-
2
-
-
0000217085
-
Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms
-
Aha DW (1992) Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms. Int J Man-Mach Stud 36:267-287
-
(1992)
Int J Man-Mach Stud
, vol.36
, pp. 267-287
-
-
Aha, D.W.1
-
3
-
-
0000492326
-
Learning from noisy examples
-
Angluin D, Laird P (1988) Learning from noisy examples. Mach Learn 2(4):343-370
-
(1988)
Mach Learn
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
4
-
-
55349138530
-
-
Available by anonymous ftp to ics.uci.edu in the pub/machine-learning- databases directory. University of California
-
Asuncion A, Newman DJ (2007) UCI repository of machine learning databases. Available by anonymous ftp to ics.uci.edu in the pub/machine- learning-databases directory. University of California
-
(2007)
UCI Repository of Machine Learning Databases
-
-
Asuncion, A.1
Newman, D.J.2
-
5
-
-
84944811700
-
The use of ranks to avoid the assumption of normality implicit in the analysis of variance
-
FriedmanM (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675-701
-
(1937)
J Am Stat Assoc
, vol.32
, pp. 675-701
-
-
Friedman, M.1
-
6
-
-
0001837148
-
A comparison of alternative tests of significance for the problem ofmrankings
-
FriedmanM (1940) A comparison of alternative tests of significance for the problem ofmrankings. Ann Math Stat 11:86-92
-
(1940)
Ann Math Stat
, vol.11
, pp. 86-92
-
-
Friedman, M.1
-
8
-
-
0013411860
-
Can PAC learning algorithms tolerate random attribute noise
-
Springer, New York)
-
Goldman SA, Sloan RH (1995) Can PAC learning algorithms tolerate random attribute noise. Algorithmica 14(1):70-84 (Springer, New York)
-
(1995)
Algorithmica
, vol.14
, Issue.1
, pp. 70-84
-
-
Goldman, S.A.1
Sloan, R.H.2
-
9
-
-
76749092270
-
TheWEKA data mining software: An update
-
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P,Witten, IH (2009) TheWEKA data mining software: an update; SIGKDD Explor 10-18
-
(2009)
SIGKDD Explor
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
12
-
-
0032202014
-
Efficient noise-tolerant learning from statistical queries
-
Kearns M (1998) Efficient noise-tolerant learning from statistical queries. J ACM 45(6):983-1006
-
(1998)
J ACM
, vol.45
, Issue.6
, pp. 983-1006
-
-
Kearns, M.1
-
14
-
-
84898021469
-
Overcoming noise in data-acquisition systems (WEBCAST)
-
Nelson R (2005) Overcoming noise in data-acquisition systems (WEBCAST). Test MeasWorld. http://www.tmworld.com/article/319648-Overcomming-noise-in-data- acquisition-systems.php
-
(2005)
Test MeasWorld
-
-
Nelson, R.1
-
15
-
-
0035448529
-
A comparison of active set method and genetic algorithm approaches for learning weighting vectors in some aggregation operators
-
DOI 10.1002/int.1050
-
Nettleton D, Torra V (2001) A comparison of active set method and genetic algorithm approaches for learning weighting vectors in some aggregation operators. Int J Intel Syst 16(9):1069-1083 (Pubitemid 32827322)
-
(2001)
International Journal of Intelligent Systems
, vol.16
, Issue.9
, pp. 1069-1083
-
-
Nettleton, D.1
Torra, V.2
-
16
-
-
0034879650
-
Processing and representation of meta-data for sleep apnea diagnosis with an artificial intelligence approach
-
DOI 10.1016/S1386-5056(01)00173-3, PII S1386505601001733
-
Nettleton D, Muñiz J (2001) Processing and representation of meta-data for sleep apnea diagnosis with an artificial intelligence approach. Int J Med Inform 63(1-2):77-89 (Pubitemid 32757075)
-
(2001)
International Journal of Medical Informatics
, vol.63
, Issue.1-2
, pp. 77-89
-
-
Nettleton, D.1
Muniz, J.2
-
17
-
-
0003120218
-
Fast training of support vector Machines using sequential minimal optimization
-
Schölkopf B, Burges CJC, Smola AJ (eds), Chap 12. MIT Press
-
Platt J (1998) Fast training of support vector Machines using sequential minimal optimization. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods-support vector learning, Chap 12. MIT Press, pp 169-185
-
(1998)
Advances in Kernel Methods-support Vector Learning
, pp. 169-185
-
-
Platt, J.1
-
18
-
-
33744584654
-
Induction of decision trees
-
(Kluwer Academic Publishers)
-
Quinlan JR(1986) Induction of decision trees. Mach Learn 1:81-106 (Kluwer Academic Publishers)
-
(1986)
Mach Learn
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
21
-
-
0000607171
-
Four types of noise in data for PAC learning
-
Sloan RH (1995) Four types of noise in data for PAC learning. Inform Process Lett 54(3):157-162
-
(1995)
Inform Process Lett
, vol.54
, Issue.3
, pp. 157-162
-
-
Sloan, R.H.1
-
25
-
-
84856681777
-
Top 10 algorithms in data mining
-
Yu S, Zhou ZH, Steinbac M, Hand DJ, Steinberg D (2007) Top 10 algorithms in data mining. Knowl Inform Syst 14(1):1-37
-
(2007)
Knowl Inform Syst
, vol.14
, Issue.1
, pp. 1-37
-
-
Yu, S.1
Zhou, Z.H.2
Steinbac, M.3
Hand, D.J.4
Steinberg, D.5
-
26
-
-
1942484424
-
Eliminating class noise in large datasets
-
Washington, DC
-
Zhu X, Wu X, Chen Q (2003) Eliminating class noise in large datasets. In: Proceedings of the 20th ICML international conference on machine learning, Washington, DC, pp 920-927
-
(2003)
Proceedings of the 20th ICML International Conference on Machine Learning
, pp. 920-927
-
-
Zhu, X.1
Wu, X.2
Chen, Q.3
-
27
-
-
19544372918
-
Class noise vs attribute noise: A quantitative study of their impacts
-
(Kluwer Academic Publishers)
-
Zhu X, Wu X (2004) Class noise vs. attribute noise: a quantitative study of their impacts. Artif Intel Rev 22:177-210 (Kluwer Academic Publishers)
-
(2004)
Artif Intel Rev
, vol.22
, pp. 177-210
-
-
Zhu, X.1
Wu, X.2
|