메뉴 건너뛰기




Volumn 33, Issue 4, 2010, Pages 275-306

A study of the effect of different types of noise on the precision of supervised learning techniques

Author keywords

Attribute noise; Class noise; Machine learning techniques; Noise impacts

Indexed keywords

DATA MINING; DECISION TREES; LEARNING ALGORITHMS; MACHINE LEARNING; SUPERVISED LEARNING;

EID: 84898030282     PISSN: 02692821     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10462-010-9156-z     Document Type: Article
Times cited : (382)

References (27)
  • 2
    • 0000217085 scopus 로고
    • Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms
    • Aha DW (1992) Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms. Int J Man-Mach Stud 36:267-287
    • (1992) Int J Man-Mach Stud , vol.36 , pp. 267-287
    • Aha, D.W.1
  • 3
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • Angluin D, Laird P (1988) Learning from noisy examples. Mach Learn 2(4):343-370
    • (1988) Mach Learn , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 4
    • 55349138530 scopus 로고    scopus 로고
    • Available by anonymous ftp to ics.uci.edu in the pub/machine-learning- databases directory. University of California
    • Asuncion A, Newman DJ (2007) UCI repository of machine learning databases. Available by anonymous ftp to ics.uci.edu in the pub/machine- learning-databases directory. University of California
    • (2007) UCI Repository of Machine Learning Databases
    • Asuncion, A.1    Newman, D.J.2
  • 5
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • FriedmanM (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675-701
    • (1937) J Am Stat Assoc , vol.32 , pp. 675-701
    • Friedman, M.1
  • 6
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem ofmrankings
    • FriedmanM (1940) A comparison of alternative tests of significance for the problem ofmrankings. Ann Math Stat 11:86-92
    • (1940) Ann Math Stat , vol.11 , pp. 86-92
    • Friedman, M.1
  • 8
    • 0013411860 scopus 로고
    • Can PAC learning algorithms tolerate random attribute noise
    • Springer, New York)
    • Goldman SA, Sloan RH (1995) Can PAC learning algorithms tolerate random attribute noise. Algorithmica 14(1):70-84 (Springer, New York)
    • (1995) Algorithmica , vol.14 , Issue.1 , pp. 70-84
    • Goldman, S.A.1    Sloan, R.H.2
  • 12
    • 0032202014 scopus 로고    scopus 로고
    • Efficient noise-tolerant learning from statistical queries
    • Kearns M (1998) Efficient noise-tolerant learning from statistical queries. J ACM 45(6):983-1006
    • (1998) J ACM , vol.45 , Issue.6 , pp. 983-1006
    • Kearns, M.1
  • 14
    • 84898021469 scopus 로고    scopus 로고
    • Overcoming noise in data-acquisition systems (WEBCAST)
    • Nelson R (2005) Overcoming noise in data-acquisition systems (WEBCAST). Test MeasWorld. http://www.tmworld.com/article/319648-Overcomming-noise-in-data- acquisition-systems.php
    • (2005) Test MeasWorld
    • Nelson, R.1
  • 15
    • 0035448529 scopus 로고    scopus 로고
    • A comparison of active set method and genetic algorithm approaches for learning weighting vectors in some aggregation operators
    • DOI 10.1002/int.1050
    • Nettleton D, Torra V (2001) A comparison of active set method and genetic algorithm approaches for learning weighting vectors in some aggregation operators. Int J Intel Syst 16(9):1069-1083 (Pubitemid 32827322)
    • (2001) International Journal of Intelligent Systems , vol.16 , Issue.9 , pp. 1069-1083
    • Nettleton, D.1    Torra, V.2
  • 16
    • 0034879650 scopus 로고    scopus 로고
    • Processing and representation of meta-data for sleep apnea diagnosis with an artificial intelligence approach
    • DOI 10.1016/S1386-5056(01)00173-3, PII S1386505601001733
    • Nettleton D, Muñiz J (2001) Processing and representation of meta-data for sleep apnea diagnosis with an artificial intelligence approach. Int J Med Inform 63(1-2):77-89 (Pubitemid 32757075)
    • (2001) International Journal of Medical Informatics , vol.63 , Issue.1-2 , pp. 77-89
    • Nettleton, D.1    Muniz, J.2
  • 17
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector Machines using sequential minimal optimization
    • Schölkopf B, Burges CJC, Smola AJ (eds), Chap 12. MIT Press
    • Platt J (1998) Fast training of support vector Machines using sequential minimal optimization. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods-support vector learning, Chap 12. MIT Press, pp 169-185
    • (1998) Advances in Kernel Methods-support Vector Learning , pp. 169-185
    • Platt, J.1
  • 18
    • 33744584654 scopus 로고
    • Induction of decision trees
    • (Kluwer Academic Publishers)
    • Quinlan JR(1986) Induction of decision trees. Mach Learn 1:81-106 (Kluwer Academic Publishers)
    • (1986) Mach Learn , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 21
    • 0000607171 scopus 로고
    • Four types of noise in data for PAC learning
    • Sloan RH (1995) Four types of noise in data for PAC learning. Inform Process Lett 54(3):157-162
    • (1995) Inform Process Lett , vol.54 , Issue.3 , pp. 157-162
    • Sloan, R.H.1
  • 27
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs attribute noise: A quantitative study of their impacts
    • (Kluwer Academic Publishers)
    • Zhu X, Wu X (2004) Class noise vs. attribute noise: a quantitative study of their impacts. Artif Intel Rev 22:177-210 (Kluwer Academic Publishers)
    • (2004) Artif Intel Rev , vol.22 , pp. 177-210
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.