-
1
-
-
0000492326
-
Learning from noisy examples
-
D. Angluin and P. Laird. Learning from noisy examples. Mach. Learn., 2(4):343-370, 1988.
-
(1988)
Mach. Learn.
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
2
-
-
0013360743
-
On the sample complexity of noise-tolerant learning
-
Javed A. Aslam and Scott E. Decatur. On the sample complexity of noise-tolerant learning. Inf. Process. Lett., 57(4):189-195, 1996.
-
(1996)
Inf. Process. Lett.
, vol.57
, Issue.4
, pp. 189-195
-
-
Aslam, J.A.1
Decatur, S.E.2
-
3
-
-
33645505792
-
Convexity classification, and risk bounds
-
Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473):138-156, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.473
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
6
-
-
85016179756
-
Learning linear threshold functions in the presence of classification noise
-
NY, USA, ACM
-
Tom Bylander. Learning linear threshold functions in the presence of classification noise. In Proc. of the 7th COLT, pages 340-347, NY, USA, 1994. ACM.
-
(1994)
Proc. of the 7th COLT
, pp. 340-347
-
-
Bylander, T.1
-
7
-
-
0010572906
-
Sample-efficient strategies for learning in the presence of noise
-
Nicolò Cesa-Bianchi, Eli Dichterman, Paul Fischer, Eli Shamir, and Hans Ulrich Simon. Sample-efficient strategies for learning in the presence of noise. J. ACM, 46(5):684-719, 1999.
-
(1999)
J. ACM
, vol.46
, Issue.5
, pp. 684-719
-
-
Cesa-Bianchi, N.1
Dichterman, E.2
Fischer, P.3
Shamir, E.4
Simon, H.U.5
-
8
-
-
83255166616
-
Online learning of noisy data
-
Nicolò Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir. Online learning of noisy data. IEEE Transactions on Information Theory, 57(12):7907-7931, 2011.
-
(2011)
IEEE Transactions on Information Theory
, vol.57
, Issue.12
, pp. 7907-7931
-
-
Cesa-Bianchi, N.1
Shalev-Shwartz, S.2
Shamir, O.3
-
9
-
-
85161975088
-
Learning via gaussian herding
-
K. Crammer and D. Lee. Learning via gaussian herding. In Advances in NIPS 23, pages 451-459, 2010.
-
(2010)
Advances in NIPS
, vol.23
, pp. 451-459
-
-
Crammer, K.1
Lee, D.2
-
10
-
-
33646371466
-
Online passive-aggressive algorithms
-
Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online passive-aggressive algorithms. J. Mach. Learn. Res., 7:551-585, 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 551-585
-
-
Crammer, K.1
Dekel, O.2
Keshet, J.3
Shalev-Shwartz, S.4
Singer, Y.5
-
11
-
-
84858729241
-
Adaptive regularization of weight vectors
-
Koby Crammer, Alex Kulesza, and Mark Dredze. Adaptive regularization of weight vectors. In Advances in NIPS 22, pages 414-422, 2009.
-
(2009)
Advances in NIPS
, vol.22
, pp. 414-422
-
-
Crammer, K.1
Kulesza, A.2
Dredze, M.3
-
14
-
-
77957197521
-
-
preprint arXiv 0905.2138 [stat.ML]
-
Yoav Freund. A more robust boosting algorithm, 2009. preprint arXiv:0905.2138 [stat.ML] available at http://arxiv.org/abs/0905.2138.
-
(2009)
A More Robust Boosting Algorithm
-
-
Freund, Y.1
-
15
-
-
0012163802
-
The kernel Gibbs sampler
-
T. Graepel and R. Herbrich. The kernel Gibbs sampler. In Advances in NIPS 13, pages 514-520, 2000.
-
(2000)
Advances in NIPS
, vol.13
, pp. 514-520
-
-
Graepel, T.1
Herbrich, R.2
-
16
-
-
33847123284
-
Noise tolerant variants of the perceptron algorithm
-
Roni Khardon and Gabriel Wachman. Noise tolerant variants of the perceptron algorithm. J. Mach. Learn. Res., 8:227-248, 2007.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 227-248
-
-
Khardon, R.1
Wachman, G.2
-
17
-
-
1242341002
-
Estimating a kernel Fisher discriminant in the presence of label noise
-
Neil D. Lawrence and Bernhard Schölkopf. Estimating a kernel Fisher discriminant in the presence of label noise. In Proceedings of the Eighteenth ICML, pages 306-313, 2001.
-
(2001)
Proceedings of the Eighteenth ICML
, pp. 306-313
-
-
Lawrence, N.D.1
Schölkopf, B.2
-
18
-
-
78149306870
-
Building text classifiers using positive and unlabeled examples
-
IEEE
-
Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and Philip S Yu. Building text classifiers using positive and unlabeled examples. In ICDM 2003., pages 179-186. IEEE, 2003.
-
(2003)
ICDM 2003
, pp. 179-186
-
-
Liu, B.1
Dai, Y.2
Li, X.3
Lee, W.S.4
Yu, P.S.5
-
19
-
-
83555170269
-
Random classification noise defeats all convex potential boosters
-
Philip M. Long and Rocco A. Servedio. Random classification noise defeats all convex potential boosters. Mach. Learn., 78(3):287-304, 2010.
-
(2010)
Mach. Learn.
, vol.78
, Issue.3
, pp. 287-304
-
-
Long, P.M.1
Servedio, R.A.2
-
20
-
-
78549293580
-
What shape is your conjugate? A survey of computational convex analysis and its applications
-
August. ISSN 0036-1445
-
Yves Lucet. What shape is your conjugate? a survey of computational convex analysis and its applications. SIAM Rev., 52(3):505-542, August 2010. ISSN 0036-1445.
-
(2010)
SIAM Rev.
, vol.52
, Issue.3
, pp. 505-542
-
-
Lucet, Y.1
-
22
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM J. on Opt., 19(4):1574-1609, 2009.
-
(2009)
SIAM J. on Opt.
, vol.19
, Issue.4
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
23
-
-
84898030282
-
A study of the effect of different types of noise on the precision of supervised learning techniques
-
David F. Nettleton, A. Orriols-Puig, and A. Fornells. A study of the effect of different types of noise on the precision of supervised learning techniques. Artif. Intell. Rev., 33(4):275-306, 2010.
-
(2010)
Artif. Intell. Rev.
, vol.33
, Issue.4
, pp. 275-306
-
-
Nettleton, D.F.1
Orriols-Puig, A.2
Fornells, A.3
-
24
-
-
84875390122
-
Calibrated asymmetric surrogate losses
-
Clayton Scott. Calibrated asymmetric surrogate losses. Electronic J. of Stat., 6:958-992, 2012.
-
(2012)
Electronic J. of Stat.
, vol.6
, pp. 958-992
-
-
Clayton, S.1
-
25
-
-
84945589257
-
Classification with asymmetric label noise: Consistency and maximal denoising
-
Clayton Scott, Gilles Blanchard, and Gregory Handy. Classification with asymmetric label noise: Consistency and maximal denoising. To appear in COLT, 2013.
-
(2013)
To Appear in COLT
-
-
Scott, C.1
Blanchard, G.2
Gregory, H.3
-
26
-
-
38149045827
-
Learning kernel perceptrons on noisy data using random projections
-
Springer
-
G. Stempfel and L. Ralaivola. Learning kernel perceptrons on noisy data using random projections. In Algorithmic Learning Theory, pages 328-342. Springer, 2007.
-
(2007)
Algorithmic Learning Theory
, pp. 328-342
-
-
Stempfel, G.1
Ralaivola, L.2
-
29
-
-
1942484421
-
Online convex programming and generalized infinitesimal gradient ascent
-
Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of the Twentieth ICML, pages 928-936, 2003.
-
(2003)
Proceedings of the Twentieth ICML
, pp. 928-936
-
-
Zinkevich, M.1
|