y. Lin and F. J. Och. Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, ACL '04, Stroudsburg, PA, USA, 2004. Association for Computational Linguistics
    • (2004) Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, ACL '04
    • Lin, C.-Y.1    Och, F.J.2
  • 30
    • 84898935332 scopus 로고    scopus 로고
    • A framework for multipleinstance learning
    • O. Maron and T. Lozano-Pérez. A framework for multipleinstance learning. NIPS, 1998
    • (1998) NIPS
    • Maron, O.1    Lozano-Pérez, T.2
  • 31
    • 84858966958 scopus 로고    scopus 로고
    • Strategies for training large scale neural network language models
    • T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Cernocky. Strategies for training large scale neural network language models. In ASRU, 2011
    • (2011) ASRU
    • Mikolov, T.1    Deoras, A.2    Povey, D.3    Burget, L.4    Cernocky, J.5
  • 33
    • 67650453038 scopus 로고    scopus 로고
    • Three new graphical models for statistical language modelling
    • A. Mnih and G. Hinton. Three new graphical models for statistical language modelling. In ICML, 2007
    • (2007) ICML
    • Mnih, A.1    Hinton, G.2
  • 34
    • 84867118996 scopus 로고    scopus 로고
    • A fast and simple algorithm for training neural probabilistic language models
    • A. Mnih and Y. W. Teh. A fast and simple algorithm for training neural probabilistic language models. In ICML, 2012
    • (2012) ICML
    • Mnih, A.1    Teh, Y.W.2
  • 35
    • 84944098666 scopus 로고    scopus 로고
    • Minimum error rate training in statistical machine translation
    • F. J. Och. Minimum error rate training in statistical machine translation. In ACL, 2003
    • (2003) ACL
    • Och, F.J.1
  • 36
    • 85162522202 scopus 로고    scopus 로고
    • Im2text: Describing images using 1 million captioned photographs
    • V. Ordonez, G. Kulkarni, and T. L. Berg. Im2text: Describing images using 1 million captioned photographs. In NIPS, 2011
    • (2011) NIPS
    • Ordonez, V.1    Kulkarni, G.2    Berg, T.L.3
  • 37
    • 85133336275 scopus 로고    scopus 로고
    • Bleu: A method for automatic evaluation of machine translation
    • K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine translation. In ACL, 2002
    • (2002) ACL
    • Papineni, K.1    Roukos, S.2    Ward, T.3    Zhu, W.-J.4
  • 39
    • 84896359701 scopus 로고    scopus 로고
    • Trainable methods for surface natural language generation
    • A. Ratnaparkhi. Trainable methods for surface natural language generation. In NAACL, 2000
    • (2000) NAACL
    • Ratnaparkhi, A.1
  • 40
    • 0036663624 scopus 로고    scopus 로고
    • Trainable approaches to surface natural language generation and their application to conversational dialog systems
    • A. Ratnaparkhi. Trainable approaches to surface natural language generation and their application to conversational dialog systems. Computer Speech & Language, 16(3):435-455, 2002
    • (2002) Computer Speech & Language , vol.16 , Issue.3 , pp. 435-455
    • Ratnaparkhi, A.1
  • 41
    • 84928315948 scopus 로고    scopus 로고
    • A latent semantic model with convolutional-pooling structure for information retrieval
    • Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. A latent semantic model with convolutional-pooling structure for information retrieval. In CIKM, 2014
    • (2014) CIKM
    • Shen, Y.1    He, X.2    Gao, J.3    Deng, L.4    Mesnil, G.5
  • 43
    • 84928030723 scopus 로고    scopus 로고
    • Grounded compositional semantics for finding and describing images with sentences
    • R. Socher, Q. Le, C. Manning, and A. Ng. Grounded compositional semantics for finding and describing images with sentences. In NIPS Deep Learning Workshop, 2013
    • (2013) NIPS Deep Learning Workshop
    • Socher, R.1    Le, Q.2    Manning, C.3    Ng, A.4
  • 45
    • 84946747440 scopus 로고    scopus 로고
    • Show and tell: A neural image caption generator
    • O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. CVPR, 2015
    • (2015) CVPR
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4
  • 47
    • 80053258778 scopus 로고    scopus 로고
    • Corpus-guided sentence generation of natural images
    • Y. Yang, C. L. Teo, H. Daumé III, and Y. Aloimonos. Corpus-guided sentence generation of natural images. In EMNLP, 2011
    • (2011) EMNLP
    • Yang, Y.1    Teo, C.L.2    Daumé, H.3    Aloimonos, Y.4
  • 49
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • C. Zhang, J. C. Platt, and P. A. Viola. Multiple instance boosting for object detection. In NIPS, 2005
    • (2005) NIPS
    • Zhang, C.1    Platt, J.C.2    Viola, P.A.3
  • 50
    • 84952018709 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014
    • (2014) ECCV
    • Zitnick, C.L.1    Dollár, P.2
  • 51
    • 84887338442 scopus 로고    scopus 로고
    • Bringing semantics into focus using visual abstraction
    • C. L. Zitnick and D. Parikh. Bringing semantics into focus using visual abstraction. In CVPR, 2013.
    • (2013) CVPR
    • Zitnick, C.L.1    Parikh, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.