메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Learning with noisy labels

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARK DATASETS; BINARY CLASSIFICATION; EMPIRICAL MINIMIZATION; EMPIRICAL RISK MINIMIZATION; LOGISTIC REGRESSIONS; PERFORMANCE BOUNDS; SYMMETRY CONDITIONS; UNBIASED ESTIMATOR;

EID: 84898932626     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1226)

References (29)
  • 1
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • D. Angluin and P. Laird. Learning from noisy examples. Mach. Learn., 2(4):343-370, 1988.
    • (1988) Mach. Learn. , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 2
    • 0013360743 scopus 로고    scopus 로고
    • On the sample complexity of noise-tolerant learning
    • Javed A. Aslam and Scott E. Decatur. On the sample complexity of noise-tolerant learning. Inf. Process. Lett., 57(4):189-195, 1996.
    • (1996) Inf. Process. Lett. , vol.57 , Issue.4 , pp. 189-195
    • Aslam, J.A.1    Decatur, S.E.2
  • 6
    • 85016179756 scopus 로고
    • Learning linear threshold functions in the presence of classification noise
    • NY, USA, ACM
    • Tom Bylander. Learning linear threshold functions in the presence of classification noise. In Proc. of the 7th COLT, pages 340-347, NY, USA, 1994. ACM.
    • (1994) Proc. of the 7th COLT , pp. 340-347
    • Bylander, T.1
  • 7
    • 0010572906 scopus 로고    scopus 로고
    • Sample-efficient strategies for learning in the presence of noise
    • Nicolò Cesa-Bianchi, Eli Dichterman, Paul Fischer, Eli Shamir, and Hans Ulrich Simon. Sample-efficient strategies for learning in the presence of noise. J. ACM, 46(5):684-719, 1999.
    • (1999) J. ACM , vol.46 , Issue.5 , pp. 684-719
    • Cesa-Bianchi, N.1    Dichterman, E.2    Fischer, P.3    Shamir, E.4    Simon, H.U.5
  • 9
    • 85161975088 scopus 로고    scopus 로고
    • Learning via gaussian herding
    • K. Crammer and D. Lee. Learning via gaussian herding. In Advances in NIPS 23, pages 451-459, 2010.
    • (2010) Advances in NIPS , vol.23 , pp. 451-459
    • Crammer, K.1    Lee, D.2
  • 11
    • 84858729241 scopus 로고    scopus 로고
    • Adaptive regularization of weight vectors
    • Koby Crammer, Alex Kulesza, and Mark Dredze. Adaptive regularization of weight vectors. In Advances in NIPS 22, pages 414-422, 2009.
    • (2009) Advances in NIPS , vol.22 , pp. 414-422
    • Crammer, K.1    Kulesza, A.2    Dredze, M.3
  • 14
    • 77957197521 scopus 로고    scopus 로고
    • preprint arXiv 0905.2138 [stat.ML]
    • Yoav Freund. A more robust boosting algorithm, 2009. preprint arXiv:0905.2138 [stat.ML] available at http://arxiv.org/abs/0905.2138.
    • (2009) A More Robust Boosting Algorithm
    • Freund, Y.1
  • 15
    • 0012163802 scopus 로고    scopus 로고
    • The kernel Gibbs sampler
    • T. Graepel and R. Herbrich. The kernel Gibbs sampler. In Advances in NIPS 13, pages 514-520, 2000.
    • (2000) Advances in NIPS , vol.13 , pp. 514-520
    • Graepel, T.1    Herbrich, R.2
  • 16
    • 33847123284 scopus 로고    scopus 로고
    • Noise tolerant variants of the perceptron algorithm
    • Roni Khardon and Gabriel Wachman. Noise tolerant variants of the perceptron algorithm. J. Mach. Learn. Res., 8:227-248, 2007.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 227-248
    • Khardon, R.1    Wachman, G.2
  • 17
    • 1242341002 scopus 로고    scopus 로고
    • Estimating a kernel Fisher discriminant in the presence of label noise
    • Neil D. Lawrence and Bernhard Schölkopf. Estimating a kernel Fisher discriminant in the presence of label noise. In Proceedings of the Eighteenth ICML, pages 306-313, 2001.
    • (2001) Proceedings of the Eighteenth ICML , pp. 306-313
    • Lawrence, N.D.1    Schölkopf, B.2
  • 18
    • 78149306870 scopus 로고    scopus 로고
    • Building text classifiers using positive and unlabeled examples
    • IEEE
    • Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and Philip S Yu. Building text classifiers using positive and unlabeled examples. In ICDM 2003., pages 179-186. IEEE, 2003.
    • (2003) ICDM 2003 , pp. 179-186
    • Liu, B.1    Dai, Y.2    Li, X.3    Lee, W.S.4    Yu, P.S.5
  • 19
    • 83555170269 scopus 로고    scopus 로고
    • Random classification noise defeats all convex potential boosters
    • Philip M. Long and Rocco A. Servedio. Random classification noise defeats all convex potential boosters. Mach. Learn., 78(3):287-304, 2010.
    • (2010) Mach. Learn. , vol.78 , Issue.3 , pp. 287-304
    • Long, P.M.1    Servedio, R.A.2
  • 20
    • 78549293580 scopus 로고    scopus 로고
    • What shape is your conjugate? A survey of computational convex analysis and its applications
    • August. ISSN 0036-1445
    • Yves Lucet. What shape is your conjugate? a survey of computational convex analysis and its applications. SIAM Rev., 52(3):505-542, August 2010. ISSN 0036-1445.
    • (2010) SIAM Rev. , vol.52 , Issue.3 , pp. 505-542
    • Lucet, Y.1
  • 22
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM J. on Opt., 19(4):1574-1609, 2009.
    • (2009) SIAM J. on Opt. , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 23
    • 84898030282 scopus 로고    scopus 로고
    • A study of the effect of different types of noise on the precision of supervised learning techniques
    • David F. Nettleton, A. Orriols-Puig, and A. Fornells. A study of the effect of different types of noise on the precision of supervised learning techniques. Artif. Intell. Rev., 33(4):275-306, 2010.
    • (2010) Artif. Intell. Rev. , vol.33 , Issue.4 , pp. 275-306
    • Nettleton, D.F.1    Orriols-Puig, A.2    Fornells, A.3
  • 24
    • 84875390122 scopus 로고    scopus 로고
    • Calibrated asymmetric surrogate losses
    • Clayton Scott. Calibrated asymmetric surrogate losses. Electronic J. of Stat., 6:958-992, 2012.
    • (2012) Electronic J. of Stat. , vol.6 , pp. 958-992
    • Clayton, S.1
  • 25
    • 84945589257 scopus 로고    scopus 로고
    • Classification with asymmetric label noise: Consistency and maximal denoising
    • Clayton Scott, Gilles Blanchard, and Gregory Handy. Classification with asymmetric label noise: Consistency and maximal denoising. To appear in COLT, 2013.
    • (2013) To Appear in COLT
    • Scott, C.1    Blanchard, G.2    Gregory, H.3
  • 26
    • 38149045827 scopus 로고    scopus 로고
    • Learning kernel perceptrons on noisy data using random projections
    • Springer
    • G. Stempfel and L. Ralaivola. Learning kernel perceptrons on noisy data using random projections. In Algorithmic Learning Theory, pages 328-342. Springer, 2007.
    • (2007) Algorithmic Learning Theory , pp. 328-342
    • Stempfel, G.1    Ralaivola, L.2
  • 29
    • 1942484421 scopus 로고    scopus 로고
    • Online convex programming and generalized infinitesimal gradient ascent
    • Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of the Twentieth ICML, pages 928-936, 2003.
    • (2003) Proceedings of the Twentieth ICML , pp. 928-936
    • Zinkevich, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.